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To understand the primitive unit cell of the b c c structure, I have a model here and as 

you can see it is somewhat difficult to visualize the primitive unit cell of a b c c crystal. 

To understand this, you will have to visualize that there are actually 1, 2, 3, 4, 4 unit cells 

in this conventional representation, which are put together to actually generate the 

parallelepiped which is outlined in green here.  

The face is green faces, which is the primitive unit cell of the b c c crystal. This vertices, 

there are 8 vertices to this parallelepiped, and as you can see 4 of these vertices are the 

body centring atoms. There is 1 here from this top unit cell, 1 from the bottom unit cell,1 

from the left unit cell and 1 from the unit cell in the front. So, you have 4 of those which 

belong to the b c c positions and there are 4 which are the original corner positions like 

the 1 here, the 1 here and, for instance, the 1 here and the 1 at the back. 

So, you can see this is a rather oblique kind of a parallelepiped, but never the less we 

have already seen that all kinds of parallelepiped are space filling. So, this primitive unit 

cell will also be a space filling unit cell which will fill entire space and often as you 

would have noticed that we do not use this as a conventional unit cell. We use the 1 

which is represented by these red out lines here. The volume of this parallelepiped is half 

the volume of the other conventional unit cell, as you can see because there is only 1 

atom associated with each unit cell here. And there are 2 associated with the normal 

conventional unit cell.  

To tell you once again that actually it is very, very difficult to visualize this unit cell even 

with a model in hand. Therefore, if you do not have a model in hand you should pay 

particular attention to understand that how actually this unit cell is constructed. So, let 

me rotate this model a little in for a few angle. So, that you can actually see how the unit 

cell looks from various angles. So, as you can see this is actually a double l kind of 

shape. So, there is one l like this and there is another l like this and this is has an extent in 

4 unit cells.  



(Refer Slide Time: 02:50) 

 

So, let us return to the main slides after having looked at this primitive unit cell of a b c 

c, and let us take up the diamond cubic structure. We have already dealt with this 

structure in at least somewhat detail, but we will take up some more aspects of this 

structure which we have not seen before and also revise some of the familiar concepts. 

We said that for instance, this the no metals crystallize in the diamond cubic structure, 

but still this is important for us from the point of view of understanding structures.  

The common elements which are crystallized in this structure are carbon, silicon and 

germanium and as we shall see later on the chapter on when you talk about covalently 

bonded structures that carbon also has as other allotropic forms, but 1 of them is 

diamond, which as you known is the hardest material in nature. And we also noted this 

important point that the structure is not a close packed structure, it has no close packed 

planes and has no close packed directions. So, what I am emphasizing here is a fact that 

just because I call something and as an f crystal belonging to the f c c lattice it need not 

be a closed pack crystal. So, this is 1 example of that. This also as I told you is an 

important example to illustrate another point that actually this structure, 



(Refer Slide Time: 03:58) 

 

Does not have a true fourfold axis and still it comes under the cubic class, which 

essentially implies that fourfold is not a true fourfold. That means, a pure rotational 

fourfold is not a requirement of cubic crystal. So, that another aspect which we have 

seen. We already seen a model of this diamond cubic structure. 
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I will take that model again to shown some important aspects like how the atoms touch 

actually. So, what I have is here is the model which I shown before and the important 

point which we will emphasize again using the slides is a fact that every atom, all the 



atoms here, are carbon. Of course, or germanium if the structure is talking about the 

germanium or silicon, every atom is tetrahedrally bonded. That means, suppose, I have 

pick up an atom then there are 4 atoms which are at the vertices of a regular tetrahedron. 

So, for any. So, this kind of a tetrahedral order propagates in 3 dimension. Suppose, I 

start from the origin here then I would have an atom here which is tetrahedrally bonded 

then this atom would be bonded, this atom is tetrahedrally bonded.  

So, if you see that how the atoms touch each other they actually touch along the 1 11 

directions, but the touching does not propagate. So, it actually bends off into these 

tetrahedral angles and therefore, there is no single direction which is a closed pack 

direction. Now, this is the convention unit cell of the diamond cubic structure and as you 

know because this is based on the f c c lattice, it has got 4 lattice points per cell and each 

lattice point is occupied by 2 carbon atoms.  

If it is a carbon diamond I am speaking about 1 at 000, other is at quarter, quarter, 

quarter. Therefore, there are eight atoms in a single unit cell. Four of these atoms would 

be on the outer side of the unit cell and 4 of them are contained within the unit cell which 

themselves form a tetrahedron. So, let us see that tetrahedron which is the four carbons. 
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Which sit inside the unit cell which are marked here as the outline of this tetrahedron. 

You can see here. So, this cell is a tetrahedron and as you know a tetrahedron when you 



look from upstairs has got only a two fold symmetry, or if you want to look in terms of a 

rotor inversion symmetry it has got a four bar kind of a symmetry. 
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Now, let us toward other views of this diamond cubic structure and for instance, this 

view bottom here shows along the 1 1 1 direction. So, you can and I have clearly mark 

the items in tetrahedral positions inside with this light blue colour, the 1 sitting in the 

phase centering position as dark blue colour and the remaining 1s are maroon or brown 

colour. So, please note all atoms are of the same kind. They have been coloured 

differently for better visualization. So, I have an atom here which is seen near the top in 

the 111 projection.  

