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Lecture - 12 

Equilibrium Carrier Statistics in Semiconductors: Density of States, Fermi 

Function and Population Density in Bands 

Welcome to lecture number 12. You have so far what we have done is, well in last 

lecture what you were doing was plan structure of semiconductors. I hope you got a good 

overview of what the band section looks like, the kind of information we can get from it, 

we talked about effective mass in terms of devices, we talked about optoelectronic 

properties, we talked about in that context, we said that if you want a good optical 

material then it better be a direct band gap semiconductors, so that its absorption is very 

good. 

By same token we will see later that emission also will require exactly the same thing 

that intuitively you can pretty must see, because if photon has to come out then the 

electron must relax back to the valence band from conduction band. And in doing so if it 

involves phonon in in like in indirect band gap semiconductor, then it will be, if the 

energy release would go to heating the lattice, and it would not come out as light. 

Whereas, if it is direct band gap semiconductor the, you do not need to involve the 

lattice, you do not need to involve the phonons and therefore you have hope, you hope 

that you will get photons out. 

And therefore, that is something which information you when you select materials you 

can select based on the band structures based on how the band structure looks based on 

that you can select therefore whether what kind, what kind of material will be opto-

electronic material which will not be apart from that you saw curvatures, when we 

looked at, you looked at we looked at effective masses at different places. Accordingly, 

you can make innovative devices such as something which has a negative differential 

resistance etcetera, etcetera; there are many, many such things which come out of band 

diagram 

Anyways, that is something they will start using, start using, but obvious question which 

you may, come to your mind is that well fine, we but then how many if if you go to talk 

about electrons in conduction band, valence band then how many electrons are there in 



conduction band. How many holes are there in the valence band at let us say room 

temperature or the operation, operation temperature of a device which typically would be 

around room temperature. 

And hence at that temperature what is the carrier, what is the number of carriers. When 

device is operating you will think of carriers present in area of these bands. Over and 

above what is thermal equilibrium? Point is that whatever is in thermal equilibrium in 

other words if I take a room, gallium arsenide which is supposed to be optical material. If 

I take it at room temperature some electrons forms valence band would have gone to 

conduction band and therefore there will be some holes in the valence band. But then I 

would not see light coming out, I do not see light coming out of this gallium arsenide 

material. 

Why so? Obviously, this material in thermal equilibrium. Things which are in 

equilibrium are not giving you, they they cannot be producing extra energy, they cannot 

be giving out light. In order to get out of light I must create excess over what is the 

thermal equilibrium value. So, in other words when we start learning about devices then 

it will be about creating the excess values over and above, above or below, does not 

matter, either way. 

Over and below equilibrium, in other words in order to understand those device at all 

times you must know at least what is thermal equilibrium, what is the base line above or 

below which you can then start operating the device and hope to get photons in and out. 

Therefore, what we going to start now is carrier statistics. Question we will ask is, so let 

us reduce this problem to different one. 
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Now, if I think of my semiconductor to be as follows that is here is the valence band 

energy that corresponds to clearly if I plot it like this, a direct band gap semiconductor let 

us say I plot, something like this does not matter. So, this make it little better, right here, 

something like this. This is E versus k. So, if I plot this, so here is my E v, here is my E v 

energy, this is energy axis and here is my E c energy which is the bottom of conduction 

band. Here is the bottom of conduction band and here is the top of the valence band.  

This is the top of the valence band and this is bottom of the conduction band. I may plot 

this energy on the energy scale, this is the electron energy scale. This is the electron 

energy scale, then what do I see? These are all allowed energies. I have a band, allowed 

energy how far it is going? I have not shown here.How far it is going? I have not shown 

here. So, let us assume that it is somewhere like this. It gets closed somewhere here, after 

that some band gap again and then so on. 

