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Lecture - 15 

Crystal Structures 

 

We shall now take up the detail discussion of three important crystal structures, in which 

most of the metallic elements crystallize. The first one being the cubic closed pack 

crystal, second one being the BCC crystal, and the third one being the hexagonal closed 

pack crystal. 
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Often we call as we know, the CCP crystal, the Cubic Close Packed crystal also as see 

FCC crystal. But, we should note that this is what you might call rather casual usage and 

therefore, often we have to be differentiate this various kind of crystal structures, which 

are based on the FCC lattice. We should also consider the fourth crystal, the diamond 

cubic crystal even though there are no metallic element, which crystallize in this 

structure. Additionally we shall play importance to the interstitial positions, the voids in 

these crystal structures. And we will see how various for instance elements can fit into 

these interstitial voids, and give us interstitial a voids, so this will be the focus of next set 

of discussions. 
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And picking height, we will see what are the kinds of consideration we will keep in 

mind, we will see that the cubic close pattern and hexagonal closed factors crystal are 

closed packed. When I use the word or the term or the phrase closed pack, what I imply 

is that it is the closest packed, if you have sphere of all same size, the closest packing 

which you can obtain is 74 percent. That means, 74 percent space can be occupied, and 

these two crystal structures have that packing fraction or that percentage packing as 74 

percent. 

It is important to note as usual of course, see in detail later that the voids found in these 

two crystal structures are the regulated tetrahedron or regulated octahedron. The 

coordination number as usual see, the coordination number being the number of atoms 

surrounding e at any central atom, which are usually touching the atom and in some case 

they may not be touching the atom. Because, the coordination polyhedron is the 

polyhedron formed by the atom around any central atom, and it could involve atoms 

other than the nearest neighbors. 

The coordination number for both CCP and HCP are is 12, and you can have no higher 

number than 12 for any configuration of ego size spheres. As we shall see the 

coordination polyhedrons for cubic close pack is the cube octahedron, and for the HCP is 

the 20 cube octahedron. We will also note the BCC crystal is not a closed pack crystal; 

that means, it is packing fraction is less than 0.74, it does not have any closed pack 



planes. But, the 1 1 1 direction in the BCC is actually a closed packed directions, the 

voids in BCC are not regular polyhedral like the tetrahedral, octahedral. 

On the other hand they are neither fully distorted, so we can call them non regular 

tetrahedron, the none octahedron and you will see the shapes of these polyhedron. The 

diamond cubic structure is not a closed pack structure, it is no closed pack planes or 

close pack directions, we had mentioned this briefly, but we will revise in the concept 

again. 
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So, let us.try to understand how do we form the cubic closed pack structure, starting with 

for instance single atom. Then with the row of closed pack sphere, then going on to 

planes of closed packs spheres and finally, to the three dimensions structure which is the 

cubic closed pack structure. So, we already have noted that the CCP crystal is obtained 

by the mono atomic decoration of the FCC lattice, so let us start with the row of atoms of 

course, with single sphere then make the close pack row of atoms. 

Then starting with this row by putting these rows one below the other in a fashion shown 

here, I can obtain a hexagonal closed pack layer. Of course, I call it has hexagonal 

because, this layer has got hexagonal symmetry, and you can see once the layer has been 

formed, it has got closed pack direction. And as we shall see later that these closed pack 

layers when you correspond it to the cubic directions, then this will be corresponding to 

the 1 1 0 type of directions. 



So, this is the closed pack direction, this is the closed pack direction, this is the closed 

pack direction. And this layer has got hexagonal symmetry, and for instance around this 

point if I rotate 60 degrees and the structure will remain in varied, now this layer itself 

we will see that actually becomes what according to the cubic indices will be the 1 1 1 

plane of the cubic crystal. Now, to build the next layer which will actually lead to the 

three dimensional structure, there are two stable positions for in suppose I call all the 

atomic positions in this layer as the a layer. 

That means, this green sphere or functions in this case the blue sphere is A position, this 

will also be A position, this will also be A position and, so far. Now, once atoms are 

presented in the A position, there are two other table positions where I can put atoms to 

make the second layer for instance this will be the B position, and then this could be the 

C position. Now, suppose I start putting the atoms in the B position suppose I put a 

sphere here, then I will not have enough space to actually put an atom of the same size or 

the sphere of the same size in the C position. 