This atom is even below this atom. These 3 atoms are same as these 3 atoms and the 3 

blue atoms are above those and finally, I have the hexagon formed by these other outer 

carbon atoms. And as I pointed out, any atom is touching 4 other atoms and is 

tetrahedrally bonded to the 4 by the s p 3 hybridized bond. So, this is how the diamond 

cubic structure is and we have to remember this is not aclosed back structure even 

though it is based on the f c c lattice. So, you have the lattice which is f c c. 
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And 2 atoms from the motif. The O and T atoms which are 000 and quarter, quarter, 

quarter and therefore, here the motif actually consists of 2 identical atoms. I could 

alternatively choose my origin instead of O and T and I will find the structure remains 

unaltered. So, that is another important point to be noticed. So, either the O and 

equivalent atoms form a lattice or the T and equivalent atom form a lattice and 

correspondingly O and T would be the motif. 
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As I mentioned, every atom irrespective of where it sits with respect to the unit cell, for 

instance, it could be atom sitting on the phase. It could be atom sitting on the corner or it 

could be atom sitting on the quarter, quarter, quarter position, all of them have 

tetrahedral coordination around them of identical type atoms. So, the atoms which are in 

around a central atom have been shown in small size for better visualization.  

So, you can see that this is my central atom which is in the phase centering position and 

we can see that there is a tetrahedral of carbon atoms around the central atom. So, for this 

one. So, this is my coordination polyhedron which is a tetrahedron and this also reflects 

the bonding characteristic which I told you is a normal tetrahedral bonding. And again to 

emphasize the point irrespective of where the carbon atom sits, its environment is 

identical and tetrahedral. So, there is no difference between the atom which is sitting at O 

and the atom which is sitting at T and this aspect has to be clear because with respect to 

the unit cell they may look very different. 
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But they are identical now these are some advanced considerations and few things out of 

this we need to focus upon, the remaining can be left for study for later study, it is the 

important thing I mention that this structure does not have a true fourfold axis. And still 

it is comes under the cubic class and the reason it is still comes under the cubic class is 

because it has got a 3 bar axis still. If somebody want to write down the formal space 



group of the structure, he will call even f 41 by d 3 bar 2 by m. Where the d actually is a 

special symbol which stands for the diamond glide.  

So, it is a glide of the type which is shown here in by the red arrow mark which 

translates by quarter quarter. Now, if I look at this structure, the important descript is 

symmetry is the 41 square axis and the 4 3 square axis. So, every one of these perhaps is 

a 41 and the every alternate set which is diagonally located is a 4 3 square axis and the 

41 square axis is connected to the 43 square axis by a diamond glide. As we know, 

symmetry operators just do and act on atomic entities, but they also act on other 

symmetry operators present in the structure and therefore, you can see that they are 

connected by a diamond glide. 

So, we have to remember that this diamond cubic structure actually does not have a true 

fourfold axis, but it still has a 41 kind of a square axis and therefore, in international 

tables, for instance, you would find the point group written as 4 by m 3 bar 2 by m. So, 

this basically reflects the fact that it has got a 41 square axis even though it does not have 

a true fourfold axis. So, these are actually four unit cells which I have shown here, 

wherein I have superimposed some of the square axis in the structure and you can see 

this square axis is does not pass through any of the atomic positions. It passes between 

the atomic positions and the diamond glide actually connects an atom with z equal to 0 to 

the atom and z equal to 4.  

So, actually the glide reflection plane is at z is equal to one-eighth. So, it is located at 

one-eighth the height and therefore, it will move an atom at z equal to 0 to z equal to 

one-four and that could this vector shows only the direction of the diamond glide and not 

the glide plane itself. Now, we switch somewhat gears and try to define a quantity known 

as density. 

The reason we have to describe what is density here is because in usual normal terms 

density is mass per unit volume, but in material science we have other kind of densities. 

And we have to remember that often when we are talking about density, we are talking 

about some of these other numbers. Therefore, we should not be confused by the units 

they have. For instance, linear density could be mass per unit length. 
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Which is k g per meter or it could actually be counting number of atoms in a unit length 

of is typically you would take a straight line of course. So, atoms per unit length. So, that 

will be a number per unit length. So, units will be per meter. You could have a length 

occupied per unit length of material. So, suppose there is an some lenient or suppose you 

talk about a one-dimensional crystal or a one-dimensional line on which you have an 

atom. So, certain part of the line will be occupied by atoms. So, I will count that fraction 

which is occupied by atoms and I can calculate a linear density. So, just show you a 

figure in the board. So, what I mean here. 
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Suppose, I draw a line through the crystal and I have an array of atoms here. So, I will 

find out suppose of course, this is my unit cell length, I know that this is going to be 

repeating in finite unit. So, part of the line which is occupied is this part of the line and 

the total suppose this is a and say this is r. So, my total will be 2 r by a. Since it is length 

by length it is a dimensionless quantity, but still remember this is a kind of density I am 

defining that means the it is an length fraction which has been occupied by atoms along 

this length this line. 
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So, apart from linear density you could have areal density. So, we saw that even in linear 

density, for instance, you have various units like, for instance, you have k g per meter 

you could have number per unit length which means basically per meter you, could have 

meter per meter which is basically dimensionless. As I will emphasize once more later 

but, the useful way to write these quantities is not to factor out the common terms. 

That means when I am writing meter per meter cube, write it as meter per meter cube 

and not as per meter square because meter per meter cube is better instructive of the kind 

of quantities, I am dealing with and is physically a better representation of the density I 

am talking about. So, when I am talking about areal density again I can go for mass per 

unit area which would mean k g per meter square and I am when including areal density.  

I perhaps would include those atoms whose centre of mass lies on a particular plane like, 

for instance, when I am doing this calculation here I can do the linear density calculation 



in 2 ways. I have a line here and assume that there are some atoms which are which has 

centre of mass coinciding on the line. There could be other atoms which do not have 

centre of mass coinciding on the line. In such cases, 
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I have 2 options at my disposal either I include only these atoms whose centre of mass 

coincides with my centre, or I include all atoms whose centre even does not coincide that 

means I will include these lines. So, let me mark those lines. So, possibility number 1 is 

to include these lines. Possibility number 2 is to include those lines and additionally 

these lines. So, whenever I am doing the definition it has to be absolutely clear which of 

these 2 definitions I am using to actually calculate my linear density.  