So,let us say I have this is a band which we are calling as a valence band and I have a 

band here, a conduction bandand the common features in all semiconductor is at 0 k 

electrons are filling completely the valence band and conduction band is completely 

empty and hence, it is insulator. Now, if this is the band, though what kind of picture is 

this? This kind of picture is like this, that in this diagrams E k diagram, but here I am 

plotting only energy and therefore I am drawing horizontal lines. 



What is this axis then? This axis, you can think of the real axis. Here it is reciprocal line, 

reciprocal lattice axis or reciprocal axis k was in reciprocal space. Now, you may think 

of real space point beinglet us say I have, have this as a semiconductor which I am 

showing you here. Here is the semiconductor which is let us say and I may ask the 

question at this position where is the conductionband, where is a, and valence band? 

Then I show that at this energy level this is the energy, where the valence band is and 

this is where the conduction band starts. 

I ask the same question here. What about this point? Where is the valence band and 

where is the conduction band? Well this is homogeneous material, so therefore, the 

valence band is at same position and the conduction band is same position. What about 

this point? Same thing, same position is valence band, same position is conduction band. 

So, in that sense I can think of this as a real space, space along the axis or on the, in the 

material somewhere and at all points since is a homogeneous material the energy, 

energies are same, identical at every point. 

Therefore, you can imagine this plot to be in the real space. In the real space to be this 

plot. So, so why I am going to do is, now abandon this band structure for a minute for 

doing this thermal equilibrium statistics, I am going to abandon this, this, this E versus k 

diagram and stick to only energies. We understand that if a electron has to go from here 

over to here, if electron has to go from here to here we understand that it may have to 

change its case state also. 

Depending on whether it is direct band gap semiconductor or a indirect band gap 

semiconductor, but may, but knowing that, that there is, that the semiconductor is 

indirect or direct band gap semiconductor knowing that it may have to change the case 

state. We will ignore that point right now. We will think of only energy transitions and 

therefore, use this kind of band gap diagram which everybody is quite familiar with from 

school days itself where a valence band and conduction band is shown. 

So, that is exactly the diagram I have now began to reproduce and while in this particular 

diagram I am not showing the top of where this, this particular band energy levels 

terminate. I have in this diagram I have shown that this is where it terminates and this is 

where the band of valence band terminates in the energy right here. This is the maximum 



for the energy, right here this is the minimum of conduction band and this is where the 

valence band terminates. 

This is where the conduction band terminates. So, after that there is another band gap and 

then more bands are there. We are not interested in that, we are and we are interested in 

only the one which is completely full and the next one which is completely empty. Those 

are the two we are interested in because those are where that is where the transitions of 

electrons will take place between empty and filled states. So, this is the picture. In this, in 

this picture the question we asking is if you have a temperature T? 

If you have a temperature T then how many electrons are going to be found in 

conduction band, how many electrons n per unit volume, number of electrons per unit 

volume will be found in conduction band. And how many holes, number of holes per 

unit volume will be find found in valence band.Let me draw this picture, now little bit 

more clean. 
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So, here is conduction band and this is energy E c and this is energy E v sorry valence 

band maxima and here is conduction band minima and this is the valence band sorry, this 

is not conduction band this is valence band and this is conduction band. All right, what 

do we have? We are saying that this is full of electrons, but some have gone into the 

higher conduction band state. So, this is where the electrons are filled up in the dashed 

region and the top states are where the holes are. 



So, that is where the holes are right here. A holes because some electrons are jumped in 

there, jumped up into the valence band and what has happened is there is some electrons 

which have, electrons which are jumping have jumped here. So, question we are asking 

is what is n number of electronsper unit volume of the material, and what is p number of 

holes in the valence band, number of electrons in the conduction band, number of holes 

in the valence band. 

And the couple of lectures ago I have already explained to you that we, we can speak of 

holes in the valence band because remember I showed you that in order to calculate 

current it is sufficient to derive quantity called holes in valence band, where the 

curvature is concave downwards. And electrons, we can think of in conduction band. All 

right, this is what basically we want to find out at temperature T, how many will there 

be. And remember it is in this context Iwas telling you what this band gap is. 

