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Welcome to lecture number thirteen. So, today, we are going to… In fact, today and the 

next few days we are going to continue on semiconductor or equilibrium carrier statistics 

in semiconductors; that means determining n in conduction band – number of electrons 

per unit volume in conduction band; and, number of holes per unit volume in the valence 

band. Not only determining them; and, from their nature, their behavior, consequences, 

etcetera, is what we will be discussing in next few lectures. So, essentially, we will 

continue from the previous lecture. 
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So, let us start with what we did in last lecture. We said that, what is the population 

density. We have written the population density of the electrons right here. We have 

written the electrons in conduction band in energy range E and E plus d E. We wrote 

down that as that which is Fermi distribution and the density of states, which is of the 

electrons state in conduction band. If so, then if we have, this is the number of electrons 

that are in this energy range. Then, all we have to do is integrate it over the entire energy 



range of the band E c to E c top and we will get the number of electrons that are in the 

conduction band. We had followed the same logic saying that, number of holes therefore 

are 1 minus f E, which is the probability of finding a hole at energy level E. And, g v E 

was the density of states for holes in the valence band. And again, if I integrate it over 

the whole energy range, which is on the bottom of the band to E v; then, band h – that 

means top of the band – valance band; then, we would get the number of holes in the 

valance band. So, this is where we ended last time. So, what I am going to do now is I 

had promised last time that, I will show you graphically what it means. So, that is what 

we are going to start doing in the beginning. 
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Now, I am going to write down the expressions, which we are going to plot. So, let me 

do that first. So, let us see what we have derived is a g c E is equal to… This is the 

density of states in the conduction band. We have derived it as 1 over 2 pi 2m e star 

divided by h bar square power 3 by 2 E minus E c to power half; and, this valid for E 

greater than or equal to E c. And, we have derived… And, this Fermi-Dirac function – 

the probability of finding electron at energy E was 1 plus e to power E minus E F is a 

quantity, which is a Fermi level. And then, we had said that, n is equal to… In that case, 

E c to E c top of f of E times g of c E dE. And, this is what we are going to derive. 

Now, what I am going to do is I am going to do one more thing; I am going to write one 

more expression. And, the purpose of doing this graphically integration is to prove this 



point. I am going to write that, n will also be equal to – let me use another pen here – 

another color here – n would also be equal to E c to now instead of E c top, infinity f of 

E; everything else remains the same. So, now, what is going on? How can I change this 

E c top to infinity? So, there are several objections, which I had raised a minute ago also 

earlier also. And, I am going to show several objections to writing these equations 1 over 

here – use of g c as this and also this infinity, which I have just mark down. These are the 

two questions, which I am going to answer by doing this integration or there showing 

you some graphical constructs of these functions. So, let us start with it right now and 

point out to you why I am able to use this expression of g c and why this integral must go 

to infinity. 

In fact, I will give you the reason right now. But, the proof will come as I start doing the 

plots. So, what I will do is let us plot just g c. Since I am interested in plotting g c; so, let 

us look at this function. Let us say they are right here is E c plotted little bit further here. 

Here is E c; here is E v; and, this is all valance band here; here all conduction band here. 

But, I am making a further statement that, there is a top to it; there is a top here. This 

conduction band ends somewhere, which is at E c top. Then, there may be another band 

gap may be; there may be another band gap of E g prime; and then, that is irrelevant, 

because all the only thing we are interested in is that, electrons are live up to here at 0 k 

up to this energy; then, there is a gap, which is the band gap E g. And, after that, there is 

a conduction band. And, this is the relevant band; this is the first empty band after the 

filled band right here. Then, that there are other empty bands also; there are other band 

gaps also in principle are irrelevant. This is because you will see that, all electrons live 

only here itself. 

Now, if I want to plot this quantity g c, I want to plot this quantity g c; then, let us do 

that. So, here is… On this axis, I am going to plot g c E. And, on this axis, is of course 

the energy axis. So, if I plot this, then… Or, this whole axis is energy axis. So, you can 

see that, g c is defined only for E greater than E c; below that, of course it is 0. So, of 

course… Because this is density of strain conduction band; conduction band starts right 

from here at this point of time. Therefore, they cannot be… All these values – density of 

states below that is 0. This is empty. They have no density of states in the band gap any 

ways. So, we start plotting at from this point on. It goes as square root… In energy, it 

goes as a square root. So, this plot will look something like this. This I am plotting as this 



function; I am plotting this function here. This is what I have plotted. This is the quantity 

that I have just plotted. 

But, the objection to it was that, if I look at the top of the… When you reach this energy, 

then obviously, density of states will become 0, because there is a band gap after that. 

So, I had mentioned that, there must be something like this. Actual density of state 

should be something like this; that means it goes as parabola given by this expression 

somewhere in the middle of the band. Then, it should become… Then, it should reduce 

and become 0 by the time it reaches top of the band. Yet in here when calculating n, I am 

going to use this blue curve – this blue curve, which corresponds to this expression right 

here. How can I do that when actual density of state goes something like this and then 

reduces like this. This is the first point I will have to answer. Graphically, I am stating to 

you that will be all right if I do this, if I use this expression in this integration. Yet I will 

get the correct value of n. That is one point I have to prove to you when I do graphical 

integration. 