Similarly, when I am talking about areal density I need to know, if I am actually 

including only those atoms whose centre of mass coincides with the plane or I am 

including those atoms. Also whose centre of mass does not coincide with the plane that 

means that there is only a part of the atom which lies on the plane. So, again I have areal 

density defined as mass per unit area, which would be k g per meter square or it can be 

atoms per unit area. Which it means is basically a number areal density, which means it 

will have units of per meter square or it could be an area occupied per unit area, which 

would mean that is meter square per meter square.  

And when I am talking about number per unit area, typically I would exclude those 

atoms whose centre of mass does not lie on the plane, but then you could extend the 



definition and include those also depending on the kind of need you have. Finally, the 

volume density. Again you can define mass per unit volume the way you had defined 

mass per unit length and mass per unit area. 

So, only thing is that here it will be k g per meter cube. You going to have count the 

number of atoms in a unit volume which will be a number per unit volume. And which 

will have the units of per meter cubed, or you can calculate volume occupied per unit 

volume. We have seen that this is the definition you will use and we have somewhat 

been mentioning this before is the concept to the packing fraction. So, here I would write 

the units as meter cube per meter cube just to emphasize the fact that it is volume per 

unit volume, I can of course, cancel out the units and say that it is dimensionless, but I 

would prefer not to do that just to emphasize this aspect. 

The volume occupied per unit volume as I said is also called the packing fraction and we 

have been dealing with this number before though we have never formally defined it. 

Since, we are talking about these density, in this context certain other important 

quantities are like length per unit area. For instance you could define a length meter per 

meter cube and later on you will see this is an very important definition in the context of 

dislocations and for instance, we would like to define the length of a dislocation lines, for 

instance, per unit area of interface. 

So, this is in the context of interfacial dislocations or even in the context of dislocations I 

may want to define length per unit volume. That means I would like to find out what is 

my length of dislocation line in a volume of material. So, again I will write it as meter 

per meter cube just to emphasise that it is length of a dislocation line in a volume of 

material. Of course, suppose I am talking about a length of a certain line I known do not 

have to have a continuous line in other words, I could have curved lines I could have 

broken lines etc. 
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Just to draw a schematic. Suppose, this is the volume of material I am considering a 

cubic volume. Of course, you could also consider a spherical volume and now I am 

talking about some entity which is the linear entity and in this context we are using 

dislocations. Of course, we have not formally defined dislocations in this course we will 

do that later but, for now, you need to consider them as lines. So, I have a line here and 

suppose I have a line going through and finishing here.  

So, it is not only not a straight line it is a curved line and this is somewhere embedded 

somewhere in the volume of the material. There could be other lines which go like this 

and there could be other lines which go like this and finish here. Of course, these are 

continuous lines but, there are in pieces. So, add up all my lines like this which are in 

various parts in the crystal and there could be some lines which will end within the 

crystal, for instance, there could be loops within the crystal and I add up all those length 

of all those lines and divide it by the volume of the material. So, in other words. I have a 

length of, for instance, in this context a dislocation lined in a volume of material. 

Well I could talk about an areal density, for instance, area per unit volume and this 

would be a very important quantity, for instance, the context of, for instance, grain 

boundary area or any 2 dimensional defect. So, we have not defined again what is a grain 

boundary. We will come to it during a later session, but here we I am talking about 

planar planes which exist within a volume of material. So, I calculate the total area of my 

plane. This could be straight planes, this could be curved planes, they could be planes 

closing on themselves.  



For instance, they could be a spherical entity therefore, I have an interface which is a 

sphere, it could be polyhedral, it could be anything but, I am talking about that surface 

area of those entities per unit volume of the material. So, these are the some of the 

extended definitions which I need to keep in mind, though of immediate concern only 

will be this definition, which is the definition of packing fraction where I am talking of a 

volume per unit volume. 

But, this is a worthwhile tabulation that in material science when I was we say density it 

is important to remember that what is the kind of density we are talking about. Is it 

length per unit volume? Is it area per unit volume or is it area per unit area? Also, for 

instance, suppose I have an plane and I have a certain set of spherical entities sitting 

here. I need to know what is the area occupied by those entities on this plane. So, there 

could be various kinds of density I am talking about. 

Some of them are number densities, some of them are units like k g s, some of them 

could just be a volume density. I need to know that and second thing what are the details 

in the definition like I mention am I counting all those atoms who just intersect the. For 

instance, a particular plane or am I counting only those whose centre of mass lies on the 

plane. So, these aspects have to be kept in mind when I am defining density in a material 

science. Now, let us explore it a little more in packing fraction and especially the packing 

fraction of the important crystals we have been considering so far. So, the important 

crystals we have been talking about are a simple cubic, 
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body centred cubic then the cubic closed pack which is sometimes casually called the f c 

c crystal, the diamond cubic and the hexagonal close pack crystal. Now, obviously all 

these are the cubic symmetry and this is got hexagonal symmetry and as if you find 

packing fraction, it is a volume occupied the atoms per unit volume of the cell. So, this is 

what I need to remember. Now, first thing I do is write down the relation between the 

atomic radius and the lattice parameter. For simple cubic crystal, since the atom touch 

along the edges cell edges, a is equal to 2 r. So, there are 2. 

For the body centred cubic, the atoms touch along we have seen already touch along the 

body diagonal and the length of body diagonal is root 3 a and there is a central atom 

which is 2 r contribution to this length and also there are 2 atoms sitting at the edges of 

the body diagonal which give a contribution of 2 r. So, there is 4 r is equal to root 3. In 

the cubic close pack crystal, the atoms touch along the phase diagonal. 