Band gap is E g is E c minus E v and that I showed you for silicon is 1. 1for example, for 

gallium arsenide is about 1.4, E v and I showed at room temperature at at this T how 

many n n p’s question I have asked. And I told you the k T is about 29 milli electron 

volts or 30milli milli electron volts. Given that thermal energy, yet how many electron 

and holes are there in conduction band and valence band is the question we are trying to 

find. In this context you should also think like this. 

If you have silicon which is bonded to other silicon atoms like this, tetrahedrally bonded 

to other silicon atoms, bonding I have shown you, the fact that one electron becomes 

free, it is all covalent bond. So, all electrons are occupied, all electrons are tied up and 

they are all in valence band. Now, what happens? A bond breaks, a bond breaks, a bond 

breaks like this and I get something a hole here and electron become free, corresponding 

electron becomes free. 

This is a free electron which goes in conduction band and this holes is in the, and the free 

hole in the or the hole which is free I will say is in the valence band. So, I have these 

green holes in the valence band and a conduction band and the electron in the conduction 

band which is also free. Alright, if this is happened then remember how many bonds are 

there? Density of silicon atoms, if you take density and calculate the number of silicon 

atoms per centimeter cube you would find about 10 to power 22 atoms per centimeter 



cube in silicon. So, that is the number you need to remember for most materials, this is 

the 10 to power 22 atoms per centimeter cube. 

So, if you look at the bonds also number of bonds with it, approximately similar order of 

magnitude same number of bonds 10 to power 22 bonds per centimeter cube. So, if you 

going to break these bonds how much maximum you can get into any of these is 10 to 

the power 22. Obviously, is not going to happen otherwise material is all gone. So, this 

number of n n p is going to be significantly less than 10 to power 22 electrons, or holes n 

n p in with respective bands per centimeter cube. 

So, there is some some some boundaries of numbers I am giving you. And now let us 

begin to see how we will derive this quantities n n p. So, that is what we are going to 

start in this lecture and probably will take three four lectures, we build up this idea for 

three four, next three four lectures. So, let us start with it. 
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And in doing so we will begin to use many of the concepts which we have already used. 

So, let us start with this as follows. Let us start with idea of density of states which you 

have already been introduced. First let us start with density of states.You shall recall that 

I have derived for free electrons, if a free electrons I had derived density of states as a 

quantityequal to 1 over 2 pi square 2 mby h bar square3 by 2 energy to power half. That 

is the quantity I have derived. 



Earlier as density of state and you will recall g of E d E gives you, gives you number of 

electron statesin E and E plus d E, that was the definition. This is the number of electron 

states available in this region. If I plot this then this looks like as follows, as energy 

increases if I plot g of E, then what happens? As energy at 0 energy this is 0 or the band 

edge at 0 energy and then it gradually increases as a square root of E, as a square root of 

E it starts increasing like this. That is the nature of g versus E curve. 
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Having done this now let us start applying this. What do we have? We have a conduction 

band. We have a conduction band looking like this and here is E c, here is E c and it is 

going up here. That is a conduction band. This I am showing only the conduction band. 

Of course, there is a valence band also. There is a valence band also, now I am going to 

use this density of states, but with following modification. I am going to write density of 

states in conduction band as symbol c, I will give and this is the density of states in 

conduction band. 
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I am going to write this as 1 over 2 pi square 2 m of electron. So, I am going to put 

symbol here. I am going to put a star for a effective mass, I am going to put the same 

thing h bar square and I am going to write this as energy minus E c to power half. You 

can begin to see why I have done this. First of all you notice that this is valid for all 

energies greater than or equal to E c. All energies greater than equal to E c, why? 