That means, if I chosen B in the second layer then I can put one sphere here, one sphere 

here and one sphere here, which all the B positions. Alternately I could put sphere in the 

second layer in C position, which means that I cannot put sphere in the B position I can 

put one in this C position here, I can put one in this C position here I can put C position 

here. So, I have two choices for the second layer and I can construct a second layer by 

putting atoms in the way I have told. We will actually show these things revising these 

things again with physical modals, so that the concept of space fillings becomes 

absolutely clear, but we have these choices for the second layer. 
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Now, having constructed an A layer suppose I choose my second layer to be the B layer; 

that means, I have put atoms in this position, this position and this position. So, I have 

put atoms in the B layer then and I have marked them in green color, then I have I can 

propagate this entire two dimensional planes. And each one of this planes independently 

not in combination, but independently has a six fold symmetry. 

So, I even though I shown this as triangle actually this layer, and this layer are no 

different, they are both hexagonal layers. And I can put this layer, having put the B layer 

again I have two choices I can put a sphere directly above the sphere, which I have put in 

the A layer. That means, the sphere will sit in the A position or I have alternative that I 

could actually put sphere in vacant in C position. 

That means I have already put an atom in the A position, the second layer is in the B 

position, for the third layer either I can go directly above the A layer or I can put it in the 

vacant C position for the to obtain the cubic close pack crystals I will have to use the 

alternative C. That means, the first layer I call the A, the second layer B, third layer C 

and therefore, my packing would look something like this. 

So, this is my A layer this is look at the diagram right hand side, the B layer is the green 

layer, and the C layer is a layer which is the originally was left vacant. So, each one of 

these layers is actually a hexagonal layer, exactly that I have shown in this diagram, the 

blue layer here, and I can put these three layers together. Now, this kind of packing of 



three layers I can repeat again; that means, fourth layer I put out the exactly about the A 

layer, the fifth layer exactly about the B layer, the six layer would be exactly about the c 

layer and, so forth. 

Therefore, such a packing would be called the A B C, A B C, A B C packing, and the 

crystal I obtain in this case would be called a cubic close pack crystal. Now, the same 

thing is shown in certain projection here for instance you have the C layer, then you have 

the B layer and have the A layer. So, in the A layer for instance the sphere could be go 

into the voids from by the B layer of course, this atoms shown in different color just for 

identification, all sphere are identical as far as the crystal goes. 

And the C layer would go into the white which is now form the B layer, but in a different 

void, if you look down the directions. That means, now looking like the exactly the way I 

did down this direction, which is perpendicular what as we see the 1 1 1 layer of the 

cubic crystal. So, this is my 1 1 1 planes which is I am constructing now, so this will be 

my A layer, the B layer would be the once shown in the blue color here, and final the C 

layer would be the layer shown in the green color. And finally, you have layer below as 

the A layer, so if I color all my sphere identically which is what they are, they are 

identical spices then I would have a packing along 1 1 direction which looks like this. 
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Now, as I said we will look at this construction once again in the detail using models, but 

before that let us look at what we call the conventional unit cell, and corrected to 



correspond to the packing which we are just now consider. Now, we already know the 

lattice FCC, and the motif is a single atom or ion at for instance 0 0 0, now I want now 

correspond my picture of A B C packing with the conventional unit cell of FCC, where 

in which already consider before. 

Now, the way of constructing is actually constructing along the vector connecting the A 

to the A atom, which is now my 1 1 1 directions. So, the A A direction connecting my A 

to A this the 1 1 1 direction, and I am trying to construct my crystal along the direction. 

So, you can see that the A exists then there is a B layer, which is now made by this B 

spheres and there is a C layer and finally, there is one more A layer. 

So, in another words I am constructing my crystal with respect to this orientation, the 

standard orientation of the FCC crystal along the 1 1 1 direction. And what I get as you 

know quarterly non primitive unit cell, which has 4 atoms per unit cell. 
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Now, this diagram again tries to clarify the same point that have a C layer of course, in 

this case that I called that the A layer, but just a common lecture. Therefore, I have a 

layer here, then I have next layer which is the blue layer, again contacting sphere and 

hexagonal configuration. Then I have this green layer which again consist sphere here 

hexagonal configuration, and there is a final layer which also a center of this, but also got 

atoms in hexagonal configuration. 



Now, when I do this kind of a packing it is not surprising that crystal high generate has 

got not 6 fold, but 3 fold. The 6 fold original layers has 6 fold symmetry, but this A B C 

packing has destroy the 6 fold, and has left only with a 3 fold rotational symmetry, in 

fact, you can also visualize this symmetry as not just crystal mere in simple rotation is 3 

fold, but in terms of a rotor inversion actually itself 3 bar axis. 

So, this C C axis actually the 3 bar axis and if you want to look at the simple rotational 

axis, it is a 3 fold axis. Now, so far it is easy to understand because, 3 fold is the sub 

group of 6 fold symmetry and therefore, that is what survives during the packing, but 

what is surprising which arises during the kind of A B C, A B C kind of packing is the 

existence of the 4 fold. Now, we are doing the packing along this 3 fold direction which 

this is the vector we shown here, which is the direction of the packing A B C layers. 

