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Lecture - 23 

So, we start with the new lecture. And what we will do is that, we will first review the 

last lecture, because this lecture is nothing but continuation of the previous lecture. So, 

now, where did we start? We started with the analytical treatment of frequency 

dependence of various polarization mechanisms. So, if we go to previous lectures. Now, 

previous lectures, what did we discussed was, if we go back a few slides what we had 

was, we started treating this. 
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So, we started with this case of a electronic and ionic polarization, where we treated this 

charged dipole as a linearly oscillating mechanical dipole or linear mechanical oscillating 

oscillator. Now here, whether you have atom sitting here or a group or a, so in case of 

electronic system, so suppose this is the picture. 

Now, this is the centre of let us say positive charge, this is the centre of negative charge, 

and the centre of positive and negative can be treated as a positive, negative and dipole. 

So, this is at an atomic scale. Now, you can have at lattice’s scale, where you have a 

system like sodium chloride. So, you have a lattice like this, and here you have let us say 



sodium atom, here you have chlorine. So, positive, negative and this also makes a dipole. 

So, you can treat these two systems like a mechanical oscillating system. 
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And here, if you write you can write an equation of motion for both of these systems, 

where the force which is due to applied field is equal to various forces which are then 

generated as intern. Now, this applied field is a c in nature. So, you have an acceleration 

term, followed by, you have a friction term which would be true for any system if 

damping is present. And then you have a string constant related system, where which is 

called as spring restoring force. Now, this is because we have considered the dipole like 

a spring. 



(Refer Slide Time: 02:43) 

 

So, and when you do analysis when you, when you put in the value of E is equal to E 

naught exponential i omega t, which is a alternating electric field. So, correspondingly 

the displacement for this field should be x is equal to x naught exponential i omega t. 

And when you make the displacement, when you make the, when you replace the value 

of E in this expression, you get an expression for x. 
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And the expression for x is, so, you calculate various things d x by d t d 2 x by d t square 

etcetera.  
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And the expression for x has frequency dependence as you can see what we did from this 

x was to calculate the dipole moment and this dipole moment could be nothing but 

product of charge multiplied by the distance. And this gives you, this can give you 

polarizability which could be pertaining to electronic or ionic mechanisms, because that 

is dipole moment is equal to alpha into E. 
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And from this, we work out what is polarizability? And here, we see that polarizability 

has frequency dependence, very clear frequency dependence, and it is also complex in 

nature. 
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Now, given the fact that this is complex in nature your dielectric constant is going to be 

constant complex in nature. 
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As a result, we can explain, and also polarization, and susceptibility all of them are going 

to be complex in nature. 
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And if you define this susceptibility as epsilon r star minus 1, given that is a complex 

quantity, you can work out the static part of the dielectric constant as 1 plus N q i square 

divided by M i star epsilon naught and this frequency dependent term, and in the 

dielectric constant versus frequency plot. These two peaks which occur at high 

frequencies at, let us say 10 to the power 15 Hertz 10 to the power 13 Hertz. 

These are the regions where resonance occurs which means the oscillation of dipole is in 

completely, is in resonance with the applied field. So, both of these things match with 

each other, and that is where loss becomes maximum, and this can be very nicely seen in 

the plot. 
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So, this epsilon star can be broken down again into epsilon prime, and epsilon double 

prime. And when you plot them versus frequency, you see a resonance term, resonance 

at an omega naught which is the characteristic frequency related to either ionic or 

electronic. And this omega naught is going to be higher for electronic than for ionic and 

you see a loss term the maxima in the loss lattice characteristic frequency, and this is true 

for both the mechanism. So, this was the analysis based on a c field. 

(Refer Slide Time: 05:34) 

 

And from this then we worked out. 
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And from this, you can also get the same term that you obtained in case of simple 

analysis, that we did earlier in our work out the polarizability. 
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And that if you do by treating omega as root k by m. 
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You can make it look equal to get the same expression 4 pi epsilon naught r naught cube. 