Second point I want to… And, the reason you will see is… And, the reason it will work 

is because these energies if you look at; if you look at, these energies are in order of 

electron volts. And, this band width of the band is also several electron volts. This is also 

few electron volts typically. And, what we will see is that, as we go above E c, while this 

function g c continues to increase as a square root of E; but, this product will go to 0 

beyond some value of E c. As you increase E, this value, this integration, this product 

will very quickly go to 0 because this function f E is going to go to 0 as energy increases 

as you can see here. As energy increases, this function is going to reduce. After Fermi 

level, it is at 0 k; it goes to 0. And, even at finite temperatures after E f, this function 

drops off very quickly. Since this function drops off very quickly, this product will drop 

off, becomes very very small. And hence, as a consequence, whether g c was taken as 

this or this, it does not matter, because it is going to be multiplied by quantity, which is 

0. So, whatever you take, that is the point I will make later one more time. 

And, for the same reason, whether I integrate it from E c to E top or I integrated from E c 

to infinity, it matters none, because after E c up to only few kT of energy you will… 

Another point I will make is that, all I have to do is really few kT’s is k B T. Up to few k 

B T is all I need to integrate this. This region is only… This product f E g c is going to 

live, will have some finite value only in few k B T at the most. And, hence… And, since 



this is electron volts, this is in electron volts; kT at room temperature is a 25 million 

electron volts. So, if you take 3 or 5 k B T, still it is 100 milli electron volts (( )) 100 

milli electron volts of 0.1 electron volts; whereas, this whole length is in few electron 

volts. What that means is that, this integration lives only in a small portion of this 

entire... in conduction band. And hence, whether you integrate this from E c to E top, all 

the way you integrate from E c… If this expression from E c to infinity, it will matter 

none. These are the two points I am going to prove. These are the two points I am going 

to make. 
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Simultaneously, let us do one more thing – let us write an expression for holes also. For 

that, we are going to use similarly, very similarly, g v… Expression for g v we have 

written down was 1 by 2pi square. I think I made an error in the first one; this should 

have been a square in here – 2pi square should have been there, which I missed out. So, 2 

pi square 2 m p star by h bar square 3 by 2. Now, this time, E v minus E to power half; 

where, all energies are less than E v. So, this is valid for all energies less than E v. And 

similarly, we needed a probability function – probability of finding a hole, which was 1 

minus probability of finding an electron that was e to power E minus E f divided by k B 

T divided by 1 plus e to power e minus E f by k B T; which we can also write by 

dividing numerator and denominator by this quantity. By this quantity, we could write 

this again one more time as 1 plus e to power minus E minus E f by k B T. So, this is the 

expression for 1 minus f E. 



And then, we had said that, p was going to be equal to – integrate it from E v bottom to E 

v. And, this integration of 1 minus f of E g v E dE. And then, one statement at the end I 

will make is one more time I will make is (( )) and again I am going to write it in red pen 

is that, p is also equal to – I am going to replace it by minus infinity this time – E v 1 

minus f of E g v E dE. This will lead to the same thing. And again, if I will do it the same 

exercise as here, as I have done here, I will continue. Now, this time, on the valance band 

side, hence write down… If I were to plot same way as I did earlier that, here is E c or 

conduction band; here is conduction band E c. And, this is E c top. And then, there is a 

band gap. This is E g. Remember again few electron volts. And, this is E v. 

And now, we are going to say that, there is a E v bottom also. And, by same token, there 

may be another gap here and then another band here with another gap here – E g prime 

let us write it – E g prime. But, that does not matter; only point is that, electrons fill up 

all the way up to here. So, the only gap which is relevant is from where electrons jump 

from this point to this empty state. So, these are the only two relevant bands; we call this 

conduction band and we call this valance band. But, there may be other band gaps also 

below further underneath in lower energies. And, remember energy is increasing this 

way. If I do this time and do the same thing and I ask; let us plot on this axis, g v and 

energy of course increasing in this way, energy increasing this way and I take this 

expression and I plot this expression right here; then, this goes as a square root of course 

of energy and up to E v. For E equal to E v, the density of state is 0; right here it is 0. 

And then, as you go down in energy, this increases as square root of half. Exactly same 

argument as given earlier. 

And now, we will argue again same way that, really, the density of states should have 

become 0 here; that is, there must be something – some part of the curve for g v should 

be like this. Also, the real g v should be going from here from – let us you something 

else – should have been going from here and then going like this. That is what should 

have been the g v. But, the g v we are going to use is this solid line. It is the solid line. In 

spite of the fact that the correct g v curve should have been the solid line up to here and 

then this dotted line like this, it takes it to 0 again at the bottom of the band. However, by 

same logic, we are going to say that… What we are going to say is that, again, this 

product 1 minus f E g v I will write here. And, I was saying that, only into few k b T – 

about this much. This is an order of k B T only up to this much energy, only up to this 



much energy – k B T. Only in this energy, we will see that, this product lies. And, it will 

happen though fact that, g v is being given by this curve right here. This equation is what 

I plotted as solid blue line right here. 