But, surprisingly at a angle of the bottle 54.74 degrees to this 3 fold axis, you get a 4 fold 

axis. This aspect is not obvious when you try to do this packing, but this is generated 

purely by this kind of packing which is the A B C, A B C, A B C kind of packing, before 

we take up primitive unit cell of the FCC crystal structure, you will try to understand to 

same concept which mention here using models. 
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What I have got here, as you can see is a hexagonal layer of atoms, this is closest 

packing I can get in two dimensions, and also we have touching each other and as you 

can see this axis for instant is an axis 6 fold symmetry. To understand my A B C packing 



I will take part of this hole hexagonal structure which is not nothing, but a small section 

here, which just got 7 atoms. Now, this 7 atoms I call the A layer, so this atoms belong to 

the A layer. 

Now, I have two options either I can put sphere here which I will choose for instant 

green sphere to show you or I can put sphere in this position, the other position which is 

remaining here. So, option for the second layer here or here, but not both, so let me level 

those, so let me level this three as the B positions, so I got three B position and then 

additionally there is possibility of putting atom in C positions. So, let us look at the 

structure, so got the A layer then for my second layer I can either put atoms in the B 

position or the C position. 

But, I cannot put atoms in both positions because, now if we put atoms for instance in 

this position then there is not enough space to put it here. Therefore, if I put atom in the 

B position for instance for the second layer, then I can put atom continuously in the B 

position. So, this is my B position has been defect, still my C position are vacant like you 

can see here, and I can put an atom in the third layer either directly about the A layer 

which is one option. 

In which case I would take for instances sphere like this, and put try about the A layer or 

the other possibility is to put an atom in the vacant C position which is right here. So, in 

the case for the generating the cubic close pack crystal have an A B C kind of packing; 

that means, this is my A, this my B the third layer would to be the C layer which would 

be try about the vacant area, which is generated by this straw put by atom right atom 

right here in the vacant position. 

Now, I propagate this structure in finitely and I get and A B C, A B C kind of a packing, 

as I mention by important then surprising fact is the generation of the 4 fold. So, let us 

see how the 4 fold is generated by putting together A B C layers, so for instance suppose 

I call this the A layer or let me start with a single atom in the A layer I called as the A 

layer my second layer. So, you can see here, you can see from the other camera angle 

this is my A position and this is my B position. 

So, I got a B position here and I put the next layer with atoms in the C positions which 

would be like this. I specifically cut this planes along I am not taken infinite planes, what 

I have done is that I have taken certain section of this planes. Actually as you can see this 



planes are infinite planes with this kind of orientation running across in the two 

dimension in finitely, but I have taken portion of this to illustrate to the point. Now, I 

have A layer, I have this B layer, have this C layer, and finally, I put on A layer above 

that. 

Now, I am just using this single ball to generate the A layer, but it we know difference 

from this layer, but the origin of this layer would be at this atom. Now, I have done this 

A B C, A B C, A B C packing I can go to infinitely, but illustrate the important point 

now you can see this configuration has a 3 fold symmetry. So, now my axis which is 

coming out towards from this at as got a 3 fold symmetry and more preciously it has got 

3 bar kind of symmetry. 

Now, to understand that how the fourfold was generated I rotate this 4 configuration I 

can clearly see this is now unit cell of the cubic close pack structure, which is 

conventionally drawn where in now my central atom is this atom coming outward is the 

4 fold axis and this was the original 3 fold or 3 bar kind of an axis. So, this is my 4 fold 

axis, as it is clearly seen now I can actually visualize the A B C, A B C packing as the 

conventional unit cell of the cubic close pack structure. 

And show the wire frame model of the same thing, which have you seen before which 

has a show from different camera angle. 

(Refer Slide Time: 17:35) 

 



So, you can see this is my structure which have an generating A B C, A B C kind of 

structure, but I have to look along that structure along my body diagonal. So, the A B C, 

A B C packing was along the body diagonal of this cube, which runs like this, this is my 

body diagonal of the cube. And therefore, I got A B C, A B C packing around this 

directions, and these are the 1 1 kind of planes you can see this plane here, and the next 

plane is this connecting this atoms finally, the top one is another. 
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Let us next consider the primitive unit cell of the FCC crystal structure, in another word 

this the cubic close pack crystal structure. The primitive unit cell is shown by this red 

and green outlines, if I have to consider the lattice parameters of such unit cell, you see 

that A is equal to B is equal to C, and what are these factors now the A vectors, they 

cannot the atom at the 0 0 0 position to an atom in the half 0 0 positions. 