As you know the miller indices of the phase diagonal is of the type 110 kind of direction 

and therefore, root 2 a is equal to 4 r. For the diamond cubic crystal, which we have seen 

before this is slightly more difficult to visualize. So, let me take up this crystal. So, this is 

my diamond cubic crystal and, for instance, I am talking about the atom located at 1 

vertex and an atom located at quarter quarter, quarter along the body diagonal. 

So, this distance is root 3 a by 4 because my body diagonal is root 3 a, a being the edge 

of the unit cell and this is root 3 a by 4 and this itself is equal to 2 r. That means it is 



twice the radius that means it is equal to 1 diameter. So, for the body diamond cubic 

structure root 3 a by 4 is equal to 2 r. For the hexagonal close pack crystal, the atoms 

touch along the, if we talking about the bessel plane, the atom touch along any other cell 

edges.  

So, a is equal to 2 r and c is little more complicated its 4 r the root 2 by 3 a which we can 

derive from simple geometry. Of course I will leave it as an excise to the reader to 

actually do this derivations. So, that you convenience yourself that c is also related to the 

r. B c c as 2 and the simple cubic has 1 and c p has 2. Number of lattice points per cell 

again we have seen its 1 for a simple cubic,2 for body centred cubic,4 for a cubic close 

pack ,4 for d c and 1 for h c p. 

The number of nearest neighbours is 6 for simple cubic,8 for b c c,12 for c c p and h c p 

and 4 for diamond cubic. We will do a sample calculation of the packing fraction for c c 

p later, but now it is important to note that packing fraction. Since, it is a volume per unit 

volume has the transcendal number pi in which definition therefore, whatever numbers 

there are coating often as 0.74 is just an approximate number. So, as you know 

transcendal numbers go on and on. There is only where truncated to 2 decimal places or 

rounded off to 2 decimal places. 

The packing fraction of simple cubic is 52 percent, b c c is 68 percent, c c p and h c p is 

74 pecent and diamond cubic is 34 percent. So, again to emphasis the point that highest 

possible packing fraction from in nature. For sphere packing is only 74 percent that 

means you cannot obtain a packing more than 74 percent of equal sizes spheres. And 

some of the other structures have actually, a lower packing fraction and often you would 

find that if the element has more covalent characterizing bonding then it will not go for a 

maximum nearest neighbours. Maximum nearest neighbours is promoted by more 

metallic kind of bonding where there is no preferential bond angles. 

And therefore, you would prefer to have the maximum packing. If you do not have a 

metallic kind of pure metallic character to the bond, then you consider the extreme 

example of diamond cubic for carbon where in the bonding is purely covalent. It is not a 

close pack crystal. In fact, it is very poor packing fraction about one-third. That means 

one-third of space is actually filled by atoms the remaining two-third space is actually 

vacant.  



Now, for simple cubic structures it is about 50 percent and b c c is about 68 percent 

packing fraction, and that is why you might note that very few metals. Actually 

crystallize in the simple cubic form it is only polonium, which is got a simple cubic 

structure and b c c and c c p and h c p has a more common structures in which you would 

find metals. So, to summarize this slide once more packing fraction is described as 

volume occupied by atoms, total volume of space.  

In other words, volume of the unit cell. Of course, I am doing the calculation you will 

include the only those atoms, which are present within a unit cell if you are restricting a 

calculation to the unit cell. We have the highest fraction possible which is 74 percent for 

c c p and h c p and the others. For instance, functions b c c and simple cubic have lower 

packing fractions that means more of the structure is actually open. But, then we will 

have to know that is because structure is more opened does not mean, that you will able 

to put material into those volumes and some of these aspects we will consider, later in 

the coming chapter. 
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So, let us calculate the packing fraction for cubic close pack crystals. We already know 

the answer is approximately 74 percent. So, we know that there are 4 atoms or ions in the 

unit cell. So, we want to calculate the volume occupied by the ions by the volume 

occupy of the total cell. For cubic close pack of the crystals, we know root 2 a is equal to 

4 r as atoms are touching along the 110 direction. So, this is my 110 kind of a direction 



and atoms are touching along. The volume of the cell is nothing but a cube which is 4 r 

by 2 the whole cube.  

So, I am just taking it from here and doing the a cube. The volume occupied the atoms 

ions are each assuming. Now, I will approximate each atom to the spheres to the volume 

will be 4 by 3 pi r cube and there are 4 such atoms in a cell 4 into 4 pi by 3 r cube. So, 

my packing fraction will be 4 into 4 pi by 3 r cube into 4 r by root 2 the whole cube 

which is turns out to be pi by 3 root 2 which is 74 percent. 

Now, there is 1small or big step missing in this whole this is a proof actually that cubic 

close packing or the hexagonal close packing is a highest possible and there is no higher 

packing possible. So, this proof happens to a very complicated mathematical proof. It 

was proved within the last 15 years some point of time and it is actually complicated 

proof and we will not take up the proof here. So, sometimes some of these things which 

have been known for a long time have been proved only late of pretty late times and the 

proof itself is very complicated and it was lot of deep mathematics. Now, we will assume 

that even though there is a proof, we will assume that this is highest packing fraction 

possible for equal size spheres. 
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To contradict or to compare my packing fraction of the simple phase centred cubic, 

which I mean that each lattice bonds occupied by single sphere. Which are in other 

structure, which we were considered before, which is the sodium chloride structure, 



which is also based on the h c p lattice, but now each lattice point is occupied by 2 ions, 

one is a sodium ion, other one is a chlorine ion. So, this is my motif here which we have 

seen before. 