So, basically what we did has been correct so far, because you can make both of these, 

because you can make this a c equation converge into the simple equation that we got 

earlier. 
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So, then in the last lecture, we started doing dipolar polarization, which is about the 

materials having permanent dipole moment. So, what happens in such a situation is you 

have a dipole like this. And this dipole, let us say has a dipole moment in this direction, 

and this is let us say position 1. And when you apply field, let say in this direction field is 

in this direction. And this rotates itself in the direction of applied field, and this is now its 

new position. So, this is position this is 2. So, in order to move from position 1 to 

position 2 and then back to some other position, which is the equivalent position? This 

requires this, this phenomenon is called as you know relaxation, and it is not just short 

range movement just like in case of electronic ionic dipoles. It is like hopping from 1 

equilibrium position another equilibrium position. 

So, as a result the energy versus time plot can be plotted in terms of various potential 

energy wells, where electron, where the molecule groups of molecules or molecule 

changes its position from 1 to 2 to let us say 3 and so on and so forth. And each time, 

when it does it, let us say from going from 1 to 2, it has to overcome an energy barrier. 

And this is the activation energy which is required for migration. So, this is like the 

diffusion process in nature, and this process called as relaxation molecule relaxes into 

new statistically equivalent position. 
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So, and since, this is diffusion in nature, the masses of entities involved is much more 

higher, the frequency at which this process happens is significantly lower as compared to 

the characteristic frequency for ionic or electronic polarizations. 

(Refer Slide Time: 08:14) 

 

And this happens to be in the range of Mega Hertz or so. And as a result the way 

polarization develops is. So, when you plot the polarization as function of time, you have 

an instantaneous development of polarization component which is nothing but sum of 

ionic electronic. Because you know that electronic ionic mechanisms are extremely fast. 



So, that is why this term becomes more or less instantaneous, followed by slow 

development of polarization to a value which is saturation polarization and that is the 

polarization when all the dipoles aligned themselves to the direction of applied field. 

Because when you apply a field, now field is time dependent. Not all the dipoles respond 

to the frequency of applied field at the same time. That is why dipoles take their own 

time to align in the direction of applied field, as a result there is a time dependence of 

dipolar polarization until it saturates into P s. 
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So, now, this rate of change of polarization can be expressed mathematically. So, you get 

an expression for rate of change of polarization d P by d t is equal to 1 over tau P s minus 

P d t. Now, this is the expression which I have given you without any derivation at this 

point of time, but in order we can derive this, that is what we did last time. 
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So, for that you choose a model which is called as a bi-stable model. So, what you do is 

that you consider this hopping model from site 1 to site 2. Let us say between 2 sides 

hopping is taking place. And this is characterised by this energy barrier. Let us say E or 

E a whatever, you call it. And so, what we have is, the dipole goes from position 1 to 

position 2 upon a application of electric field. 
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And so, what happens is, when you consider this model, when let us say there is no 

electric field, and if you have this potential well it can hop in this direction, it can hop in 

this direction. So, there is a finite probability of hopping in both the directions. 
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And this hopping probability or jump probability can be written as a exponential minus E 

a by k t following Maxwell and Boltzmann statistics. And when field is 0 then of course, 

the net probability of jump in either direction is equal to 0 as a result, you do not get any 

polarization and thermal effects dominate. 
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Now, when the field is large enough, then potential energy will tilts on one side, let us 

say. So, depending upon the direction of applied field. So, what happens is that the 

energy barrier on one side becomes smaller and the energy barrier on another side 

becomes larger. So, for anything to jump from this side to that side, it has to now 

overcome a larger energy barrier. And for energy anything to hop from this side to that 

side it has to overcome a small energy barrier. 