But, nonetheless… And, I am going to use this in this integration. But, because 1 minus f 

of e will die out very quickly as we go down in energy; and hence, this product will die 

out. And, for same reason as we talked on previous slide, this quantity whether I use g v, 

this expression or I include the dotted line, does not matter; it does not matter. And, same 

token we can integrate this all the way from minus infinity to E v rather than E v bottom 

to E v; it does not matter, because this product is going to be 0 deep in the energy 

anyways. So, these are the two points I am going to prove to you by doing some 

graphical or showing you some graphically. This constructs as graphically also. So, let us 

do this. 

(Refer Slide Time: 17:38) 

 

Let us go in third slide. And, I am going to make three cases. So, let us plot case 1. And, 

they are very similar to each other, but some points can be made. So, let us take this case 

1 and let us do this; that here is therefore, E c and here is E v. And, energy of course 

increases in this axis. This is energy axis. Now, what I am going to do is I am going to 

plot what quantity? I am going to plot this quantity g c; which I have already done. I 

have plotted right here. And, I am going to plot this quantity g v, which I have already 

done here. But, I am going to put it on the slide also right here. So, on this axis, is energy 



and this is E; and, on this axis is time. I am going to plot g c of E. And, on this axis, I am 

going to plot g v of E. I am going to put number for g v of E here and g c of E there. 

What do they look like? I have already plotted on the previous one. I will reproduce this 

solid blue curve disregarding this dotted portion; and, I will justify that, why this solid 

blue curve was fine. And similarly, for g v, I am going to plot this solid blue curve here 

for the same reason on the third slide here. So, let us do that. So, this is the plot of g v, 

whose numbers can be read on this axis. And, this is plot of g c, whose numbers can be 

read on this axis. But, this is a plot of g c. So, this is the plot here. 

And, now, third one I want to plot is… Let us draw this again. Four quantities I need to 

plot. So, I am going to keep this – all these things going here. So, again, this is the 

energy axis; this is the energy axis; this is the energy axis; this is the energy axis. And of 

course, these are the E c’s (( )). So, these are the E c’s. E c’s level is here; E v is level is 

here; E c is here; E v is here. E v is here; E c is here. And, (( )) this is also visible. This is 

E v. And, this point is E c. And similarly, right here also. What I want to plot here? On 

this axis, I am going to plot now what function? I want to plot this function. And, on 

another plot, I am going to plot this product. So, this is my strategy. So, I want to plot 

this function f of E. So, let us do that. Let us plot f of E. Remember let me just do it – 

plot of f E right here for you. So, if I were to plot f of E; f of E remember was equal to… 

This was E f; if E f was here, then this is the energy axis; then, we had said that, this 

looks like something like this. This is 1 right here. This is the probability. And, if this is 

the dotted line… That at some finite temperature, it goes something like this; it goes 

something like this. And, this was few k T of energies in which this dies out; this curve 

dies out. This was only this or this was few k B T. This is only few k B T in which this 

thing got dying out. We have got few k B T only right here. So, this was dying out. 

Now, I am going to plot this one, where energy’s axis is going up and f of E is being 

plotted right here. So, this is one plotting f of E right here as f of E. So, now, how would 

it look like? Now, we have to know where the Fermi energy is, where E f is; it all 

depends on E f. That sets the three cases. In the first case, I am going to take the Fermi 

energy right here about middle of the band – band gap. I am going to take Fermi energy 

somewhere here. Somewhere here in the Fermi energy; somewhere here in the Fermi 

energy. So, what happens? If Fermi energy is here, let us take this axis as… let us take 

this value as 1. So, this value is 1. So, this value somewhere here would be half. So, 



somewhere here is the point, where this function becomes half. I am plotting on this axis, 

I am plotting f of E. So, right here is value 1. So, what happens now? You know that this 

function becomes half; this becomes half; its value becomes half at E f when E is equal 

to E f. So, when E is equal to E f, this function will be half. So, let us plot this; let us use 

this red to plot f of E – goes like this. 

I have exaggerated this picture that I am plotting the same function that, for all values 

less than energy – less than E f, this function… For values E a… Energy is less than E f, 

this function tends to 1. So, for energies less than E f going this way, this function is 

tending to 1 and it falls off. And, I am showing you that… Remember in few k B T, I 

said that, this will fall off. And then, silicon – this band gap is about 1 electron volts; this 

band gap is 1 electron volts. And, k B T at room temperature like I said is 25 milli 

electron volts. So, I have exaggerated this picture that, I have shown that as if this curve 

is falling off fairly slowly, because this much will be 500 milli electron volts. So, within 

500 milli electron volts, this curve – red curve should have died out to 0 value very 

quickly – nearly 0 value very quickly. But, I am exaggerating this picture and showing 

you some value just for schematic that, some value can be seen on this scale. So, this is 

what I have plotted as f of E. It is what I have just plotted. This is f of E that I have 

plotted. 