So, A equal to B equal to C and all the angles for instance the alpha angle which should 

be the angle between the this, and this vector, the alpha the beta and the gamma all will 

be equal, but will not equal to 90 degrees. So, merely based on the shape of the unit cell, 

one might to be template to think this is actually diagonal or rumba hydrant unit cell, but 

actually this is the primitive unit cell of the cubic close pack structure. Now, the 

important point to be note is that this; obviously, has an 1 4 the volume as there as the 

primitive, non primitive quadratic non primitive unit cell. 



Because, the quarterly non primitive unit cell has 4 atom per unit cell there is 1 atom per 

unit cell therefore, it has 1 4'th the volume as the that of the conventional unit cell for the 

FCC structure. Now, the other important point to note that we already seen that his look 

likes a very distorted kind of parallelepiped, but we have seen that all parallelepipeds are 

space fully. So, this camp hydrant though it may not of obvious from this picture is 

actually base filling solid. 

Now, another important point to be noted which we use later to understand this structures 

is the fact that this unit cell, and without off as made of one regular tetrahedron with 

vertices as this, this, this and this point. And octahedron a regular octahedron with a 

center at 0 0 0 this is the center of octahedron with the atoms making of the octahedron 

as this vertices of this screen lines, so this can be thought of as 2 tetra hydra plus 1 

octahedral. 

Now, the reason we choose usually do not choose this unit cell for the cubic structure is 

because, unit cell itself has lower symmetry. Then the crystal, which as you can see has a 

4 fold symmetry, and actually has a 4 by m 3 by m 2 by m point group symmetry, so we 

will take up the same structure using the model. So, that we can understand it the same 

slightly better. So, I have a here with me wire frame model of the same structure 

showing the primitive unit cell of the cubic close pack structure. 

So, as you can see here that the cubic primitive unit cell is made up is oriented along the 

1 1 1 direction of the cube, and the 1 1 1 is the direction along which has center of the 

tetrahedron which is now in the blue and red outlines, the other tetrahedron which is also 

in blue and red outlines. So, let me take my little bit, so in the background you can see 

this is my blue outline, this is my red outline, so this is tetrahedron with and then you 

have a center octahedron, which is conscience of 8 faces and which center at the 0 0 0 

positions. 

So, later on we will see that these octahedron and tetrahedron can be the centers or the 

wide center cubic close pack structure. So, you can clearly see this is now the new 

rhombohedral or the unit cell, which is has just got triangular kind of geometry, in these 

slide we should note often the colors the atoms differently, but all atoms are the same. 

So, they are not different atom which is having color only for better visualization of this 

structure. 
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Now, let us get to the next stage which is the coordination polyhedron, and the 

coordination polyhedron for the cubic close pack structure is a cube box hydrant. So, two 

aspect come in when we talk about the coordination polyhedron number of course, 

coordination number which is 12, and as pointed out around the given sphere, if you 

want to touch maximum number of spheres of the same size, the number cannot exist to 

12. 

Therefore, this is the maximum number you can get and therefore, that is what is 

achieved in both the cubic close pack structure, and as we see later the hexagonal close 

pack structure. The second thing is the of course, what the shape of the coordination 

polyhedron, the shape for the coordination polyhedron is a cube octahedron, a cube 

octahedron is got such a name. Because, it is exactly between a cube and octahedron I 

can take a cube, and then I truncate one of it is faces; that means, I cut one of faces; that 

means, I can take cube like this, and then I can cut it vertices. 

Now, if I cut deep enough then I will be cutting into the these a just which are the 

original vertices of the cube. I cut deep enough then you will see that this faces which is 

cut faces become triangular. And the remaining face which if I cut little bit this face blue 

hexagonal, but I cut deep enough they will be squares and therefore, I get a cube 

octahedral. Now, in terms of the simple rotation symmetry, the cube octahedron is 



exactly identical to the of a cube and is the coordination polyhedron in the cubic close 

pack structure. 

Now, if you want the visualization cube octahedron here it has been shown between 8 

unit cell, you can see take any atom in the FCC lattice or any lattice position and place 

and atom, and when you see that you find a cube octahedron around it. So, it could be 

atom setting on the vortex of the cubic unit cell or it could be the atom setting the face 

centering position. As we know the this are both lattice point and therefore, they are 

exactly equivalent and you get a cube octahedron, as the coordination polyhedron. 

