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Transport Phenomena in Furnaces: Heat Transfer and Refractory Design

We will take applications of heat flow equations to lining design, some of the applications I

have already done in my earlier lecture. 
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Now, today what I have thought I will try to illustrate the use of the equation in different units

also, so that your conversion with the units of various variables. So, I will give of the say

conversion values of the units say for example, 1 B t u that is one British thermal unit that is

equal to 1.055 kilo joule, 1 B t u per hour that is equal to 0.293 watts, then 1 B t u upon hour

feet square that is equal to 3.154 watt per meter square. Then 1 B t u per hour feet that is

equal to 0.9613 watt per meter, then 1 B t u per hour feet degree Fahrenheit that is equal to

1.7307 watt per meter degree Celsius that is unit of thermal conductivity. Then 1 B t u per

hour  feet  square degree Fahrenheit  that  is  equal  to  5.6782 watt  per  meter  square degree

Celsius that is unit for heat transfer coefficient.
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Now, with this let us take another problem. Consider the design of a single wall refractory

tube  furnace  which  is  operating  at  temperature  T  i,  while  placed  in  environment  at

temperature T 0. Now, you have to calculate critical insulating lining thickness, at which heat

loss is minimum. Now, this problem I have given with the view that we always perceive that

as you add more and more refractory lining, there will be a lower and lower heat loss that is

what the perception of the lining of the furnace heat. It appears that it is not, so that you go on

adding the refractory lining the heat loss will continuously decrease.

Now, let  us see,  what  are  the factors that are responsible.  So,  in fact  the problem under

consideration can be represented for example, this is the tube furnace and this is the lining

and this is the interline and this is the another view. So, we have let us consider this diameter

as r 2, this diameter as r 1, this temperature as T i and this is same here as r 1, this is r 2 and

this is the refractory lining, this is the refractory lining. And, if we wish to represent, say this

temperature is  T 0,  this  is  the environment  temperature not the temperature of insulating

environment interface.

So,  if  you wish to  draw, so  called  thermal  gradient.  Then,  from here  we have,  say  this

temperature say this temperature let us say this is T 2, this here T 0 this temperature is T 2,

this temperature is T 1 and here we have the so called, this one is and this. So, this is the h i

and here is the h 0, they are the respective heat transfer coefficient. So, here the temperature



is given of the environment temperatures T 0, so let us see how we get this concept of critical

insulating thickness.
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Now, for this geometry, now say radial flow through the furnace wall we already found say Q

that is equal to 2 pi L T i minus T 0. Now, where this L, this is the L is the length of the

furnace upon 1 upon h i into r 1 plus 1 upon k l n r 2 upon r 1 plus 1 upon h 0 r 2 that is what

we have already derive this equation. And, now if you look at this equation r 2 it will present

the distance from the center of the furnace to the insulating lining. So, as r 2 increases, then

the value of 1 upon h 0 into r 2 it decreases. That is,  this 1 upon h 0 r 2 is the thermal

resistance. So, as r 2 increases the thermal resistance occurred by the heat transfer coefficient

from lining to the surrounding decreases, but at the same time the thermal resistance offered

by the refractory lining it increases.

So,  you  see  if  one  parameter  increases  another  parameter  decrease,  so  there  has  to  be

somewhere  and  minimum value  of  clue,  so  how we  will  go  find  out.  So,  you  have  to

differentiate the, this heat loss with the outer radius d r 2 and we said the differential equation

to be equal to 0 and from there, that this you can do yourself, this is not a very difficult. And,

here we get r 2 c that is equal to k upon h 0. So, this relation represents that well there is a

critical layer thickness above which the heat loss will increases rather than it decreases. So,

prevailing concept that increase the lining thickness and you will decrease the heat loss, that

is not true. There is critical insulating thickness which depends upon the thermal conductivity



of  material  and  heat  transfer  coefficient  from  the  outer  surface  of  the  furnace  to  the

surrounding.

Now for example, if we take k is equal to 0.06 watt meter Kelvin and h we take 6 watt per

meter square Kelvin, then we get r 2 c that is equal to 0.01 meter. So, what does it mean?

That beyond the critical layer thickness of 0.01 meter that is, if we increase the insulating

thickness layer beyond 0.01, the heat transfer or the heat flow or the heat loss will increase

rather than it decrease. So, for example if you plot, say if you can plot here say heat losses,

we take ratio r 2 upon r 1. So, when r 2 is equal to r 1, then the heat losses will be very high,

so as we increase the value of r 2 upon r 1, then what will happen? The heat loss will decrease

and at some critical value beyond it further increases, so this value is the so called r 2 c upon

r 1.