Now, I want to plot also 1 minus f of E. That is simple. So, I want to plot this now. Next, 

one thing I want to plot is 1 minus f of E also for calculating the value of p, which is 

required. This 1 minus f of E is required for calculating the value of p. So, for this sake, I 

am going to plot 1 minus f of E also. And, that is easy to plot. So, since it was 1 right 

here; so, 1 right here. And, there will be mirror image of f of E. It will be simply 1 

minus... Therefore, I will plot this as like this (( )) falling off. It is exactly symmetrical 

curve. Let me say if you add this… And, this is a plot of 1 minus f of E. This is plot of 1 

of minus f of E. What I have plotted here is with green line is 1 minus f of E. 

Now, if I want to plot, now, what I am going to do is I am going to plot… Next thing I 

am going to plot is… Look at this… So, f of E and 1 minus f of E is plotted here. g c is 

plotted to here. I am going to do. What I am going (( )) If you look at this, what do I need 

to integrate? I need to integrate this quantity. This is the quantity, which needs to be 

integrated – product of f of E and g c E in order to calculate n. So, what I am going to do 

is plot this product. Remember f of E was plotted by a red line and g c was plotted by 



blue line. So, I am going to take graphically, product of the red line and the blue line and 

then plot that. So, let us do that here, right here. So, I am going to take this g c and 

multiply it by f of E, which is a red curve. And, I am going to plot here… Therefore, f of 

E into g c E. That is what I am plotting on this axis right here. This is what I am plotting 

this axis on this axis. So, if I plot this… And, this is the product of course – blue line and 

the red line; let us continue to use the red pen for this. What happens that, for all values 

less than E c, which is right here; below E c if you notice, g c is 0. And, above E c, this f 

E function goes to 0 very quickly. So, what will happen to the product? Product will look 

something like this therefore; something like this. It will look like something like this. 

And similarly, if I plot this product of f of… If I want to plot 1 minus f of E and g v; 

which will be used to calculate p; then, let us look how that will look like. So, you take 1 

minus f E, which is a green line and multiply with this g v curve and plot that. That I am 

going to plot on this axis. On this axis, I am going to plot. Let me first plot it and then 

write this label. So, this… Multiply this blue curve with the green curve; notice that, for 

all values of energy greater than E v, this blue line is 0. And, for all values less than E v 

going in this direction, this (( )) function falls off very quickly. So, what will happen? 

This curve will also look something like this; it will look something very much like this. 

And, what have I plotted here? Let me level this also. This is… And, this is the scale I 

am plotting – 1 minus f of E multiplied by g v of E. That is what I am plotting on this 

axis. So, what do I have? 

Now, you can see that, what is this area – this area and this area? This area is equal to n. 

Remember this integration. This integration leads you to n. And similarly, this particular 

integration leads you to p. And hence, I am going write that, this area – shaded area is 

equal to p by same logic. Now, what do you see is that, remember this function. Again I 

go back; look at this f E value. f E – this band gap is in electron volts for silicon for 

example and I have already mentioned that. So, this will be about 0.5 electron volts of 

500 milli electron volts. This function therefore – this red function would have dropped 

down very quickly and these values will be very very small values. So, you can clearly 

see that, above E c, this function – this product cannot be having some finite value for 

anything more than few k B T. And, since this conduction band is also of several 

electron volts; so, I am very justified in using… I will be OK if I use this value of g c, 

because anyway, all that matters is integration from E c to only few k B T, where this 



product lies; after that, it is 0. Hence, whether integrated all the way to infinity or I 

integrated to conduction band top, it matters none. That is the first point I want to make. 

And, second point is that, you are free to… You are welcome to use the g c curve as… 

Or, you are welcome to use g c curve as given by this expression right here. This is fine. 

Use of dotted line is not necessary. It may be possible for example, going back it to slide 

number 1; it may be experimentally possible to determine what E c top is. But, even if I 

do not know it, I need to integrate only up to infinity. So, I need no knowledge of this E c 

top as to where E c top is, because this product goes to 0. And likewise, same argument 

will apply for this also. Now, what is case 2? Case 2 now, I am going to draw rather 

quickly. What I am going to do is I am going to notice that, the way I have drawn is 

when Fermi energy in the middle, I have shown this area under red area and this green 

area to be approximately equal; n and p equal n; Fermi energy somewhere in the middle. 

You will see later when we do quantitatively. This case will correspond to something 

what is called as intrinsic semiconductor. Now, what I am going to do is I am going to 

take this Fermi energy very close to conduction band in second case. In third case, I am 

going to take this Fermi energy very close to valance band and see how these curves look 

like. 
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So, let us do that. This is case 2. And, I am do going to do very quickly now since you 

understand it. So, here is case 2. So, here is E c; here is E v. And, here is energy axis; 



here is energy axis. And, I am going to plot this g c, which is going to look the same 

way, does not matter; it does not depend where the Fermi energy is. And, this is g v; this 

is g v. So, I am plotting this as g v and this is g c. From this axis, g c; on this axis, g v; I 

am plotting. And, it does not depend where the Fermi energy is. But, nonetheless, let me 

mark out where the Fermi energy is. Right here is the Fermi energy. In that case, if I plot 

again; where is this energy scale? And, I plot f of E and 1; here is 1; and, somewhere in 

the half. So, if I plot the f of E, now, remember Fermi energy is now here; Fermi is 

somewhere here. So, the value of f of E will be half right here. So, this f of E curve now, 

is going to shift little bit towards the conduction band. So, it will become something like 

this now. This is f of E. And, the 1 minus f of E will acquire a half value also right here 

and will be exactly mirror image of this. So, I am going to plot it something like this. (( 

)) 0 right here. So, this is 1 minus f of E when this is energy. 