Now, before we go to the hexagonal close pack structure I will show you models of how 

this close pack cubic octahedron or the coordination cubic octahedron is formed. 
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So, I have here two unit cells of the cubic close pack structure in the conventional 

representation. And you can see that, the center sphere which is located exactly between 

the two unit cells has a coordination polyhedron which is the cube octahedron, and as 

you can see the cube octahedron has square, and triangular faces. These triangular faces 

are the centers the opposite centers triangular faces with a center of the 3 fold axis, and 

this will continue to be the sense shed of the 4 fold axis, as you can see this is the seat of 

the 4 fold axis, and this is seat of the 3 fold axis. 



Now, even though I choose an the set the central atom here, the atom between the two 

unit cell to be the center of cube octahedron, I can choose any atom in this cubic close 

structure. And the coordination polyhedron I would be obtain would be a cube 

octahedron, another point to be noted here which we should see in some other isolate 

violated is every atom is exactly located at the same distance from the central atom 

which is root 2 a by 2. 

So, this atom located root 2 a by 2, this located at root 2 a by 2 and this located at root 2 

a by 2, and this also located root 2 a by 2. So, all them are located at the same distance 

from the central atom, and the coordination polyhedron is a cube octahedron this kind of 

structure later on as usual see will be useful in some other calculation, we can make with 

the cubic close pack crystal. 
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Now, returning into the picture here we have to again note that all atoms are identical, 

we just color them for better visualization of the structure. 
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The second kind of structure which we can generate by packing of this close pack 

hexagonal layers is the hexagonal close pack crystal structure. Actually these two crystal 

structure though we have pick up in this particular lecture are nothing, but two of the 

infinite set up possibilities. 
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So, why are the infinite set up possibilities let me explain them on the board for instance 

suppose I start with in A layer I have two choices for the second layer which are B and 

C. Having chosen B as a second layer I would have two choices for the third layer, which 



will be A and C formally for this C layer I would choice of A and B, having chosen the 

third layer as, so this is my layer 1, this my layer 2, and this is my layer 3 I have again 

choice for the fourth layer as B and C and for the fifth layer function having taken this 

part would be an and I can go add infinite term in my choice of various layers. 

But, the most common crystal structure which are found in nature are these two kind of 

packing which is nothing, but my A B, A B packing which is this branch of my tree and 

the second kind of packing is one which starts here. So, I have let me draw border here is 

second kind of packing which is the one we already seen is A B C, A B C kind of a 

packing going to infinity. So, this are the two common structures, but by no means this 

are only two possibilities, though often you find that many of this other possibilities 

actually do not exist in the nature. 

But, these are the two common possibilities the one outline blue and one outline line in 

red. But, in general we have infinite set up possibilities of close pack crystals which we 

form by staring with the hexagonal close pack layer. 
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And the one which we are now considering simplest the lord, which is outland in the 

board in blue color which is the A B, A B, A B kind of packing, and the crystal structure 

we obtain is the what is known as the hexagonal close pack crystal. So, as before we 

should take of the hexagonal layer to close pack layer which we call them A layer and 



then we will generate the whole structure. Later on we will see that this structure actually 

this layer is actually the 0 0 0 1 kind of a plane in the hexagonal close pack crystal. 

And we have already seen that many crystal actually adopt the HCP structure and some 

of the common example is as zinc, titanium and cadmium. 
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So, let us see how the structure work out, you got this round layer which is the A layer, 

we chosen next layer is B layer. But, third layer I go directly about the A layer and 

therefore, is the same color and therefore, I get an A B, A B kind of packing which is the 

hexagonal close pack crystal. So, we start with the A layer put a B layer, but then instead 

going to the C layer we put the layer right above the third layer, right above the third 

about the A layer. 

And therefore, we get A B, A B kind of packing and we will notice in this case that the C 

layer remains completely vacant. That means, if you get a pass ray of light through the C 

layer it will completely pass through the C layer. 



(Refer Slide Time: 29:34) 

 

And this vacant position C layer as we shall see as a important from the point of view, 

why the hexagonal close factors is actually called an hexagonal close pack crystal. Now, 

before I take up the conventional represent unit cell, let me go down to the modal to 

explain the concept here we just, now seen which is the A B A B kind of packing. 
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So, here we have as before a layer I trunked part of the hexagonal layer, and I call this 

the a set up of atoms. So, I put my atoms in the B position and; that means, that I leave 

my C position here which is vacant, now for the make the third layer I will take the same 



set up planes, and put exactly about the A layer. And therefore, I get an A B, A B kind of 

packing I will continue this infinite up in another words the fourth layer would be exactly 

about the layer about that, and the fifth layer would be again which is about the A layer 

just one to do like this. 

But, let me look at this structure little more carefully which is shown by alternate model 

just kept here, which shows the A B, A B kind of packing. Now, as I mention when you 

do an A B, A B kind of packing the C position which I mark with the red straw remains 

completely vacant and actually you can see that the vector can pass right through to this 

C layer, so all my C position are completely vacant. 