Now, this  value it  depends upon the thermal conductivity of material  k 1, now if  I have

another material which has a thermal conductivity higher than k 1, then naturally this curve is

going to have this  particular  way, where k 2 is  greater  than k 1.  So,  this  is  a very very

important concept in the refractory lining design particularly for tube furnaces, that beyond

the  particular  thickness  the  heat  losses  in  fact  they  increase.  Also,  if  you  couple  this

information with the thermal conductivity of the material, now you can also have a idea of

selection of material with reference to heat losses.

Say for example, they if you have the different material of different thermal conductivities,

this  is the one way. Then you select the material  of lower conductivity or if  you have a

material of one thermal conductivity, then you can optimize with the increase layer thickness.

So,  what  is  important  here is  the  concept  of  critical  insulating thickness  and the  role  of

thermal conductivity of the material that is if you want to decrease the heat losses beyond r 2,

then you have to change the value of thermal conductivity, that is what this equation says.
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Now, let us take another example say consider the design of a cylindrical laboratory electric

resistance furnace that you must have done in your courses. Because heating of the material

in laboratory, we always use the tube furnaces; they are design in laboratory by winding a

Chantal wire on experiment tube. So, length of furnace is 0.6 meter. The outer diameter of

ceramic tube is 0.06 meter, because you wound or you wind the heating element on the outer

diameter of the tube. The insulation is fireclay brick inside and asbestos magnesia outside.

Maximum temperature of heating coil is 1200 degree Celsius at 750 watts, at steady state.

Now, it is also given that asbestos magnesia can sustain a maximum temperature equal to 850

degree Celsius. You have to find out or determine the thickness of two insulating layers, when

the total insulation thickness is minimum. Now, that is very important that is you have to find

out, the thickness of both layer at which the total thickness is minimum that is where the key

of the problem lies. Also, it is given say k fireclay it is given to you 0.72 watt per meter

Kelvin, k asbestos magnesia is given 0.12 watt per meter Kelvin. Also, assume 25 percent of

total  power is  lost  and also outside wall  temperature of the furnace assume at 40 degree

Celsius. So, what you have to calculate? The total thickness at which the insulation thickness

is  minimum.  So,  what  we  have  to  do  now again,  we  have  done  already  the  composite

cylindrical shell and we can write these equation.
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For example, if I represent it, this is what required to be done. This is the tube furnace, this is

ceramic tube and this is your fireclay brick, this is the fireclay brick lining and here this is the

asbes magnesia lining. (No audio from: 18:10 to 18:19) And, say if you represent another

view here, then this is our furnace tube, this is the fireclay brick lining and this is the asbestos

brick lining. So let us take it, that this is as r 1 this is as r 2 and this one as r 3. So, similarly

we can also say this one is here r 1 this is r 1 and this is r 2 this temperature is given 40

degree Celsius and this temperature is given is at 1200 Celsius, that is the maximum heating

element temperature.

And, the length of the furnace that is given to you is 0.6 meter, r 1 is equal to, r 1 is given to

you how much? That is outer diameter that is the 0.06 upon 2 that is meter that is, so we

know this equation at T 1 minus T 0 upon q that is equal to l n r 2 upon r 1 upon 2 pi l k

fireclay plus l n r 3 upon r 2 2 pi l k asbestos, where here this temperature I am taking as T 1

and this temperature is T 0. Now, mind you here we do not need the value of heat transfer

coefficient because the temperature directly at the interface is given. So, that is why I have

not used the interface, the heat transfer coefficient.

Now, it is said that the asbestos magnesia can sustain a maximum temperature of 850 degree

Celsius. This one is the asbestos magnesia and this one is fireclay. So, when this can sustain,

this asbestos magnesia can sustain maximum of 800 degree Celsius; that means the interface

temperature between asbestos magnesia and fireclay is 800 degree Celsius. So with this we



can write down say T 1 minus T 2 upon q that is equal to l n r 2 upon r 1 2 pi l k fireclay.

Now, this temperature, the interface temperature I have represented as T 2. Now, all that I

have to substitute these values, then I will be getting so T 1 is 1200, T 2 is 850, just now we

have discussed, what is the value of Q? Q will be equal to 750 watt supply, 75 percent is used

that is the value of Q. So, we can substitute all the values, so we will be getting r 2 is equal to

0.162 meter.