Because you see at E c, below E c there is no conduction band, there is no this allowed 

state. Therefore, I must think of all energies. 
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Above that, since the band just starts here, band just starts here. 
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So, there are 0 density of state just at E c just like I had my 0 in this expression was at E 

equal to 0. At energy equal to 0 I had a 0, n energy equal to 0 I had a 0 here, 0 of g c, 

density of state was 0, 0 at equal to 0, but now since this 0 is at E c level for conduction 

band for conduction density of states of electron in conduction band its 0 is at energy 

equal to E c, therefore I have written as this as E minus E c. So, that at E equal to E c this 

density of state becomes 0 and I start (( )) same curve. That is the first change I have 

made. Second change is that recall that now I taken into account in free electron theory I 

had E versus curve which was exactly parabola. Energy was and this is k versus energy, 

where the exact parabola, that is what this this quantity was. 
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Now, my my my situation right now is if I plot, if I see, if we look at silicon or gallium 

arsenide band diagram then some, in this band diagram I see some behavior like this.This 

portion E versus k, this portion which I am plotting here, this is the portion which I am 

interested in, this is where the minimum of conduction band is where E c is. I am plotting 

this region. When I am plotting this region then effective mass at this point of time at the, 

at the, it may not be a parabola for one thing, that it may not be a parabola at all. 

Second thing is the curvature may be different than what the electrons mass is. 9.11 into 

10 to power minus 31 kgs. It may be different from that. Therefore, you remember this is 

precisely the region reason we derived expression called effective mass. So, what I am 

going to do is I am going to take E versus a curve, actual E versus a, E versus k curve 

sorry not a curve E versus k curve. And I am going to calculate the curvature and I am 

going to take inverse of that mass and I will try to somehow reduce it to a single quantity 

and that quantity I will call as effective mass. 

What precisely we do in this case, I am ignoring that question, but therefore, but 

however what I am saying is that in this expression, therefore, if I replace it, I am going 

to think of equivalent density by, I am going to fit it the density of state to actual density 

of state. I will fit this formula by replacing by mass by an effective mass depending on 

the curvature of E versus k diagram. So, this therefore becomes my effective density of 

states in conduction band. That is one thing. Second thing notice that if I plot this density 



of state, if I plot this density of states again then g of c E if I plot versus energy then it 

will continue to increase likethis. 

But notice that again I will encounter a band edge somewhere here. So, the according to 

this expression which I am just plotting it continuously increases. Somewhere here is my 

E c and here is that E top, let us call it E, E c top, this is the top of E c, this is E c top, let 

us call it E c top. So, if this is E c top then clearly my density of state at top again 

becomes 0. So, it must somewhere be something like this. Actual density of state should 

be really something we should not have this portion, but should have, should behave like 

this. 

Fine, but this expression does not carry, this expression does not carry that it is only 

increasing. We will stick nonetheless to this expression and I will show you that this 

portion or the curve is irrelevant at the end and therefore, we are, it is sufficient that we 

are going to be operating, we are going to bedoing all other calculations only in this 

region right here and hence, our density of state which I have just derived for conduction 

band should be sufficient. Let us move next page.  
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So, I am going to produce this density of states of conduction band in energy E, therefore 

again I am going to write it as 1 over 2 pi square 2 m electrons effective mass. I have 

replace this electrons mass by effective mass, so that I can fit it according to E versus k 

curve, actual real E versus k curve. E minus E c to power half. Now, I am also interested 



in density of, this is the density of electrons states. So, likewise I am interested of density 

of holes, whatever density of holes, hole states not electronic states hole states in valence 

band. 

Clearly, if electron in in energy in this picture, this is the conduction band and this is the 

valence band. This is the valence band and this is the conduction band. If electron energy 

increases like this here E c, here is E v. So, electron energies increasing like this then 

hole energy must be increasing like this. Hole energy, electron energy, electron energy 

and this is holes energy. This holes energy must be increasing this way. So, by same 

token if I start saying for this holes, for holes, therefore if I first think of energies as 

going minus h square by 2 m k square, first of all start thinking like this. 