Now, this energy now, this change in the potential energy well configuration results in 

what we call as change in the jump probability as a result you have net accumulation or 

depletion of charge at one particular site. 
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So, you have a change in the charge. So you can write the changed probabilities as F 1 2 

can be written as F into 1 minus mu E by k T. And second can be and 2 1 can be written 

as F into 1 plus mu E by k T. So, you can see that, now this was, if you just wondering 

why it is like this, then what has happened is. So, this is nothing but the probability 

factor multiplied by another factor 1 minus mu E by k T depending upon the application 

of electric field. And this mu is nothing but the energy. And this and you can get the 

same. Now, this you can relate to, if you remember what we did in case of derivation of 

ionic conductivity. In ionic conductivity also, we took a model like this hopping model, 

and there also we have worked out the polarizabilities probabilities of jump. 

So, if you wondering where these expression come from, just go back to that module the, 

which is module number 3, and look how we worked out the probabilities of jump upon 

the application of electric field in both the directions. And how we arrive at these 

expressions? So, as a result, you have change in the number of dipoles at site 1, and these 

since because of probabilities are unequal. 



(Refer Slide Time: 12:58) 

 

If that is true then delta N 1 dot can be defined as outflow to site 2 plus inflow to site 1. 

So, outflow to site 2 can be given as minus, because you are losing charge at site 1. And 

what is coming into site 1 is inflow from site 2 to site 1. So, that adds as a result you 

have d N 1 by d t as minus N 1 F 1 2 plus N 2 F 2 1. And we know that N 1 plus N 2 is 

constant which is equal to capital N. And from this, you can also write d N 1 by d t plus 

d N 2 by d t net change is equal to 0. 
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And then we proceeded on further. 
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To work out what half of d N 1 minus N 2 by d t was and then... 
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Finally, we derived; we put it into a expression for polarization. Now, polarization can be 

written as P t polarization is a function of time is equal to N 1 minus N 2 which is the 

change in the number of charge or charge density, at that multiplied by the dipole 

moment. And then so N 1 minus N 2 becomes equal to p by mu, p is nothing but time 

dependent polarizations. So, you can write it either p of p d t or p t. 
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So, this expression that we wrote earlier, if you make that replacement, it becomes 1 over 

2 mu d p by d t to be equal to minus F divided by mu, p plus E N mu E by k T. Now, so 

now, if you make proper replace, if you make proper rearrangement here, what you get is 

1 over 2 f into d p by d t plus p. If you take this on the left hand side, this term on the left 

hand side is equal to N mu square E by k T. And this, you know what it is? This is 

nothing but your dipolar polarizability, and 1 over 2 F is defined as, because F is 

probability in second minus 1 E. This is tau which is the relaxation time. 
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So, tau d p d by d t plus p d by plus p d t is N alpha d E, so, this expression N into E. So, 

you know N mu square E by k T becomes N alpha d E. So, you can relate what is mu 

here, mu is alpha is mu square by k T. And this is nothing but your saturation 

polarization when all the dipoles are aligned in the direction of applied field. And so, you 

get an expression tau d p d by d t plus p d t is equal to p s. And this is what we proposed 

earlier that p d t was d p d t by d p t rate of change of polarization was equal to 1 over tau 

into p s minus p d t. So, we get back to same relaxation equation that we proposed 

earlier. 
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Again this explains what we did earlier. 
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And the sum of now, p instantaneous can be taken as sum of p i plus p e. And that can be 

defined as p infinity. And when, and this would be in the high frequency range typically 

higher than 10 to power 11 Hertz. And the susceptibility corresponding to this would be 

chi infinity is equal to epsilon r infinity minus 1 divided is equal to p infinity divided by 

epsilon naught E which is simple I mean because you know that chi is nothing but ratio 

of polarization to the displacement due to applied field in vacuum also. 
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So, between the low, at the low frequencies, you can write similar equation as epsilon r s 

minus 1 which is the chi is equal to p infinity plus p s divided by epsilon naught E. So, 