Now, an important point to be noted this stage is that even in the A B A B kind of 

packing, my original hexagonal symmetry with 6 folds symmetry has been just 

destroyed. Because, just now this are additional atoms in the central positions and 

therefore, what I have here the rotational axis at the passing through this is merely 3 fold. 

That raises an important questions that even though I have only a 3 fold axis why do I 

called this un hexagonal close pack crystal, and why do this function called trinomial 

close factors. 

Because, it is only got a 3 fold rotation axis, so this A B C and both A B C, A B C 

packing and also the A B, A B packing destroy by 6 fold symmetry present in the 

individual layers, like an individual layer like this and I got only 3 fold symmetry left. 

So, why do I called this an hexagonal close pack crystal, and as we know that crystal are 

name based on the symmetry, and not base on the geometry unit cell, and why is still 

called the hexagonal close pack crystal, so this the questions we will answer later. 
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So, this is the conventional unit cell of the hexagonal close pack crystal, where we have 

in the A layer, the B layer and again the A layer right about the A layer which was the 

first layer which as a started off. Now, as I told before this actually shows three unit cells 

of the hexagonal close pack crystal, and the actual unit cell is nothing, but this rhombic 

prism. Now, few things have to be noted we have seen already that there is only one kind 

of hexagonal lattice, the simple hexagonal lattice. 

So, now, how do I accumulate this presents of the additional atom within the unit cell, 

and there is exactly this is additional atoms located within the unit cells, so this are 

couple of question we can ask. 
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But, before we do that we note the lattices hexagonal, and now the motif is an atom at 0 

0 0, and also another atom which is located at the 2 3'rd along the x axis, 2 3'rd that is A 

1 axis 1 3'rd along the a 2 axis and half along the C axis. So, this is the an additional 

atom and that atom goes part of the motif and is not part of the lattice itself. Therefore, if 

this is my lattice point, then this atom here goes part of the motif. 

And my conventional unit cell as you can see here is the rhombic prism which is outline 

in the blue color. So, I have my simple hexagonal lattice and a 2 atom motif and as 

before I have to put exactly this kind of motif, and identical orientation at each lattice 

point to get the hexagonal close factors crystal. And as a point the hexagonal close pack 

crystal if I look at pure rotation symmetry has got the 3 fold rotation only. 
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Now, just to improve size some other points which we consider, so far the hexagonal 6 

fold symmetry present in the A layer is lost on a layer A B, A B packing, the crystal now 

the answering the important question, the crystal is called hexagonal crystal. Because, 

there is 6 3 screw axis which passes through the vacant C sites, as I mention the vacant C 

site was an importance for our consideration, and there is an I mention that was this 

reason that actually you got 6 3 screw axis with passes through the vacant C sites and 

you can you already seen that vacant C site in the 0 0 0 1 projection. 

Now, even though this is not a pure rotational 6 fold axis it has still has 6 and 8 that is 

this why these crystal which have an 6 3 screw axis are classified under the hexagonal 

class. We also seen that this is one of the close crystal pack one of the close crystal 

packing possible which is 74 percent packing of volume, an additional point to be noted 

is the atom inside the unit cell is no part of the lattice and it is; that means, center of that 

atom is not a lattice point, but it actually part of the motif. 

So, this are the some important one consideration and we can take a further view to 

understand the same crystal structure, here presenting nothing no new time to be 

visualization the crystal structure in various ways. 
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And another important way to see where exactly the additional atoms located, so you can 

take my wrong represented divided into 4 first into half therefore, that I get my triangular 

prism. And this triangle prism I can divided into half along the C axis therefore, I get the 

meet plane of the this my meet plane of the triangular prism, and this atom is located on 

the mid plane and at this center out of triangle, which is vertices as marked here. So, this 

atom is located at the center out of this triangle which is nothing, but the mid plane of the 

half of the triangular prism. 
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So, this is where the additional atoms located and next we will try to calculate, what is 

known as the ideal c by ratio for an hexagonal close pack crystal. Now, we have just put 

pack the layers along the C directions and therefore, if we have perfect sphere there is the 

mathematical values for this C based on the atomic diameters. So, now have the 

hexagonal lattice decorated to the 2 atom motif at 0 0 0 and at 2 3'rd 1 3'rd half, now we 

will see that the I ideal structure which spherical motifs as a C by ratio, which is 1.632  

(Refer Slide Time: 36:44) 

 

So, let see how this 1.632 comes about now for to calculate that let me consider 

tetrahedron which is form by this atom, and the atoms which are located and this 

vertices. So, I am make a tetrahedron out of this atoms because, I join this atoms and 

base to form a tetrahedron. 
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So I have and tetrahedron and I can say that tetrahedron and the vortex of that 

tetrahedron call V. Now, because, as a regular tetrahedron C V, C is the center of this 

tetrahedron C V is root 6 by 4 a, where a is this edge cell edge cell length in this cell of 

edge length is a, C F is root 16 by 12 a in other words 1 3'rd of that value, and h is 

nothing, but half the C value; ((Refer Time: 37:32) )that means, the by C length is length 

from this my C value and this h is half that, so it is the middle plan, so it is a distance of 

mid plan. So, my edge mark here is half which is nothing, but F V is half the C value. 