And now, if I plot same energy scale; on this, we are plotting now; this we are plotting g 

c and f E into g c E. And, on this, I am going to plot 1 minus f of E into g v E. Therefore, 

I am plotting… If I do that, then this time, since this Fermi (( )) this curve g c has 

remained the same. But, f of E values have increased, because this red curve has shifted 

up in the energy.  
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So, this curve this time is going to go little bit bigger than the previous case. So, I am 

going just exaggerating this picture and showing you this. And, this will be the area (( )) 



again equal to n; and, this is the energy scale. And, by same token, 1 minus f E would 

have died down more. Nearly, 0 it would have become. And hence, this product would 

have become even smaller. This product would then in that case becomes smaller. And, 

this area would be equal to p. Notice what happened was that, at Fermi energy moves 

higher, this value of n is going to increase. As this Fermi energy goes up, and value of p 

will decrease. 

Case 3 then will be… Here is now case 3 – last case. And, I quickly plot this also then; is 

here E c; E c; and, this is E v. And now, here is the energy scale. Same I am going to plot 

g c and g v under the blue curve right here like this. They do not change with the Fermi 

energy. So, this is g c and this is g v. And, this scale of course is energy scale. This is 

energy scale. And, the Fermi energy – we are going to this time keep it very close to the 

valence band edge. So, here is the Fermi energy. In that case, what happens? Let us plot 

the Fermi energy curve. Here is the energy. This is energy. Let us do one more time right 

here. Here is… I will be going to plot here on this.  

We are going to plot on this g c E f of E. And, we are going to plot 1 minus f of E into g 

v E. g v E is going to plot on this axis. And now, Fermi energy of course is right here; 

not here, but below. Fermi energy is right here. Since Fermi energy is here; therefore, 

what will happen this time? This curve half… f E will become half here. So, it will 

become really 0 and something like  this. (( )) f E if this is 1. This is 1 and this is half; 

this value is half. And, if I plot… This is f of E. 

And, if I plot 1 minus f of E, it will be mirror image of course of this of course. 

Therefore, that will look something like… It should look like a mirror image something 

like this. It will look something like this. This will be 1 minus f of E. So, now, what 

happens? Because g c… Now, compared to case number 1, g v remains the same, but the 

green curve has move down. So, the 1 minus f E value has increased. So, this part will 

become little bloated this area will become little bloated. But, the red one… Because the 

f E has reduced now by shifting down; hence, will become very small. Something like 

this will become the… And, this area will be of course.  

Again n will be equal to n. And, this area of course will be equal to p. So, what you 

notice? What you notice is that, few statements we can make. One… To summarize, few 

statements we can make that, the g c value we can take. As we have written the 



expression, the real value we need not take; real character we need not take simply 

because this integration has to be carried. This product of f E, g c and f E is only in a 

very small energy range – few k B T. And hence, we need not take. Only thing we need 

to do is, in that range, value of g c should be correct; which we have ensured. This 

should be the value. 

Second thing is that, notice that, at value of n, electrons will not leave exactly at E c, 

because density of state is 0. But, electrons live only slightly above the conduction 

bandage; only in the small region here – right here they live; in the small region here 

electrons live; only in small region here do the… In small region here holes live; only on 

small and… Small region right here electrons live in this much energy. Very small 

energies electrons and holes live; rest of the part it does not matter; which also therefore, 

allowed us to carry out this integration to infinity for n. And, in that case, up to minus 

infinity for calculating p. So, with these arguments, we are going to calculate these red 

expressions. This one for p I am going to use this. And, quantitatively, I calculate p using 

this expression; and quantitatively, calculate n using this expression. So, let us move 

forward and calculate these quantities quantitatively. So, let us move on to that step. We 

are going to take that step now. So, when I substitute all these values… So, if I do that, 

then I am going to write again now n. So, let us start with n now. And then, same way we 

are going to do this for p. 
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So, here I want to write n. Now, I am going to integrate only from E c to infinity; I am 

going to integrate up to infinity, not top of the conduction band; there is no need for it, 

because as you see, it is not so… Wrong choice of words; I will integrate from E c all the 

way to infinity; it makes no difference whether you integrated to top of the conduction 

band or infinity. That was the logic we had used. So, let me substitute now g c. So, what 

is g c? 1 by 2pi square 2 m e star by h bar square to power 3 by 2 E minus E c to power 

half. And, we are going to also use in the Fermi function, 1 plus e to power E minus E f 

by k B T dE. This is the integration we need to carry out. This is the integration we carry 

out and we are going to get our answer. 