They are going down then second thing I can do is, I can use a same formula now for 

density of states. I can write g vof E as equal to 1 over 2 pi square times 2 m. Now, I am 

going to write h star, let us use, for holes we will stick to p, m p square, m p by h bar 

square to power 3 by 2 and now I am going to write it as E v minus E to power half for 

energy is less than or equal to E v. For energy is less than equal to E v in the same way, 

in same range just I have written like this, same logic applies here when I am looking at 

hole states. 

Except, now I am writing E v minus E because remember, what will happen? Density of 

states here will be 0 at E equal to E 0, E at E equal to E v density states will be 0 which is 

what I have done. And as we go deeper and deeper, lower and lower energy towards let 

us write it E bysame way E t bottom, this is energy E v bottom, lower energy. So, as you 

move from E v to E v bottom, what will happen? Density of states will continue to 

increase, density of states would continue to increaseand therefore, I have written first of 

all E v minus E c in a way where if E is decreasing at this electron energy, E on this 

scale. 

If this is, this is a scale for E. So, if as E as we going down in this, what will happen in 

energy? That means as E is becoming lower and lower then therefore, then what should 

happen our density of state should increase, should be increasing. Therefore, I have 

written as E v minus E here and same, before the same reason for the curvature of 

valence band.Though curvature, remember which is hole like surface. 
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I have, therefore calculated effective mass for that also as substituted in there with the 

same logic which we did for conduction band, density of electron states, density of 

electron states in conduction band. Now, I have calculated density of hole states in 

valence band. So, same logic applies as I go down and then as I reach towards the bottom 

of the band, again my density of states should go down to 0 which is not predicted by 

this equation. This equation says it keeps increasing continuously. 

So, but I will show you to it later that only portion that we are going to apply this 

equation is really just near this region, this E v region, near the E v region you going to 

apply only in this small region. And therefore, we are okay to use this expression that I 

will prove to you later, little bit later, later that we can continue to use that. So, the two 

things which we have done is let me now encircle this. So, this is one expression which 

you are going to use, which is the density of states of the electronsin conduction band. 

Second, we want to use this expression which is for density of states in and this of course 

is for E greater than or equal to E c and no expression is needed. There is no density of 

states between E v and E c because I can see there is no density that is why it is called 

band gap. The no density of states between these two states between these two energies. 

So, that defines our density of states. Now, I am going to define another quantity first. 



(Refer Slide Time: 26:32) 

 

Now, I am going to define probability of finding an electron. So, this is what we want to 

do now. Why so? On the side you can see that if g c E is d E is the number of, g c E d E 

is the number of electron states in conduction band in energy range E and d E. Then if I 

multiply these are the states, if I multiply this by probability of occupation of the states 

then I will get actual number of electrons in energy range E and E plus d E. Between E 

and E plus d E if I want to know how many electrons are there, then I know that this is 

the number of states, electrons states. 

These many electrons could be there. Maximum, that is the number of electrons that 

could be there in this energy range. And if I, therefore multiply this by probability of 

finding electron at this energy E then I would get actual number of electrons in the same 

energy states. So, that is what we are heading towards. I have already defined this 

quantity. Now, I am going to define the probability. Once, I have the probability I will 

multiply the two and I will get my number of electrons. 
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That is the strategy we are adopting. So, f E is the, let us define f E is that probability. F 

E is that probability of finding an electron in energy at energy state E. So, this is the 

probability. If so then please also note that 1 minus f E is probability, well electron is 

not, so 1 minus f E must be that probability. So, in valence band if I want to find how 

many holes are there then I obviously know g v E d E is the number ofhole states. 