And hence, thickness of fireclay that will be equal to 0.132 meter because r 2 value is from

here to here, so we have to subtract the value of r 1, so that is what you can get. Now, since

the value of r two is known to us, now we can use of this particular expression, r two is

known to us. We have to find out the value of r 3, rest everything is known, you substitute the

values of all.
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Then, you will be getting r 3 that will be equal to 0.311 meter and so thickness of asbestos

lining that will be equal to 0.149 meter, so that is the answer. Now, what is require in this

problem to think? One as the problem says that you have to find out the thickness of two

insulating layer when the total insulating thickness is minimum. Now, this particular means if

you note that the value of k asbestos, say k asbestos is very much less than value of k fireclay.

So, that means if total thickness has to be minimum, then the lining of asbestos magnesia has

to be higher, number one. Number two problem important points in this particular problem,

that the maximum temperature which asbestos magnesia lining can sustain is  850 degree



Celsius and this particular information directly tells you that the temperature at the asbestos

magnesia and fireclay interface is 850 degree Celsius. And, these are the two important things

that are data I mean hidden in this particular problem, unless you dig out it will be difficult to

solve the problem. So, that is what this idea.

Now, let  us  take  another  problem,  say  a  long  electrically  heated  cylinder  say  1  inch  in

diameter. Now, I am illustrating a problem in British units is covered with 3 inch of insulation

in  which  k  is  given  to  you  0.05  B  t  u  feet,  feet  square  hour  degree  Fahrenheit.  The

temperature  in  the  insulation  varies  from 800 degree  Fahrenheit  at  the  inside  surface  to

240degree Fahrenheit at outside surface. Now, find what is the heat loss in watt per running

feet? Now, purposely I have mixed the various units so that you bring here attention while

solving the problem and at the same time, you are conversion with the different types of

units.
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Now, I have to solve this problem is very straight forward, because here you have to use the

simple expression that is the heat flux or other heat loss Q that is equal to T 1 minus T 2 upon

l n r 2 upon r 1 divide by 2 pi l k 1 or you can also put it that is equal to 2 pi l k 1 T 1 minus T

2 upon l n r 2 upon r 1. Now, if you want to represent very simple, say this is the furnace and

here we have the insulation, this is the insulation. Now, this is given as 1 inch diameter and

this is given 3 inch insulation thickness or if you wish to represent somewhere here, then this



the furnace tube and this is the insulation. So, this diameter is 1 inch and from this thickness

or from center line this is 3.5 inches.

So, you have given this temperature is T 1 and this temperature is T 2 and this length is L. So,

I have written this expression, all that you have to substitute and the heat loss will be equal to

90.36 B t u per hour which is that will be equal to 26.43 watt per running feet, B t u per hour

per running feet. So, that is how you can solve this particular problem.
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Now, as an extension of this problem part b, I would like you to calculate say make the

calculations and plot insulation temperature verses distance from cylinder axis. So, what is

require is that let suppose, this is 1 inch and this is the (( )) 3 inch as given, this is 1 inch. So,

what is required, you have to plot, you have to I mean calculate the temperature at various

distances in the lining and then you have to plot. For example, if we take this is 1 inch, this is

3 inch, we have to use the formula you know this that q that is equal to T 1 minus T i into 2 pi

k upon l n r i upon r 1. So, what I represent. I am representing this is as r i and this is as r 1,

so that is what I am representing over here. And, this is as your T 1 and sorry this is as T 1

and we have to calculate T I, we have to calculate T i as a function of the distance of the

cylinder axis.

So, what we will do? We will simply we know the value of q of course, this is per meter, so

we have calculated q 90.36 that is equal to 800 minus T i into 2 pi k upon l n r i upon r 1. So,

I will substitute the various values for example, I take r i and I calculate T i and then the



insulation thickness. Because insulation thickness you have to subtract the diameter of the

tube, so r i if I take say 1.5 inch, take here 2.5 inch and 3 inch. So, T i become 484 degree

Fahrenheit, 337 degree Fahrenheit and 285 degree Fahrenheit. Insulation thickness will be 1

inch, here it will  be 2 inch,  here it  will be 2.5 inch and at r i  is equal to 3.5, insulation

thickness is 3 inch, what will be the temperature? This is that 240 degree Fahrenheit that is

given, so this temperature is given as 240 degree Fahrenheit.