Let us write down. Let us simplify this. 1 by 2 pi square 2 m e star by h bar square power 

3 by 2 E c to infinity E minus E c to power half divided by 1 plus e to power E minus E f 

divided by k B T dE. This is the quantity I want to integrate. There is no analytical 

solution for it. So, let us use some definitions first. Define… I am going to define the 

quantity called eta, which is equal to E minus E c by k B T. I am going to define this 

quantity. That implies d eta is equal to 1 by k b T dE; E c of course is a constant. That is 

the case. Then, we are going to define a quantity n c as a quantity, which is equal to E f 

minus E c by k B T. 
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If so, now, I can write n as equal to 1 over 2pi square 2 m e star by h bar square to power 

3 by 2. And, if I now want to integrate it; so, now, when E goes to E c, then eta goes to 0. 



So, I am going to write this as 0. And, when E goes to infinity, then eta goes to infinity. 

So, this integration is up to infinity. So, now, what is this quantity right here? Is a 

quantity, which is equal to… In fact, I should write this as eta to power half E minus E c, 

is essentially equal to k B T to power half multiplied by area to power half. So, I should 

also write k B T to power half divided by 1 plus… Let us see what this quantity is; E 

minus E f by k B T. So, we should write this as E to power eta minus eta c. Then, we will 

see what happens. eta minus eta c is essentially equal to E minus E f. Therefore, I will 

write this as 1 by… And then, I am going to write this as dE. I am going to substitute as 

k B T d eta. So, I am going to write this as 1 by 2 pi square 2 m e star – I am going to 

include now k B T here – h bar squared to power 3 by 2. I will take k B T out; that means 

0 to infinity eta to power half divided by 1 plus e to power eta minus eta c d eta. This 

integration becomes like this. 

Now, let me introduce this Fermi-Dirac integral for order half as F of order half of 

parameter called eta c in this case. Eta c is just the parameter in there as being quantity 

equal to 0 to infinity eta to power half divided by 1 plus e to power eta minus eta c. So, 

this is a well-known integral, which is tabulated in many hand books. Or, you can 

calculate this as… You can calculate it numerically. So, point is that, this integration 

does not have an analytical solution. You cannot analytically write down this integral. 

But, we do have this as a… It is known as… It has a standard name called Fermi-Dirac 

integral of order half. So, you can use that. This Fermi-Dirac integral of order half is 

tabulated in many mathematical hand books; you can use that. But, now, they are at 

relevant computer age. You could just carry out this integration numerically as well. 

And, fairly simple, you could carry out this integration even in an excel sheet. So, now, it 

is simple. So, if that is the case, then I can write… 

I am going to introduce not… This is often… This Fermi function is not tabulated; often 

it is common to tabulate instead a quantity called 2 by root pi this function and see which 

I have just written out. So, what I am going to do is I am going to separate out 2 over 

root pi. I will multiply this function by 2 over root pi and divide this quantity by 

multiply… I will multiply this quantity by 2 over root pi and I will also in front I will put 

inverse of that root pi by 2 that is. And, if I do that, then I can write this whole quantity n 

as… So, let us do that. Let us substitute all the values in there and carry on from there. 

So, I am going to rewrite the quantity n again. 
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So, n now is equal to therefore, 1 over 2 pi square 2 m e star k B T. What I am going to 

also do is, I am going to write this as 2 pi square right here divided by h square now to 

power 3 by 2. This is one change I am making remember. h bar is equal to h by 2pi. So, 

this is not… This is h; not h bar any more. So, it is not h bar; it is h now. And, what I am 

going to do is I am again, what I am going to do is that, I will put now a factor root pi by 

2; and then also, I will multiply… I am going to write this as 2 by root pi of order half 

now – Fermi-Dirac integral of order half. So, I am going to do a simplification of this 

coefficient and write the expression after that.  

So, what we can do is in fact, you carry out the simplification. So, 1 over 2 pi square. 

What I am going to do is I am going to live in there the quantity 2 pi square; I am going 

to live 1 by 2 pi in there and I am going to take out this rest of the stuff out here; from 

here 2 to power 2 square root of 2, which is coming from here. And, I am going to take 

one 2pi outside. So, I am going to write 2 pi and the square root of 2 pi one more time 

here. I am going to write here. And therefore, I am going to write in bracket here as a 

quantity and I am going to take this also right here – square root of pi divided by 2; I am 

doing this all multiplication and I am going to write here now 2pi m e star k B T by h 

squared to power 3 by 2 2 by 2 root pi F half eta c. 

So, if I carry out this, now, you can clearly see that, I have this 2 pi square; 1 pi is going 

to come from here. There is pi here. If you carry out this simplification on this, what you 



will find is, this quantity simply becomes then 2 into 2 pi. And, since I knew this answer, 

that is why I have just written it in specific form – k B T; otherwise, nothing is special. 

As all h now, remember; not h bar 2. That is a conventional way of writing 2 root pi. So, 

that is the value of… So, this is what n is equal to now. This is (( )) governing 

expression. Now, what I am going to do is I am going to define this quantity as… I am 

going to write this quantity as N c times 2 by root pi F or Fermi-Dirac function eta c. 
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We have of course N c is equal to 2 into 2pi m e star k B T by h square to power 3 by 2. 