That is the number of hole that can be in energy range E and E plus d E. In energy range 

this much that can be the hole, holes, if I multiply this by 1 minus F e therefore. Then I 

will get how many holes are actually there in valence band. So, that is why we if I know 

what f E is then I will know 1, 1 minus f E, what 1 minus f E is. Now, let us do this. 

Now, electrons are fermions. 
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Electrons are, electrons are fermionsthat means the (( )), the half spin in there. Just think 

of it like that only at this point of time. Electrons are fermions. They follow Fermi 

statistics, Fermi-Dirac statistics. So, what is the Fermi-Dirac distribution? F of E is equal 

to 1 over 1 plus e to power E minus E F by k T. Maybe I should be little bit more careful 

here now, for time being I should write it as k B T. I want to try to remember to keep it k 

B, but in context please remember also, you also please remember if I miss sometimes 

then this k B starts for, stands for Boltzmann constant, k B is Boltzmann constant. 

So, and since we have been using a small k earlier also, therefore I am putting a b sign, b 

subscript also. The times I may forget to put this b subscript. So, in context remember 

this k is not the reciprocal, vector in the reciprocal space rather it is a, it is Boltzmann 

constant. So, let us plot this. 
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Let us plot this first at 0 K. So, this is the Fermi, this is the probability of finding a 

electron at energy E and there is a parameter called EF. What this parameter is, we will 

see in a minute. So, let us plot this at 0 K first, at 0 K. At 0 K let us do this. So, if I plot 

as follows, hence the energy axis and hence f of E. If I plot this and here is quantity 

called EF this parameter. This energy EF is in here. So, for all energies E less than E f, 

all energies E less than EF, E minus EF is of course negative and some negative (( )) 

divided by 0 leads to, therefore minus infinity. 

So, e to power minus infinity is 0. So, I am left with 1 divided by 1. So, I have up to here 

this probability is equal, is 1. This probability is 1. For all energies greater than E f, for 

all energies greater than E f, E minus E f is greater than 0 and then some number greater 

than 0 divided by a temperature which is 0 gives me plus infinity. The e to power plus 

infinity is infinity, so 1 divided by infinity is therefore 0. So, this curve looks like this at 

0 K. This is 1 and then 0, interesting. 

So, that defines my E F. Now, recall context metal, metals free electron theory what did 

we say? We did all the, our calculations were at 0 K we said electron start putting on K 

states, start putting in electrons and whatever number of electrons you have up to 

whatever point they fill up, whatever the energy, that is what we call as the Fermi 

energy. And then we talked about Fermi sphere. That is the highest energy they are 

filling up, up to. Why? Because at 0 K probability of finding electron was 1. 



So, there was no difference between whether there is a state or whether the state is 

occupied. Because we know that probability of finding electron was 1, therefore if there 

is a state then it will be occupied up to EF, up to there as you can see f E, value of f E is 

1 up to EF. That means up to EF where, if there is a state electron would have occupied it 

at 0K and hence, we did not distinguish between state and the presence of electron. And 

above EF, therefore all the energies were all the states were empty. 

As you can see probability of finding electron above the EF was 0. And therefore, even if 

there are states, since there is no probability of them being occupied, therefore there were 

no electrons above EF. And in that sense, now we can see that this EF quantity right here 

is the Fermi energy. This is what we call as Fermi energy. Now, let us start looking at for 

temperatures, at temperatures greater than 0 K. What happens to this probability? Now, 

you see that some electrons which are filling up to E F. 

Now, as you raise the temperature some of these electrons will now jump to a higher 

state leaving behind holes. So, what will happen? This curve should begin to change and 

should acquire a character something like this. A character which is like this at T greater 

than 0, 0 Kelvin. That should be the temperature and that you can clearly see from here 

itself for energy, naught T is of a finite number. T is finite number, so this is going to fall 

of exponentially like this. So, you can go ahead and plot this. 