So, the chlorine ions at 000 and a sodium ion is at half 00 and we construct this structure 

as 2 interpenetrating f c c lattices. That means, I can place no origin either at the sodium 

or at the chlorine and these 2 it is this structure super lattice it show sub lattices or in 

other words this crystal itself is a super crystal with 2 sub crystals, one sub crystal of 

chlorine ions, one sub crystal of sodium ions. And the important point I want show in 

this calculation is that this is not a close pack structure. 

Even though it is based on only f c c lattice and diamond cubic, we show as even lower 

packing fraction, but there could be even worse than diamond cubic structures which are 

also based on the f c c lattice and we will take up one example later in the course, which 

is a case the fullerene. So, we have four motif in unit cell because it is an f c c lattice as 

before the definition of packing fraction is volume occupied ions by the volume of the 

unit cell and now, for we will assume these ions are spherical. Volume of this cell a cube 

which is nothing but you can see that a is nothing but twice radius of sodium ion plus 

twice radius of chlorine ion. The whole cube which turns out to be for the actual sodium 

chloride structure is 1.710.88 Angstrom cubed. 

Volume occupied by ions is 4 times 4 pi by 3, radius of sodium ion cube plus radius of 

chlorine ion cubed which is nothing but, simple volume calculation for the spheres and I 

it transecting 114.65 Angstroms. Here, the packing fraction is a division of these 2 

numbers which is about 67 percent and if you compared it with this table here it is 

somewhere along the b c c and not close to the c c p structures. So, it is got a lower 

packing fraction than the c c p structure or the h c p structure.  

So, as I mentioned you can have structures like the fullerene crystals which are based on 

the f c c lattice, and fullerene happens to a beautiful example because it is not a metallic 

or covalent or ionic crystals actually it is a molecular crystal. There in you will get even 

worse packing fractions and there, I am talking about packing fraction in terms of the 

volume occupied by atoms or volume of the entire space. You could also alternately 

define the volume occupied by a molecule by volume occupied by space and that will be 

alternate definition of packing fraction, I am not taking the definition of packing fraction. 



We had previously defined the quantity known as atomic density which was atoms per 

unit area. So, we will see and this is an important example. 
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Important consideration because you will see that depending on the kind of plane we are 

considering and depending up on the crystal structure, the atomic density changes from 

plane to plane. Here I am using the definition that atomic density, I am considering only 

those atoms who centre of mass coincides with the plane ion plane in question. If the 

impotent point to note, which I will this is a conclusion, first I will jump to that and we 

will see the details.  

If we take a simple cubic structure then the 11 1 plane is a least close pack plane the 110 

is higher density and finally, the 100has even higher density. On the other hand, suppose 

I look at an f c c crystal, it is suppose a cubic close pack crystal. The 111 plane has the 

highest density and the 100, 110 plane has the lowest density, with 1110 plane having an 

intermediate density. 

And b c c crystals, the order is change again and here the 111 and plane with the lowest 

density like the simple cubic but, here unlike the simple cubic which has been 100 higher 

density at the 110 which has the highest density. Now, why is that we need to construct 

these planes with highest density. Of course, these planes, for instance, could be 

performing the role of a slip plane. For instance, in dislocation motion which is very, 



very important in plasticity and so many other kind considerations we would like to 

know.  

For instance, what is my atomic density like suppose I am talking about a crystal and 

what phase would develop during crystal growth or the equilibrium shape then the 

energy it cost for me to put a surface would depend on. Of course, on the atomic density 

because then they would have number of bonds, which are broken based on number of 

atoms which are there on the surface. Therefore, I would like to know my atomic density 

on each one of these planes. Now, to go through the table100 plane in simple cubic as an 

atomic density of 1 by a square. So, the area of the square. 
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So, let pick up this square. So, this is my simple cubic structure I am considering the 100 

plane and if you look at plane you will see that this is my unit parallel unit cell, the phase 

at unit cell and volume the number of atoms is 1 which have 4 coordinates and the area is 

a square. So, it is 1 by a square. If you look at the 110 plane. So, this is my 110 plane in 

the simple cubic structure as you can see that the atoms are touching along 100 direction 

and not along the 110 directions which is this direction. 

Now, my area, this is root 2 a and this is a. So, my area will be root 2 a into 1 and the 

number of atoms is again 1. So, the area will be 1 by a square root 2. It is here, it is 0.707 

by a squared and suppose if you look at the 111 plane, the atom is do not touch along 

these directions. So, you can see along the 111 plane the atoms are well separated and 



this length is root 2 a and for I calculate the area of my triangle which is root 2 a into. So, 

this is my plane of density I am calculating here.  

Therefore, this area occupied by the atoms in this case would be 1 by root 3 a square 

which is 0.577. It would be instructive to actually do some of these calculations 

yourselves by considering the triangle and the area occupied by this spheres. Of course, 

visualizing important thing, how these spheres intersect these planes and which part of 

that lies within the unit cell. 

So, you could see here that these totally do not give an single atom and therefore, my 

packing fraction of the 11 plane is the least here. Similarly, I can do my calculation for 

the f c c again noting the fact that how atoms sit. So, this is my plane. The 110 plane in 

the f c c and you can see that it has the central atom plus four coordinative atoms. 

The110 plane has lot of space here you can see in a middle. Therefore, it is lower 

packing fraction and the 11 1 plane has got the highest packing fraction and it turns out 

to be. You can see it is closely packed along the plane. As we already seen, this is 

nothing.  

The 11 plane in f c c is nothing but the hexagonal layer which is the close pack layer. So, 

it is not surprising for us that 111 plane in f c c has the highest packing density. 