And, this quantity is called effective density of states in conduction band. Why this 

terminology? Will become clear in a minute; but, you can see from here… Not you can 

see, I would rather… I have simplified this expression in a symbol form; n c as the 

standard definition, whose coefficient… All this quantity is written out here; n is equal to 

N c 2 by root pi Fermi-Dirac function of order half. Having written this, let us now look 

at… Likewise, let us do it for holes in the valance band also. Let us carry out the similar 

exercise for holes as well. And, when we do for the same exercise for holes, let us go 

back. What I mean is now, remember if we are going to carry out this integration… I am 

going want to do this integration 1 minus f E multiplied by g v E. So, that I am going to 

substitute 1 minus f E like this and g v E like this. This is what we need to substitute in 

there. So, if you do the carry out this integration in there, let us see what happens for p. 

So, if you do calculate p… 
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So, now, similarly, if you do this p, you will get equivalent expression and then we will 

handle both these things together. In that case, I am again… This time skips from steps – 

1 over 2 pi square 2 m effective mass of holes by h bar square to power 3 by 2. And now, 

I am going to integrate from minus infinity to E v. And, what I am going to integrate 

now? 1 minus f E. So, 1 minus f E. I am going to prefer to write… Let us go back here. 

So, 1 minus f E; I can also write as… 
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Instead I can write 1 minus f E – 1 minus f of E as also equal to – what I am going to do 

is divide it. And therefore, I am going to write this as 1 by 1 plus e to the power minus of 

E minus E f by k B T. I can also write it like this. Namely, therefore, basically divide the 

numerator and denominator by 1 by… Divide numerator and denominator by e to power 

E minus E f by k B T. So, I am going to substitute this for 1 minus f E. So, if that so, then 

I will write this as E v minus E to power half. You can see the form is very similar – 1 

plus e to power minus E minus E f by k B T and dE. There are integration we need to 

carry out. 

Now, this time, we are going to substitute eta as E v minus E by k B T. And, I am going 

to substitute n v as equal to E v minus E f by k B T. We substitute this. So, in that case, 

you can carry out the same exercise exactly same way, which we (( )) n. You find p as 

equal to 2 times 2 pi m p star by k B T by h square, not h bar square to power 3 by 2 F 

half eta v. So, exactly same way, I should in fact, at this 2 to power 2 and root pi over 

here also, exactly same way; which we are going to write as N v times 2 by root of pi F 

half – Fermi-Dirac function of order half eta v; exactly same way. 
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So, same form of equation, where N v of course is equal to 2 2 pi m p star – effective 

mass of holes – k B T divided by h square power 3 by 2; which this quantity is effective 

density of states in valance band. For holes that is obviously, in valence band. So, we 

have an expression for p. So, that is what essentially this is. So, I can calculate now n and 



p if I can calculate Fermi-Dirac integral, which is straightforward; that we should be able 

to calculate given that, where E f is… Notice that, in N v, what is the parameter? This 

property of material we know where that is. Therefore, only quantity, which we need to 

know is if you tell me what E f is – what the value of E f is; if you give me this is the 

value of E f, then I can calculate N v. And therefore, I can calculate this integral. And of 

course, N v is understood; thus, all fundamental parameters – Planck’s constant and then 

of course effective mass of holes, which comes from the E-k diagram; recall that. And, 

temperature and Boltzmann constant, etcetera. So, I can immediately get effective 

density of states. 

Same way for conduction band, I can calculate N c. And, if you give me E f, then we can 

calculate Fermi-Dirac integral of order half for N c – N subscript c. Therefore, I can 

calculate n and p. Only thing I need to know is where the Fermi energy is. You tell me 

where the Fermi energy E f is. We are in business; we can calculate what n and p are. 

But, we want to make some simplifications. So, this is effective density of states in 

valance band. So, let us move forward. So, as we continue, what we will do is now, try to 

get an estimate of approximation for this Fermi-Dirac integral. So, that is what we are 

going to do now. So, if you want to do… Actually, even before we do that, maybe let me 

give some numbers. Since we can calculate this quantity N c and N v, first let us look at 

N c and N v. 
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So, let us write N c. N c was equal to 2 times 2pi effective mass of electrons k B T 

divided by h square 3 by 2. N v equal to 2 – same expression, very similar expression – 

the effective mass of holes now, we have to use. So, these are the effective density of 

states. Now, let us just calculate these numbers; how much they are. So, what we can do 

is… First of all, what we are going to do is simplify it. So, you know that, rest mass of 

electron, which we are going to say as m 0 is 9.11 into 10 to power minus 31 kgs; h is 

equal to 6.63 into 10 to power minus 34 joules second. So, we can substitute in there a 

Boltzmann constant k B – of course is equal to 8.31 divided by 6.023 into 10 to power 

23. So, you can carry out this calculation. Just check on this; where, I believe it is 1.38 

into 10 to power minus 23, is what this quantity will be equal to k B therefore. 
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So, let us look at – at 300 k; what happens at 300 Kelvin, which is about room 

temperature; where, T is equal to – this is the value of T. So, T is equal to this quantity. 