epsilon r s becomes 1 plus p infinity plus p s divided by epsilon naught E. And then 

epsilon r s minus 1 becomes equal to p s plus epsilon r infinity minus 1 epsilon naught E 

divided by epsilon naught E. 
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So, you can jumble this around and then what you get is p s is equal to epsilon r s minus 

epsilon r infinity. So, where epsilon r s is the low frequency static dielectric constant 

which corresponds to ionic and electronic. Yes so, this is your low frequency dielectric 

constant a static dielectric constant which combines dipolar ionic and electronic minus 

the epsilon r infinity which is the high frequency contribution which is due only, due to 

ionic and electronic. So, the difference of these two will correspond to the dipolar 

component that makes sense. 
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So, when you make the substitution of p s into the expression of in the relaxation 

equation. What you get is tau d p d by d t plus p d is equal to p s as we know is equal to 

epsilon r s minus epsilon r infinity epsilon naught E. Now, what we do is that we make a 

substitution for electric field that is E is equal to E star E naught exponential i omega t. 

And since, field is a complex quantity; you would notice that many of these things have 

got these stars as a superscript. And this is star is nothing but a symbol of complex nature 

of the quantity. 

So, when you make this substitution then let us assume now, solution of this equation is 

pretty complex. So, we assume that the solution of this equation was p d star was equal 

to epsilon naught epsilon r star E star plus epsilon r s exponential of minus eta t. So, 

there is another term this that comes into picture. And then we took what is d p d star by 

d t, to now when the solution, if the solution is like this. Then what we want to do is that 

if you want to calculate d p d by d t and we put the p d. And then we want to relate then 

we want to substitute back and calculate some quantities. 
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So, d p d star by d t will become epsilon naught epsilon i star d by d t of exponential E 

naught exponential i omega t plus epsilon r s d by d t of exponential minus eta t. And 

then you do this further what do you come, what you come after, what you come about is 

epsilon naught epsilon r is star i omega E star minus eta epsilon r s exponential of minus 

eta t. 
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And so finally, when you when you make the substitutions, what you come about is tau 

multiplied by epsilon naught epsilon r star i omega E star minus eta epsilon r s 

exponential of minus eta t. 

This is one term multiplied by tau, and this another term epsilon naught epsilon r star E 

star plus epsilon r exponential of minus eta t is equal to epsilon r s minus epsilon r 

infinity into epsilon naught E star. So, you got some real terms, some imaginary terms, 

and what now, we will do is that we will now differentiate this equation. So, what we 

will do is that we will just go back here; you must be wondering what eta was. So, here 

eta is some coefficient which is to be determined by the solution. 

So, we do not worry about it at the moment. Now, this is where we ended. Now, we have 

to what we have to do is that we have to separate the real and imaginary parts from this 

equation. So, you can see what the real and imaginary part in this equation is; this is the 

real part; this is the real part, and this is imaginary; this is imaginary and this is 

imaginary. So, whatever is underlined is imaginary, whatever is rounded is real. 
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So, when we separate these parts. So, what you get is minus of tau epsilon r s eta 

exponential minus eta t plus epsilon r s exponential minus eta t is equal to epsilon r s 

minus epsilon r infinity multiplied by epsilon naught E star minus of tau epsilon naught 

epsilon r star i omega E star minus of epsilon naught epsilon r star E star. And then again 



make the substitute then again make some of the jumble up this equation again. So, what 

you get is minus of tau epsilon r s eta plus epsilon r s exponential of minus eta t is equal 

to epsilon r s minus epsilon i infinity multiplied by epsilon naught E star, and minus of 

tau epsilon naught epsilon r star i omega E star minus again of epsilon naught epsilon r 

star E star. So, this is now we need to make now, we need to now, we are coming close 

to the solution so which means, if you want to solve this then the both sides. 
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So, this is new lecture. So, we are starting today. So, both sides of previous equation 

should be should equal to some constant. And what would that constant be looking at the 

equation. If you look at these equations the only constant, if they are equal to a constant, 

the only constant can be equal to 0 and that is nothing but 0. So, if we do that now. So, 

first take left hand side of the equation, if you go back to left hand side of the equation 

which is minus tau epsilon r eta plus epsilon r s minus tau of epsilon r s eta plus epsilon r 

s multiplied by exponential of minus eta t is equal to 0. 