So, that is the nature of our Fermi energy curve and then this, this should and this value 

at EF this act E equal to E f then this E minus EF will be 0, 0. So, E (( )) and since T is 

finite, so there will be E to power 0, E to power 0 is 1 and therefore, I have 1 plus 1 right 

here and this has 2. So, 1 divided by 2, so the probability is half. So, at E equal to EF this 

number should be half. So, the another definition now of, another definition of Fermi 

energy. 
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So, we can define now, define Fermi energy which probability of finding an electron is 

equal to half. So, Fermi energy is that energy where probability of finding an electron is 

half at T greater than 0 K. So, that is another way of defining Fermi energy which will be 

useful in context of semiconductors as you can almost see if you, if you have not seen it 

yourself I will point it out to you eventually. Now, let us make some approximations. 

So, make some approximations. Let us make some approximations as follows. So, I have 

continued to plot this E versus f of E as this curve right here. That is, this is E F and on 

top of that now I am introducing this curve like this. And I am going to pick few points. I 

am going to pick a point right here. We will use different pen here. Let us pick this point 

here which is EF minus 3kT, k BT and this point let us pick from the another point right 

here. This is EF plus 3 k BT. 

So, this 3 is a number pulled out of hat as a arbitrary number, but what the significance is 

I will show you, it may not be 3. If you are happy with 1, you work with 1. If you are not 

happy with 3 you may work with 5 also. Either way you will see what it meansand once 

you understand that then you can choose, free to choose whatever you like and this of 

course, is half. If that is the case then let us make a approximation. 
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For E greater than EF plus 3 k T that means for energy is beyond here. For energies 

greater than E plus 3 k BT, what happens? What happens to my f of E? f of E is 1 over 1 

plus E minus E f exponential by k BT. So, if E is greater than, if E is greater than EF that 

means E minus EF is greater than 3 k BT. So, E minus EF is greater than, greater greater 

than3 k BT then EFE minus EF by k BT is greater than 3. In other words this, what is 

exponential is greater than 3 and e cube, if I think if I can neglect if E cube, you think E 

cube is much, much greater than 1 then I can neglect this quantity. 

I can just neglect this quantity 1 in favor of E cube and that case I can simply make the 

approximation and write this as 1 over e to power E minus EF by k BT which is equal to 

e to power minus E minus E f by k BT which notice is like a Boltzmann distribution. So, 

for and what is significance of 3? 3 k B T? That you can make this approximation. If you 

think that e cube is much, much greater than 1 then take 3 k BT. If you not satisfied, if 

you satisfied by e to power 1 which is 2.7, if you are satisfied by e to power 1 as being 

much much greater than 1 then you can take this number 3… 
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Instead of 3 you can take 1 or if you do not like 3 to be toocoarse in an approximation 

and if you wanted to be 5 then if you think e to power 5 is actually 11 much much 

greater than 1 then you can think of this number as 5. The choice is yours. For most 

cases E cube is or 3 k BT is sufficient enough, but that once you understand it to what 

accuracy you want to calculate things you can make your choices. But the point what 

important point is a Fermi direct distribution for these energies E greater than E plus k 

BT, k BT has reduced to a Maxwell Boltzmann, Boltzmann types of, Maxwell 

Boltzmann distribution. 

It reduces to Maxwell Boltzmann distribution. Similarly, if I solve for 1 minus f E, I am 

interested in1 minus f E. Remember, why I am doing that? I am interested in number of 

holes, number of electrons at higher temperature, what all electrons have jumped to high 

energies. Correspondingly they have left holes here. They have left holes here. So,I am 

interested in 1 minus that blue shaded region 1 minus f E and red region I am interested 

in, red shaded region I am interested in f E, the probability of finding electron and blue 

region I am interested in 1 minus f E which is the probability of finding holes. 
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So, if I am looking at this then then what, then I am looking at for conditions where E is, 

E is less than EF minus 3 k BT or I am interested in region where e, e to power E minus 

EF by k BT is much, much, much, much less than 1, is much much less than 1. 