And h is equal to C F plus V C which is root of 3 by a and the c by a value you can 

calculate is nothing, but 2 h as I said h is half of the value of c. So, h 2 by h by a just 

twice root of 2 by 3 which is 1.632, so this calculation of course, simple a geometry 

calculation, which you can perform independently. But, the important pointed we noted 

here is the value we have calculated that is the ideal c by ratio is 1.632. 

Now, if I look at this ideal c by ratio some other common metals which cyst lies in the 

hexagonal close pack, structure like cadmium, zinc, magician, zirconium, titanium and 

prelim. You notice that in the even in this less there is just one which comes even close 

which is magnesium, which has got an c by a ratio of 1.624 in other words most of the 

matters which have the hexagonal close factors structure do not have an ideal c by a 

ratio. 



In other words how did I get this ideal c by ratio assuming that all atoms are hard sphere 

and I get an packing which is A B, A B kind of packing. So, in nature this kind of 

assumption is not true, in other is not valid 100 percent and therefore, I can get an non 

ideal c by ratio for most of the metals, some of the c by ratios are larger like for instance 

cadmium has 1.886 zinc has a larger value. 

But, some of the materials like beryllium have smaller c by ratio, and what is smaller c 

by ratio mean, it means that and quashing the hexagonal down word a largest c by ratio 

means I am expanding the hexagonal. So, let me take up the model to show you what is 

hexagonal close pack structure, so I have a model here which show the hexagonal close 

pack structure. 

So, I have atoms in the A layer, the B layer which is the middle layer and the layer which 

is above which is about A layer right about the vessel layer. And this as you can see 

nothing, but 0 0 0 1 plane of the hexagonal close pack structure, and my bases vectors 

are the vectors along say for instance this is my A 1 this would be my A 2. So, this is in 

my A 1 this my A 2 and the vertical vector this is C vector which is above, this as we 

said this part of the motif. 

And therefore, my two atom would be sphere here and sphere here, which goes on to 

decorate every lattice point. So, I would put a two atom sphere here and here and, so 

forth and some of them would set within this rhombic units cell and some of them would 

not set within the rhombic unit cell. Now, as I mention this kind of structure is what is 

got let me show on the side has got a proximately the ideal c by ratio, but as I told you 

the real hexagonal close pack crystals can have a c by a ratio which is stranded that could 

be larger or smaller. 

And; that means, that my spheres cannot be assume to be the hard sphere model of atoms 

is no longer valid. Now, the tetrahedron which I consider can also be seen nicely in this 

model of the hexagonal close packed structure, wherein of course, there are more than 

one units cell here. But, you can clearly see the tetrahedron which was mentioning to 

calculate my ideal c by a ratio or this 4 atoms, which form the tetrahedron from which I 

made my ideal c by ratio calculation. 



We will return to this model, when we talk about wide in hexagonal close packed 

crystals. The next important crystal we would consider and before that I have question 

from Hari. 

STUDENT: What will the effect of deviation from the ideal c by ratio 1.63 to the close 

packing of the hexagonal. 

Very good question very, very good question; obviously if we have deviation from there 

are two important question we can ask here, one is the question if you ask is what is the 

packing fraction how is affected by a non ideal c by ratio. And number two suppose 

question what is the consequence and the properties of the crystal, the first one; 

obviously, it is divertive from the ideal packing fraction. 

So, ideal packing fraction is assumed using hard sphere and if there is non ideal c by 

ratio. Obviously, this number would be affected this packing fraction affected, the 

second question is the impart properties now we will see typically, if the these vessel 

planes are the slip plane in another when we are talking about plasticity because, slip 

plane and if you have this vessel plane separate out, then we vessel slip would be 

promote, if you have this plane squash together then bases plane would be other 

normally that much easy to take place. 
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So, the next structure we take up is what is known as the BCC crystal which we know is 

the mono atomic or mono ironic decoration of the BCC lattice. So, we have seen this 

structure before and there are two views of structure right here, and you can see that 

there is two atoms per unit cell. That means, it a double non primitive crystal structure, 

and the important point we already noted, and we will reemphasize that this is not the 

close pack structure. 