Now, this naturally gives you, and from this you can work out what is eta is equal to 1 

over tau or rather. 



(Refer Slide Time: 24:52) 

 

Just to make it simpler, you can write it as, so this epsilon r of course, so minus of tau eta 

plus 1 is equal to 0. So, this side and eta becomes equal to 1 over tau. So, this is the first. 

So, you get an. Now, you get a hang of eta, what eta is? Eta is nothing but it corresponds 

to 1 over relaxation time. So, the units of eta would be in second minus 1, it is something 

like frequency or characteristic frequency. 
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And from now, use right hand side. So, using right hand side, if you look at the right 

hand side of the equation, which was epsilon r s is minus epsilon r infinity multiplied by 

epsilon naught E star minus of this and minus of that. 

So, when we take this now. So, this becomes equal to epsilon r s minus into epsilon 

naught E star minus of tau epsilon naught epsilon r star into i omega E star. And then 

minus of epsilon naught r star. This is equal to again 0. Now, what is p d star? Now, what 

is epsilon naught epsilon r? This is nothing but imaginary side of p d star. So, this is so, 

we can use the imaginary side, in the imaginary side, because this is imaginary. So, we 

can make this as epsilon r s minus epsilon r infinity multiplied by epsilon naught E star 

to be equal to i omega tau. So, this and this and this will make p star plus 1 multiplied by 

p d star or you can change it as or p d star. In that case will become epsilon r s minus 

epsilon r infinity multiplied by epsilon naught E star divided by 1 plus i tau. So, you 

must be wondering how, why did we write this? This we are able to write, because this 

side that we have taken is the imaginary side? And if you only take the imaginary side 

then the imaginary component of p d star is epsilon naught epsilon r star E star. 

So, we can write this p d star as epsilon naught epsilon r star E star so perfectly logical in 

that sense. 
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Now, we combine real and imaginary parts. And what we get is get an overall expression 

of P d star. And this overall expression of P d star now becomes epsilon r s. So, if you go 

to previous equation. So, the expression was P d star was epsilon naught epsilon r star E 

star. So, this is the imaginary part; this is the real part epsilon r s exponential of minus 

eta t. So, now, we are making substitutions for each of these things, and writing in 

overall equations. So this is the imaginary. So, we have worked out what imaginary 

component would be, and what the real component would be. 

So, we put them together what we get is epsilon r s into exponential of minus of t by tau. 

This term is time dependant decay term, plus another term which is the A C which 

represents the A C behaviour which is epsilon r s minus epsilon r infinity multiplied by 1 

plus i omega tau into E star. And this represents your A C behaviour. So, you got these 

two terms, just to take it further. So, now what we can do is that, we can we can also 

separate the time dependant. And time independent part from the dipolar polarization 

that is the electronic and ionic polarization parts. So, how we do that? 
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So, this epsilon r star minus epsilon r infinity will be equal to P d star minus of epsilon 

naught E star. Now since we know, that, so this is the difference, just to separate out the 

time dependent independent part. So, this is the total dielectric constant complex minus 

the static dielectric constant at high frequencies that will be sum of your dipolar 



contribution complex divided by E epsilon naught epsilon naught E star and p d star. We 

know is this the complex part of p d star. So, what we can write is. 
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So, then now we can write a epsilon r star minus of epsilon r infinity to be equal to 

epsilon r s minus of epsilon r infinity divided by 1 plus i omega tau or omega tau. Now, 

we this is the complex from of dielectric constant. So, we know that epsilon r star is can 