Similarly, we can do so in the b c c and you can see that in the 1 11 plane has the lowest 

density, which is also seen from this figure that most of the 11 1 plane is not occupied by 

atoms. And I made warning when we talked about miler indices that when I am taking a 

plane to do the calculation, I have to make sure that plane is a space filling plane. In 

other words part of the plane, which lies in unit cell if repeated should actually fill the 

entire two-dimensional plane. Like I told you that suppose I take a 11 1 plane and the 

two possibilities of taking the 1 11 plane. One plane which is a typical one let me draw 

that again in board for you. 
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So, this my 11 1. But, I cannot pick up plane which is hexagonal shape which lies 

between these two planes because that plane we saw was not a space filling plane. 

Therefore, if you make such a plane for calculation of this atomic density you will end 

up with of erroneous values. The next important topic we consider now is a topic of 

voids. 
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Now, we have already seen that the sphere, the atoms, themselves do not fill the entire 

space and this is reflected in the packing fraction being smaller than one. This implies 



that there are voids between atoms and lower the packing fraction larger is the volume 

occupied by these voids. As we shall see, these voids have complicated shapes but, we 

are mostly interested in the largest sphere, which can fit into these voids.  

Typically, we will assume in that not only is the basic lattice of the basic crystal spheres, 

but we will assume for now, but actually the atom going into this intersection which will 

is what we have interested in are also spheres. Typically, we will consider only a plane 

faced polyhedron version of these voids and not actually, the complicated shape of the 

voids and what I mean by this I will show using models very soon. The size and 

distribution of the voids in materials play an important role in determining aspects and 

many of these aspects material behaviour. For instance, solubility of interstitials, the 

diffusivity and many other important behaviour. Wherein I need to construct these voids 

and the atoms with sitting these voids. 

That means I am not only interested in the packing fraction but, I am also interested in 

the shape of these voids and the size of these voids. And I am talking about shape, as 

again emphasis, I am talking about the polyhedral version of the void and not only the 

real shape of the void. Now, the position of voids of a particular type will be consistent 

with the symmetry of the crystal. So, I will mention this by actually giving examples 

later when we consider the, for instance, the f c c and h c p crystals and also the b c c 

crystal.  

In close pack crystals, the f c c and h c p, for instance, are what we call the c c p and h c 

p. There are two type of voids, the tetrahedral void and the octahedral void and we will 

take up these two kind of voids in detail in these two structure. An important point you 

note is that they are identical in both these two structures. That means as per a void 

picture of these structures close, I can have and we already seen that when we dealing 

with crystal structures we have especially four important types of models. We worked 

with, the wire frame model, the ball and stick model, the space filling model and in the 

last, but not least the void model. 

And these voids themselves can actually be put together to make a entire structure which 

is a space filling structure. So, when I want to make a space filling structure for these 

close pack structures f c c and h c p, I would use the octahedral, the regular octahedron 

and the regular tetrahedron which I have seen before. For instance now, in these two 



structures, I have my regular octahedral and my regular tetrahedral and these two will put 

together from this space filling factor as we will see.  

Now, one important point to note, whenever I mention the word octahedral, I should not 

be confused with the fact that the coordination number, even though I am saying 

octahedral actually the octahedron has eight phases, but the coordination number is only 

six. So, it is not confused octahedralvoid meaning actually coordination of eight. So, this 

aspect as to be kept in mind. The other important thing we will see is that the b c c 

crystal which we have seen already it is not a close pack crystal. This does not have a 

regular shaped void, it also has an octahedron and tetrahedron, but these two shapes are 

the octahedron and the tetrahedronare not the regular octahedron and the regular 

tetrahedron. 

And we will see later that the octahedral void in fact can function like a linear void. So, 

what we mean by that also we will see. That means it could turn out that the coordination 

number is not six, but actually 2. So, before we go take up the voids in the close pack 

structure let me revise some of the points by actually taking an example. The first one I 

would like to mention is the examples of the polyhedron version. So, we take, for 

instance, a simple cubic crystal which I form here within this box with glass feeds.  

So, you can see that there are eight spheres and now, these are glass spears which are put 

inside the unit cell to actually form a crystal. So, you can see here. Now, when I want to 

consider, for instance, the largest sized here which I can put into this void. I have already 

done so by putting a golden shape sphere. Let we show this by this point already. I have 

already put sphere and this is the largest sphere, which you put into this void without 

actually distorting this structure.  

So, when I am talking about this central atom, it is coordinated to these eight atoms 

which are at the coordinates of the cube. If I were actually to consider the actual shape of 

this void which is a little more complicated shape, I have a model right here and I have 

done this by actually pouring wax into this model and taking out this spheres. So, you 

can see that actually the voids is considerable.  

The amount of volume occupied void is considerable and it is in a very complicated 

shape. It has got curve phases, it has got straight phases. About the straight phases means 

basically that your truncating along the unit cell phases. So, but it is a complicated shape, 



but when I am talking about voids, I am not going to be considering this shape of the 

void. The true shape to the void, but what I might call the polyhedron version of this 

void. 

So, what I mean by the polyhedron version is a version which we saw before a version 

like this. In other words, I only talk about the vertices of the atoms around the void 

which form a polyhedron and this polyhedron in this case happens to be the cube, which 

is around a central position where the impurity atom or an alloying element atom can sit. 

So, in future I have to remember even though these voids have very complicated shapes 

and complicated connectivity. 

For instance, this kind of voids would should actually this kind of space for actually 

connect in 3 dimensions along the 3 directions and form a continuous network. But I am 

not considering a shape like this, but I am only considering a shape like this and I am 

talking about voids. So, this aspect has to be of set. And what I am worried about when I 

am actually talking about these voids the important question first question, I would like 

to ask is what is the largest size sphere, which I can put into this void without crossing 

distortion to this glass. As we shall see why I need to know this, suppose I am an 

alloying element which does not occupy the lattice position. Of course, I have two 

possibilities and I had an alloying element. 