So, now, all that you have to plot well, you should plot on a graph paper. So, if you plot here,

say let us take here temperature and here we will take the, so called value of r i. Then, at r i is

equal  to  0.5,  the  value  of  T is  800  that  is,  here  the  value  is  given  to  you  800  degree

Fahrenheit. So, at value 0.5 this is 800 degree Fahrenheit, so that somewhere here is 3.5, so at

3.5 I have value of 240. Then, I can plot and it appears to me somewhere a slightly known

linear nature is (( )) to be there. So, that is what you can also plot and see all the values are

varying. Another let me illustrate now the important, the role of air gap as I have told in my

lecture that I have illustrate it for a problem.
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So, let us see, say in laying refractory bricks in a furnace, it is observed that two courses of

firebricks k that is equal to 1.5 B t u feet square into hour into degree Fahrenheit are poorly

joined. So, that a 2 millimeter air gap is created, because when you make a wall then the you

lay one brick after other and the next brick and next brick, that is what the furnace wall is. So,

in laying the two bricks sometimes because of the roughness or whatever mistake you have



done, a space between two brick is left and that has a width of 2 millimeter. So, that a 2

millimeter wide air  gap is  created.  The brick temperature in the vicinity of joint is  1000

degree Fahrenheit. Now, estimate the additional brick thickness in inches to which thermal

resistance of the joint is equivalent.

Now, you are laying two bricks and in between there is an air gap. So, what that air gap can

do? Because of the very poor thermal conductivity of air gap, the temperature is drastically

fall between the brick, so as a next brick, if we cannot sustain the sudden temperature fall

then this brick collapse. So, that is what the importance of air gap. And, the air gap which is

left over for example, in this particular problem 2 millimeter, how much amount of thermal

resistance it is equivalent to; that we can calculate now. It is given; k air is given 0.018 B t u

feet upon feet  square hour and degree Fahrenheit.  Now, you can calculate this  particular

problem by two ways, either you take the thermal resistances of air gap, thermal resistance of

the brick and calculate the thickness or you can also calculate the heat flow through an air

gap and heat flow through the refractory.
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So, either of the ways is o k. so, let us take it now, let us take the thermal resistance of air that

will be equal to delta x upon k into A. That is what the definition of thermal resistance, delta

x that of the air. Now, the thermal resistance of brick that is equivalent, that will be equal to

delta x brick upon k brick into k, that this is k of air. So, this delta x b is an equivalent thermal

resistance, so therefore, you can have delta x air upon k A into A, that is equal to delta x b



upon k b into A. So, from here we can calculate say, then we can calculate delta x b A A gets

cancel, that will be equal to k b upon k A into delta x air.

 Now, delta x air that is equal to 2 millimeter, we have to convert into inches. k b and k A they

are all given, so we can find out delta x b that is equal to 3.8 into 10 to the power minus 3

feet, that is equal to 0.046 inch, that is equal to 1.16 millimeter. So, an air gas of 2 millimeter

thickness  is  corresponds  to  an  additional  resist,  an  additional  brick  of  1.16  millimeter

thickness. So, that is what the importance of, now.
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Last problem I will  like to say or I will  like to illustrate,  say consider the design of the

following lining. Now, this is a composite wall construction, the composite wall. So, we have

this is the refractory wall, this is another refractory wall. Say, this refractory wall consists of

fireclay  and this  one  is  insulating  brick.  Now, this  has  thickness  nine  inch  and this  has

thickness four and half  inch.  Now, here k average is given to you 0.8 B t u feet degree

Fahrenheit and the k average is given here 0.1 B t u feet degree Fahrenheit. What I, this is

composite wall construction and a composite wall made of two types of refractory brick, one

is fireclay which is nine inch thick and another is insulating brick which is four and half inch

thick.

Now, the temperature of the fireclay brick facing the combustion chamber of the furnace, that

is the temperature of combustion chamber and fireclay interface, that is here is given to you

2050 degree Fahrenheit. With this it means you do not require heat transfer coefficient value,



because this is the temperature at the combustion wall,  at the combustion chamber and a

fireclay interface. 

Now similarly, at the insulating brick and environment interface, the temperature is given that

is here 350 degree Fahrenheit. We do not require any heat transfer coefficient value, so this is

the problem. And, now what you have to calculate? Say calculate heat flow through the wall,

of course, in units B t u per feet square hour. Naturally, you have to assume here 1 feet square

you have to calculate, so you can do this problem and the answer of this problem will be 362

B t u feet square hour and this is the answer of this particular problem, this is a. Calculate

temperature at joint of firebrick and insulation, so the answer for this question, for this part

will be T 1 or t that will be equal to 1664 degree Fahrenheit.
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 Temperature 2 inch back from hot surface of the firebrick, so this will be, answer will be

1975 degree Fahrenheit, that is the answer, temperature at mid-point of the insulation, so this

temperature will be 985 degree Fahrenheit, so this is the answer. So, with this illustration, I

have sufficiently illustrated the use of heat flow equation for design of the furnace lining now.