be written as epsilon r prime minus of i epsilon r double prime, if that is true then since 

this can be written like that. So, we can break this up. So, if this can be written in this 

form then we can break this epsilon r star into epsilon r prime epsilon r double prime. 
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So, epsilon r star is equal to as we know is epsilon r infinity plus 1 plus i omega tau i 

multiply, and divided by 1 minus i omega tau. And this becomes 1 plus omega square tau 

square as i square is equal to minus 1. So, I take the real and imaginary parts out divided 

by 1 plus omega square tau square, and then minus of i omega tau into epsilon r s minus 

epsilon r divided by 1 plus omega square tau square. 

So, now it is easy to separate out, we know that epsilon r star is equal to epsilon r prime 

minus epsilon r double prime. So, we can write this as. 
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So, epsilon r prime would be equal to epsilon r infinity. So, this is the static high 

frequency part plus epsilon r s minus epsilon r infinity divided by 1 over omega square 

tau square. And this is your contribution which is coming from the dipolar part. And this 

is the net dielectric constant, and epsilon r double prime would be epsilon r s minus 

epsilon r infinity multiplied by omega tau divided by 1 over omega tau square omega 

square tau square. 

So this, these are very fundamental equations which show dipolar contribution very 

explicitly, and these are called as your Debye equations. These are fundamental 

equations and for dielectric materials showing dipolar behaviour. And from this you can 

also determine, what is loss tangent? So, loss tangent can be written as tan delta, and 

what is that as you know that is nothing but epsilon r double prime divided by epsilon r 

prime. And this will be, you just have to make a division here. And this would be equal 

to epsilon r s minus epsilon r infinity multiplied into omega tau divided by epsilon r s 

prime minus of epsilon r infinity plus of epsilon r infinity into omega square tau square. 

So, you just have to work this way out. This is your loss tangent. Now, if you want to 

plot these this is the. 
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It is interesting to plot these equations. So, let us say, so if you plot just the dielectric 

constant first versus frequency. So, this goes as something like this behaviour, and this 

frequency corresponds to 1 over tau. And so, naturally this part would be epsilon r s, and 



this part would be epsilon r infinity. If you plot the correspondingly epsilon r double 

prime plot; this plot goes as with the maxima at a frequency 1 over tau. And if you plot 

tan delta correspondingly, its peak is a little bit shifted towards higher frequencies. And 

this is your, and this corresponds to epsilon r s divided by epsilon r infinity to the power 

half divided by tau. 

So, this is these are the; so, you can see that, this curve looks very different from the 

curve that we looked for ionic and electronic polarizations. You do not have a resonance 

term rather you have a relaxation phenomena here. The dielectric constant falling from a 

static value r s slowly around a value slowly to epsilon r infinity and these phenomena 

happens at low frequencies correspondingly, at a frequency 1 over tau, you have a 

maximum in epsilon r double prime. And correspondingly you can also have a maximum 

in tan delta which is slightly shifted to higher frequencies as a result of the expression 

that you get. 

Now, these equations are extremely important equations from the point of view of 

fundamental understanding or dipolar polarization or polarization mechanisms. And you 

should go through this analysis a little bit more carefully to understand what is 

happening. So, as you can see. So, if you now draw the so, you have 3 pictures; you have 

dielectric; you have polarization which is composed of electronic component of 

polarization, ionic component of polarization, and dipolar component of polarization. 

And all these three have different behaviour on one hand where P i, and P E are 

extremely fast make almost instantaneous polarization. And they happen at very high 

frequencies. So, as a result they become almost instantaneous in contrast p d is at time 

dependant phenomena which happen slowly. So, development of saturation polarization 

is relatively slow as compared to these two. So, as a result the, you have this behaviour. 
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Which goes as, so it develops into P s a little bit slowly from P i to P s, it takes bit of 

time. And as a result of this, you have when you plot dielectric constant. It goes like this 

through a frequency 1 over tau, and or if you plot omega versus tau, if you plot 

frequency is 1 over tau, but if you plot omega tau then it becomes equal to 1. 