The alloying element can go and replace this atom at the lattice position like I could take 

an alloying element, for instance, we are in by sphere would be replaced by another. So, 

this is called a substitutional alloying elements as we shall see later but, we could have 

an alloying element it is not go and take up the subtitutional position, but actually takes 

the interstitial position which is what an atom has done in this case. So, golden colour in 

the atom in the centre.  

So, let us see these three structures or these three representations of the void a little more 

carefully in projection before we take up the next topic. So, I have here my true shape of 

a void of course, a true shape which lies within a unit cell like this, the polyhedral 

version, when this case for the simple cubic happens to a cube and also the version 

wherein I have a sphere fitting at the right the void. Though I am interested only in 

sphere actually, which needs to sit in the void most of the time, but I will have a 



representation in terms polyhedron and rarely will I deal with at the actual shape of the 

void in my representations. 

So, let me zoom in into this planer geometry to actually show you how this shape looks a 

little better. I am seeing the crystal along the 001 direction wherein have the eight glass 

spheres which are in atomic positions. Now, the central sphere which is the largest size 

sphere which can fit into this void. As you can clearly see in simple cubic, the void size 

very large and also we have already seen the packing fractions is small.  

So, also we need this another important point, we will see when we are talking about 

crystals is not only the total amount of void which is available, but how they are splitting 

to these various void shapes and how we can actually put atoms in to that. That will 

actually go on to determine by solubility and therefore, it is not just the packing fraction 

which will determine my solubility. I need to know the shape of the voids and the largest 

sphere which can split into those voids. In the cubic close pack crystal, we have two 

kinds of voids, the octahedral void and the tetrahedral void. 

And we will consider these two voids in little detail. The tetrahedral void dislocated 

quarter way along the body diagonal and when I am saying that I mean the centre of the 

tetrahedral void is located a quarter way along the body diagonal. And now, when have a 

single tetrahedron located like this, then all the symmetry operations of the c c p crystal 

will operate on this tetrahedral void and give me the remaining tetrahedral voids. And, as 

we shall see there will be eight such tetrahedral voids.  

Now, the volume occupied by the tetrahedral voids is 124 the volume of the unit cell. 

That is an important number because now that will tell you that how biggest sphere 

which can actually sit in this tetrahedral void. And when I am talking about symmetry 

operation, which I write the remaining tetrahedral voids, I would also use my phase 

centering translations to generate the remaining voids. So, let us see where this 

tetrahedral voids located with the unit cell in an actual model. 

So, you can see here a model like this and ignoring these blue stars I have to take this 

blue tetrahedron which is sitting inside the unit cell. So, you can see the tetrahedral 

within the unit cell. And, I have to remember that, for instance, every vertex of my cube 

is identical therefore, if I have one tetrahedron sitting from pointed to this origin then 

there will be one tetrahedron here, one here, one here and one here.  



So, the actually I will have eight tetrahedral within a single unit cell which is shown in 

this model here. So, I have eight tetrahedral, each one starting from a vertex. So, I have 

eight tetrahedron set in the unit cell. So, you can see this model. So, I will have eight 

tetrahedral voids in the unit cell and so the total volume of the unit cell which is occupied 

by the tetrahedral, 
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voids will be eight times 24 which is about one-fourth. Now, the octahedral void and as I 

mention the octahedral void implies a coordination number 6 is one of these octahedral 

voids is located at the centre of the unit cell. That means, if I place a small sphere in the 

centre it will actually we touching all the six atoms at the vertices of the octahedral and 

therefore, this is my octahedral void. 

But, if there is a octahedral at half, half, half then I can apply all my symmetries of the 

cube to obtain all the other octahedral voids in this c c p structure. The volume of the 

octahedral void is one-sixth the volume of the unit cell which clearly tells me it is a much 

bigger void than the tetrahedral void. So, the two voids I am going to talking about here 

again emphasis that these are the polyhedral versions of the voids I am talking. I have the 

tetrahedral void and the octahedral void. There are eight of these tetrahedral voids and 

you will soon see that we will make a calculation of number of octahedral voids percent. 
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Now, if as I mention, I have can apply all the symmetry elements to generate the 

remaining voids and let me try to do that for the octahedral void. Now, and these 

includes the lattice translations. So, let me repeat, once you know the position of void 

then we can use a symmetry operations or crystal to locate the other voids. This includes 

lattice translations and this is important because often by the way we draw some of the 

voids in the unit cell they may look different.  

But we have to remember since it is just origin of the unit cell we are chosen differently 

which makes some look different but, actually they are identical. So, for instance, 

suppose I have octahedral void at half, half, half and I know my first centering 

translation, which is a fundamental lattice translation vector of the f c c lattice which is 

half, half, 0 I add to that, I get 11 half which is nothing but 00 half. Then, clearly I know 

that if half, half, half is the seat of an centre of an octahedral void then 00 half, which is 

nothing but edge centre is also an equivalent seat. 

Therefore, will also be a seat of the centre of the another octahedral void. So, this, for 

instance, shown here in this picture. So, I have these four cubic unit cells, f c c unit cells 

and this centre which is located at a position like, for instance, 00 half and draw this is a 

actually seat of the octahedral void, this position. So, all edges since no edges different 

from any other edge would be a seat of the octahedral voids in this edge. So in this edge, 

this edge and so forth.  



So, there are twelve edges to the cube and all the edge centres are also positions of the 

octahedral void, and I can understand that purely by using the phase centering translation 

knowing that the body centre is seat of the octahedral void. The central octahedral void 

has a complete contribution to the unit cell. In other words, it is completely contained 

within the unit cell and as we saw here. Therefore, an atom sitting in its central will 

contribute totally to the current unit cell, when I may trying to make calculations of 

number of octahedral voids or number of atoms within the octahedral void per cell.  