And we will see little more about this later, and more importantly it has got no close 

pack planes. In the case of HCC and HCP we start off with close pack planes, and those 

plane assuming of course, an ideal c by ratio in the case of hexagonal, that this plane 

remains close pack planes, when you continue to make the crystal out of close pack 

planes. But, in the case of BCC crystal the construction not done the wave we have done 

the FCC or the CCP on the ACP crystal. 

And therefore, this crystal structure has no close pack planes, however the 1 1 1 direction 

is a close pack direction. That means, the atoms touch along the 1 1 1 direction this is 

origin for instance, and this is the other vortex, so may 1 1 1 direction with the direction 

connecting this, and the atom touch along the 1 1 1 directions. And therefore, that is a 

close pack direction in the BCC crystal. 

So, when I mention BCC crystal without any other qualification, and we will see later of 

examples that we should careful in this regard, when I say BCC crystal what I mean is a 

mono atomic decoration of the or mono ionic decoration of the BCC lattice. And such 

structure very emphasize has is not close pack structure, has no close pack planes, but 

still continues to have a close pack directions. 

Some of the common metals which are elements which show define this is the crystal 

structure are tungsten, ion below 910 degree Celsius, which is called alpha ion and some 

important element like sodium and potassium. 
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This is in this case of course, which obvious the lattice PCC and all have a single atom 

degrading the BCC lattice. 
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Now, the coordination polyhedron for BCC is different kind of polyhedron, and we 

already deal with this polyhedron or we have encounter this polyhedron in the context of 

the space fill. We saw that cube is the regular solid which is as got space filling 

properties, we saw that there are two non regular solids or two important non regular 

solid which are space filling property, one is detract hedron, other one is rhombic head 



ran, and this rhombic hadrons is the solid you see here or the which is the coordination 

polyhedron for the BBC structure. 

So, I take any atom it could be one which is shaded blue or the one shaded in red both of 

them are identical atoms and I if I construct the polyhedron around it could be a rhombic 

hadrons. But, the important point we noted here is that even though the rhombic hedron 

is made up of single kind of phase, which are rhombus the effective as a central atom 

which is here of course this is my central atom. Then all the atoms are not located at the 

same distance from the central atom. 

This is the important point note for instance the atoms which are shown in the blue are 

located at the distance of root 3 by 2 a from the central atom. And one shown in the 

brown are located at the distance a; that means, the coordination polyhedron is known 

not only made up of nearest neighbors, but also next nearest neighbors. So; that means, 

there are two kind of distance which I need to encounter a and root 3 by 2 a, so this is 

what, so of course, a is root 3 by 2 as a bracket here, so therefore, is root 3 by 2 into a. 

So, let me look at the model of the rhombic hedron, so that we can understand how does 

shape look like, and then we will proceed to the other further picture of the BCC crystal. 

So, I have here the model of the rhombic Doric hedron, and as you can see this is not one 

of the regular solid, it is not a mechanical solid and this is got identical faces, the solid 

consist all the faces of the rhombus. But, the kind of vertices it got two types, there are 

vertices which are three connecting you can see these vertices three connecting vertices 

which is in green. 

And there are red vertices which are four connecting vertices, so there are four 

connecting from this vertices. So, the rhombic Doric hedron is very special kind of solid, 

which is a space filling solid it is not a regular solid, it is got identical kind of phase of 

solid, but two kind of vertices, the three kind of vertices and the four connecting vertices. 

So, this is a important solid as for as geometric goes which is the rhombic Doric hedron. 
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And it is called the do Doric hedron because, it is called 12 phases which you can see 

from this diagram 12 faces 4 above, 4 in the mid plane and 4 below. So, this is got a is a 

rhombic hedron, now this diagram below for distance shows as the touching direction 

which is 1 1 direction along which atoms touch. Again you should node that all atoms 

are identical and they have just been shaded for clarity. 

And this is a slide transfer model to show that were the central atoms sets and how the 

atoms touch one another. Suppose I look along the 1 1 0 direction, then you will see and 

of course I remove the atoms which we are front of blue serial then I can see the relative 

position of this blue serial, which is the body centering position, with respect to other 

spheres. Of course, like in many other cases, if I would not chosen any origin here, I 

would have chosen the origin blue spheres, the structure would be total an alter. 

And in the other this atoms which are in the vertices of the cube all becoming body 

centering position atoms. Now, we should know that whenever we deal with the new 

structure it is very, very important that we actually look at the structure from various 

point of view, try to understand some of this concept out line in again and again, the 

direction close packing. The direction of touching and which are the atoms touch and 

which are do not touch each other, and also the concept of the coordination of 

polyhedron, so that is a very important concept. 