By now you must have gotten a feel the important role of heat transfer. What you have learn

so far is that how to optimize the lining thickness and integrate it with the available material

of different conductivity. The heat losses in the furnace lining design can be minimized either

by increasing the value of thickness or decreasing the value of k.



 Now, which one, whether you will decrease the heat loss by lining increasing, by increasing

the lining thickness or by decreasing the value of k, it will depend upon the availability of the

material and the cost consideration. Because if you want to have a material of low thermal

conductivity, it has to be produced, it is porous and it may be slightly expensive. You have a

material  of  high  thermal  conductivity;  well  those  materials  should  be  used  where  the

temperature requirement is also important.

So, what I mean to say here that there are several factors which must be optimize in order to

come a particular refractory lining design. And, on the top of it, it is also important that the

phases which are in contact with the refractory material is also an important issue.
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So, this  is  what  I  was able to illustrate.  Now, the next  topic  that  I  would like to go on,

convection.  Now,  another  mechanism  of  heat  transfer  is  convection,  as  already  I  have

mention  in  my introduction  that  convection  is  essentially  fluid  flow. In  heat  transfer  by

convection, fluid flow is important; depending on the type of flow heat will be transfer faster

or at lower rate.

So, the faster movement of fluid, the faster transfer of energy, so, the convection is associated

with fluid motion. In fact when a packet of fluid of fire velocity transfer, it goes to the lower

velocity than the heat transfer will again occur by the conduction. So, in fact the mechanism,

if we talk of the mechanism of heat transfer, then even in convection on a molecular level it is



again the heat is being transfer by conduction; in fact the role of convection is in the fluid

flow.

So,  the  convection  is  associated  with  fluid  motion,  so accordingly, which  have  we have

natural convection which is also called free convection. Natural convection, now here the

fluid  movement  is  due  to  temperature  difference.  Now, for  a  furnace  design,  a  natural

convection is important from the heat loss, from the wall of the furnace to the surrounding,

higher is the temperature of the wall, higher will be the heat loss. Then, there the heat loss,

the dominant mechanism on the heat loss from the wall of the furnace to the surrounding is

by natural convection. Another is say called force convection. Now, as name suggests we are

forcing the fluid to move, we are applying some type of force. Naturally, the fluid flow will

be faster and as the fluid flow is faster or the velocity is faster there will be faster mechanism

of heat transfer.

So, for example, blowers, pumps, fan all they rather induce the fluid to move and as if and as

a result of which the transfer of heat occurs. Now, say one of the important thing in case of

convective heat transfer or in the application of the conductive heat transfer is to know the

temperature. Because if we know the temperature, we can determine the heat loss and so on.

Now, there are say several, there are few ways in determining this temperature, one of the

way is to do the differential energy balance and couple it with the Navier stokes equation.

This is the most fundamental approach, but this approach will require the numerical solution

of the coupled equation, because you have to couple the fluid flow equation that is the Navier

stokes equation with the energy equation. Then, you can find out the temperature and from

the temperature you can find out the so called the heat losses or whatever you can want, you

can do whatever you like to do it.

Another  approach is  based upon the heat  transfer  coefficient.  Now, for most  engineering

calculation  involving  convection,  the  concept  of  heat  transfer  coefficient  is  very  often

employed in order to determine the heat losses. In several cases for example, the heat transfer

from P O C or products of combustion to the charge, there you may not require detailed

knowledge  of  convection.  But  all  that  you  require  how  much  amount  of  heat  is  being

transferred. Similarly, a body of the gas is flowing over the liquid or flowing of the surface,

we may not, we do not require or we may not be requiring a detail knowledge of convection

mechanism so on. But what we are requiring is simply by how much amount of heat is being



transferred.  So, for all  these purposes,  the approach of  heat  transfer  coefficient  has  been

found to be very very useful.

Now, as such in the detail study of convection as applied to furnace design, we will be taking

the approach of utilizing heat transfer coefficient to estimate the heat losses. Now, here there

must be exercise that heat transfer coefficient is an empirically determine constant. Mind you

it is not a constant like density, like thermal conductivity, like it is not a property of the fluid.

It  is  an empirically determine constant  which depends upon so many factors geometrical

arrangement  of  the  surfaces,  cooling  behavior,  temperature  difference,  all  these  are  the

important factors which govern, the so called heat transfer coefficient. The further application

of the heat transfer coefficient we will take in the next lecture.