But these octahedral voids sitting in the edges have only one-fourth content within the 

unit cell and of course, we have models to show you how we can visualizes this one-

fourth content. Therefore, their contribution to the unit cell will be one-fourth, I have 

twelve edges with one-fourth we have contribution of 3 from those in the edges, one 

from the centre. Therefore, a four octahedral voids per unit cell in an f c c structure, 

cubic close pack structure.  

And, as you know that there are four atoms in a unit cell in an f c c crystal structure, 

there are four octahedral voids. That means for every atom I have an octahedral void in 

an cubic close pack structure. On the other hand, we have seen that purely based on 

symmetry arguments, if this is my centre of a tetrahedral void, the quarter, quarter, 

quarter position then I should have eight of these tetrahedral in the unit cell. Since, I have 

only four atoms in this unit cell. That means, per atom I have twice the number of 

tetrahedral voids. That means, there are eight tetrahedral voids per cell. This is 

something which is important to note. 
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So, let me tabulate these values before I show you some models to better visualize these 

octahedral voids. The tetrahedral void is located one-fourth way from each vertex along 

the body diagonals. There are eight voids per cell and since there are four atoms per cell 

there are twice voids per atom. So, there are two tetrahedral voids per atom. The 

octahedral void is located at half, half, half which is nothing but the body centering 

position.  

It is also located at the edge centre which is half 00 and equivalent positions. So, there 

are four voids per cell and as we saw that the ones at the edges only contribute one-

fourth to the unit cell, and the number of voids per atom it is 41octahedral void per atom. 

So, let me try to visualize these things using models, before I take up the calculations 

based on the largest sphere which can fit into these models.  

So, I got models here and I will show them from both the angular perspective and also 

and from the other perspective. So, let me show this model, for instance, I got a model 

here which sphere, this what I called the space filling model and you can see these four 

red coloured balls actually try to locate my tetrahedral void. That means, the centre of 

these tetrahedral atoms is my seat of the tetrahedral void. We have to remember all the 

spheres represent, the same kind of atoms and these four have been coloured differently 

just to locate my position of the tetrahedral void.  



And, if I have one here, then obviously each one of these each vertex will also be a 

starting point of the tetrahedral void. So, I will have eight of them as it is seen from this 

other model wire frame model. So, I want tetrahedral void centre here. So, let me use a 

stick to point. So, there will be one here, one here which will be related by fourfold along 

this direction, there will be one here again the four fold rotation and there will be one 

here.  

Similarly, there will be one here, one here, one here and one here. Since, the cubic close 

pack crystal has fourfold rotation, they are all equivalent positions and I have eight of 

these tetrahedral voids. So, let me take the same model to actually generate the structure 

wherein I have an octahedral void. So, let me take these spheres and make an octahedral 

void. So, I hope some of these this is visible from the camera angle from there. So, we 

can see this or able to see this.  

So, I am trying to make an octahedral void in this structure. So, this is my octahedral 

which is setting is in the unit cell. So, this is my space filling model wherein I have used 

different colours of ball for the atom sitting in the space centering position to show you 

the position or the shape of the octahedral. That means, the atoms sitting of the centre of 

the octahedral void and if at the right size will actually be touching the atoms in the red 

colour or the orange colour. This colour balls will touching and we clearly see it is a six 

coordination.  

Now, as I mentioned, one of the important questions we are trying to ask ourselves when 

we are dealing with voids is with respect a alloy element is with respect to the largest 

sphere which can fit into these voids. So, in this calculation, let me try to find largest 

sphere which can fit into the tetrahedral void and the largest sphere which can fit into the 

octahedral void in the cubic close pack crystal. Now, let me consider the tetrahedral as 

shown here. 
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And, the distance C V is nothing but, the radius of the parent atom which is occupying 

the lattice positions and the radius of the new atom which is going to sit in the centre. So, 

this is my atom going to sitting in a tetrahedral centre. So, this centre of this point here to 

the vertex is r plus x, where x is the radius of the foreign atom. Now, this distance V is 

equal to root 6 by 4 e from geometry and therefore, again that is equal to r plus x.  

Now, I know e is equal to 2 r because atoms are touching along the tetrahedral voids and 

this implies, x by r is root 3 by 2 minus 1 which is equal to 0.225. So, x by r is a ratio of 

the largest sphere which sits in the interracial tetrahedral position to the largest or to this 

sphere which is sitting in the lattice position. So, ratio of these two radii is 0.225. So, it is 

approximately this number and that means, if I put a sphere larger than the size then it is 

going to push my atoms around the lattice position and cause distortion. If I put an atom 

smaller than the size then it will tend to rattle around within that void. Assume that it is a 

hot sphere model. So, both this situations are not favourable. 

In other words, if I have smaller size sphere then it will not be bonded properly to the 

four atoms around the state or tetrahedral position, these four atoms. And if I put a 

largest sized atom this is going to cause strain in the lattice. Therefore, the correct size 

sphere, which can fit into this void is a sphere whose radius which is above 22.5 percent 

of that the radius of the atom at the lattice positions. Now, the size of the largest atom 



which can split into the octahedral void in this cubic close pack crystal, again I can make 

a calculation at the centre to the vertex distance.  

So, this may centre of the void to the vertex distance is 2 r plus 2 x and which is equal to 

a and we already know for the f c c crystal it is root 2 a is equal to 4 r. So, I can calculate 

my x by r as root 2 minus 1 which is 0.414 approximately. In other words, the octahedral 

void in cubic close pack crystal is the almost double size of the tetrahedral void. The 

tetrahedral void is very small and the octahedral void is a much larger void in the cubic 

close pack crystal. This is an important point to note and later on we will try to compare 

these sizes like the 0.225 and 0.141 with some of the other void sizes in the b c c crystal. 

Now, in the case of the hexagonal close pack crystal. 