So, what happens to N c and N v? Let us see what this quantity is. So, this first of all, we 

are going to write this as… Estimate this as… Substitute all the values except m e and m 

h and then what you get. So, I am going to write this as N approximate… or not 

approximate; I am going to simplify this expression as this quantity is equal 2.509 into 

10 to power 2 2 6 – 10 to power 25 m either e or p star by m 0 to power 3 by 2. And, 

when you calculate this, you will get the answer in minus per meter cube. Or, therefore, I 

can write it as 2.509, which is more conventionally how we write it – 19 divided by 6. 

Therefore, m e p star by m 0 3 by 2. And now, it is in per centimeter cube. That is what 



density of states is. What I mean is that, if you substitute in here effective mass of 

electrons; in that case, you calculate N c. And, in case you substitute here effective mass 

of holes, then you calculate N v. That is what this comma separates. Pick one of the two. 

So, that is what the simplified expression is. 

(Refer Slide Time: 1:00:05) 

 

So, if I do that; if I is look at silicon for example; so, if I look at silicon; for silicon, the 

effective mass of electron is or divided by (( )) and with respect to the rest mass of 

electron… So, compared to rest mass of electron, what is the effective mass of electron 

in silicon? Then, you find that, this is equal to 1.18; that means electron is slightly 

heavier than the rest mass of the electron. And, if you calculate N c in terms of as I said 

in centimeters minus 3; then, this quantity comes out as 3.22 into 10 to power minus 19, 

is what this quantity is equal to. And, if I look at the whole effective mass for silicon, 

then there is 0.81 only; that means hole is lighter than… Hole behaves lighter in silicon 

than does the electron. And therefore, if I plot… 

And, I calculate N v in units of per centimeter cube, then this number is 1.83 into 10 to 

power 19. What you see? The idea is the density of states – effective density of states is 

about 10 to power 19 per centimeter cube in silicon. Remember number of silicon atoms 

(( )) Number of number of silicon atoms are 10 to power 22 per centimeter cube. Yet, 

why we call this effective density of state is… Notice that, this number is not 10 to 

power 22 per centimeter cube, but it is just 10 to power 19. Similarly, if I… And, there is 



another reason we will see – germanium; if I write this for germanium, this is 0.55; 

lighter – electron is lighter; the curvature – depends on curvature remember; 1.03 into 10 

to the power of 19; 0.36; 5.35 into 10 to power 18. This is in case of germanium. 

Now, gallium arsenide – something really very interesting happens; the electron is really 

really light; really really light – 0.066. And, density of states is 4.21 into 10 to power 17 

only; whereas, in relative terms, between electron and holes, hole is about same heavy as 

for example, in silicon and germanium. So, it is hole in case of gallium arsenide is about 

same (( )) equally heavy as in germanium silicon. But, electron is really really light. And, 

that has a consequence in electronic devices, because electron is… Electron devices 

therefore would be… Electron current can be very very large, because the mass is very 

small. So, mobility can be very very large. So, this has a very important consequence. 

Maybe I will point out eventually as we go along little bit later; not today, but few 

lectures down the line. 

So, that gives you an idea of what the effective density of states are in these materials – 

10 to power 19, 10 to power 17, 10 to power 18. And, here is an expression, which is 

given to you. You can substitute in there and you can try calculating yourself also to see 

if I had made any mistake. And, if I have, please correct it. Now, we are back to this. N c 

and N v I have estimated. N c, N v I have estimated; N c I have estimated likewise. Now, 

let us have an estimate for this Fermi-Dirac integral also of order half. 
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Let us try doing that one also. So, if I do that, (( )) I am going to do is I am going to plot 

2 root pi Fermi-Dirac integral of order half. This is the quantity I am going to plot. So, let 

us do that. So, if I plot this like this, here is 0 and I am plotting eta; and, here is minus 1, 

here is minus 2, here is minus 3, here is minus 4, etcetera. And, this is 1, 2, 3, etcetera; 

and, 10 to power minus 2, here is 10 to power minus 1; here is on log scale, 10 to power 

0; and, here is 10 to power 1. If I plot this, then at around somewhere here… So, if I plot 

this, this looks like – this curve looks like… I will just plot from here to somewhere here. 

Approximately, I am plotting this. So, somewhere here. This looks like this curve here. A 

straight line is here. Then, in that case, from (( )) 1 onwards, starts behaving like this. So, 

maybe I will plot it like this. This is a different pen. So, this is a plot of… This red line is 

a plot of 2 by root pi F half eta. 

And, this black line is a plot of E to power eta. This two lines – black ones – a straight 

line. Of course, e to power eta when taken log will become a straight line. So, that is 

what this plot is equal to; which I have plotted here e to power eta that is. And then, (( )) 

What do we see? We see that, let us say up to here; let us be more conservative up to 

here. Till where all the eta values here in this direction. We can see that, in this range, we 

can find that, 2 root pi eta is approximately equal to E to power eta. So, for all values of 

eta less than minus 3, we are going to assume that, F – this function approximates to E to 

power eta. And, therefore, we will able to solve our problem within those limits. I will 

start from next lecture on this topic. And then, correspondingly, I will calculate n and p 

in the semiconductor. 

Thank you . 

 