Therefore, by same token what we have been doing there, since we can neglect e cube in 

favor, e cube we can neglect, is much much greater than 1. Same reason where we are 

interested in this approximation where I can make this approximation. 

So, let us write 1 minus f E. If I write my 1 minus f E, then I am going to write this as e 

to power, e to power e. Since, this is much much smaller than 1. Since, this quantity 

much smaller than 1, then therefore I can drop this term, I can drop this term in favor of 

1 and this approximately, approximately; therefore, is equal to e to power E minus EF by 

k BT which is again Maxwell Boltzmann distribution. And remember this quantity is a 

negative quantities. 

All e’s are less than EF. Therefore, this quantity is a negative quantity in the bracket. So, 

this is Maxwell. If that is the case, now I can figure out what the population density is. 

Now, you see that now we have understand that if you are from Fermi energy, 

whatevertheFermi energy is, if you, as long as you do not ask the question very close to 

it, then the distribution is Maxwell Boltzmann type of distribution. So, now let us look at 

this from following point of view. So, let us look at like this. So, what is…? Let us go 

back to our original question now. How many electrons in conduction band? 
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So, I am going to write this as population density. I am interested now in population 

density, population density of electrons in conduction band, of holes in valence band. So, 

that density, so now remember, now this n if you wish I can write it as number 

ofelectrons in e to E plus d E rangein conduction band is going to be equal to f of E g 

of…It is only going to be this quantity, because this is the number of states multiplied by 

number ofelectrons and number of probability of finding electron in this state. So, with 

that multiplication I should have number of electrons actually there. 

So and therefore, number of electrons in conduction band which we define as n is simply 

equal to integration of this, from where? From E c which is the bottom of conduction 

band to E c top, top of the conduction band, if we integrate through and through, f of E g 

c E d E. Of course, you can raise the objection that you kept saying that g c, I am not, g c 

is not valid near E c top because at that point density of state should become 0. But yet 

our expression, in our expression which we are using, going to use is going to increase. 

Anyway, that is true. 

That objection may be true, but at this stage since I am not writing what the expression 

of g c is, if we have written correct expression of g c at least this expression is correct. 

Then we will see that if we use that definition of that expression of g c, which we have 

derived then of course, we have to answer the question that I have just raised. But to, up 



to this stage we are okay. Similarly, we can write number of holes in E and E plus d E in 

valence band as equal to 1 minus f of Eg v of valence band d E. 

This is the density of holes in valence bond, band and multiplied by the probability of 

finding a hole on that side. Then I have number of holes in a valence band in this energy 

land. So, number of of holes, I remember all these aresince g c is (( )) material volume 

per centimeter cube, per meter cube whatever it is. Therefore, then quantity which we 

will derive is per unit volume. Number of electrons per unit volume, therefore number of 

holes in valence band now will be equal to p which should be equal to 1 minus f of Eg v 

E d E and now we were integrated from from E v bottom to valence band edge up to 

valence band edge. 

So, that is what the integration, this integration would be equal to. So, that is what we 

need to do to evaluate these quantities and we can now get what we are interested in n n 

p. In order to do so let us first do it graphically. So, we are going to do this integration 

first graphically and show youwhat this density n n p will be and what its behavior will 

be. That will take little time. We do, we are running out of time today. So, I will start that 

in next lecture, but just give you idea that what we are going to do is first we are going to 

plot this Fermi function, we may plot this Fermi function, we have to plot this g c 

function and then we will plot multiplication of the two. 

Similarly, we will plot this 1 minus FE function, we are going to plot this g v function 

and then we will plot multiplication of the two. And the area under the multiply, 

multiplied curve then would give you the population which we are looking for. So, that is 

the graphical integration we going to perform and I am going to make this picture in the 

next lecture and show it to you. Once, (( )) have seen that and after that we will start 

deriving our expression in a analytical form.  

Thank you. 

 