So, depending upon which book do you follow it depend in some books, they use on x 

axis omega tau. And in some books they use omega. So, when you have omega then this 

inflection point is at 1 over tau, when you use omega tau the inflection point would be at 

1. So, this time dependent behaviour is a characteristic of dipolar materials which have 

which again happens, because of i mean ability of dipole to move instantaneously with 

the applied field. 

Since the mass of the entities involved here is much higher, so, and what it means is that 

at omega is equal to tau the charges are coupled together with the applied field. And 

absorb maximum energy. So, as a result the losses are maximum at tau is equal to 1 over 

tau omega is equal to 1 over tau. And this phenomenon, since it is a time dependent 

phenomena, but it is also a temperature dependent phenomena. 
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This tau has a relation tau naught exponential minus Q a by k T. And this is kind of 

Arrhenius relationship which means this the there will be a shift in tau as you change the 

temperature. And this has a dependence on the activation energy. 

So, when you plot for instance the tan delta versus tan delta versus frequency then the 

shift the maxima that you observe, this maxima shifts to higher frequencies as you 

increase the temperature. So, this is increasing the temperature, and this you would 

expect, because as the temperature increases you provide thermal energy to the system. 

And when you provide thermal energy to the system, the relaxation time should go down 

which means this maxima, if tau goes down this frequency omega. Let us say omega 

max will shift towards the right which means relaxation will occur much faster, and as a 

result this peak in tan delta will or loss will shift towards higher frequencies. 

So, this explains the Arrhenius or diffusion behaviour of the relaxation time in dipolar 

materials. So, this is typical behaviour for example, for glass ceramics, if you want to go 

through some more plots, I would suggest for few plots on. 



(Refer Slide Time: 42:39) 

 

I would suggest you go to the book of Hench and west principles of electronic ceramics. 

And this gives a very nice explanation of the temperature dependence of relaxation time. 

So, now as you have seen that the peak in the maxima shifts towards right on the 

frequency plot as the temperature is increased. 
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You can also plot this f max log of f max versus, and as you can see that this would be as 

the temperature is as the temperature is. So, this is your low temperature, high 

temperature side, this is your low temperature side. So, at higher at higher temperature 



you will have f max occurring at higher frequencies whereas, at lower temperature 

Maxwell occur at a lower frequencies, because the relaxation time will be larger at these 

frequencies. So, the complete picture is now rather different. 
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It looks; it looks pretty much complete now. So, the overall behaviour now is you have, 

if you now go from. So, this is omega; this is epsilon r prime. So, you have epsilon r 

coming from epsilon r s going through relaxation. Then it goes to resonance another 

resonance, so, this will be your dipolar component. This would be 1 over tau, and 

relaxation frequency. This is your omega naught i; this is your omega naught e. So, here 

you have, in this you have ionic polarization here, you have electronic, and this is your 1 

or n square; 1 just 1 as if no dielectric was present, and correspondingly if you plot the 

loss all of these go through a maxima. So, this is 1 over tau omega naught i omega 

naught e omega, and this is epsilon r double prime. 

So, you can see now the presence of various features in this dielectric constant versus 

frequency plot, and the loss versus or the imaginary part of dielectric constant, which 

represents the loss versus frequency. The thing to remember is in for an ionic, and 

electronic mechanism the. These are resonance dependent mechanisms as a result the 

resonant frequency is on higher sides greater than 10 to the power 11 Hertz in most 

cases. And for ionic polarization since, it is a for a dipolar polarization since, it is a time 

dependent phenomena the, it is a relaxation kind of phenomena. And the relaxation 



frequency happens at much more smaller frequency, because it takes bit of time to for 

dipoles to relax, because they are heavier than just 2 ions and or an atom. 

So, this sort of completes very important part of this module, where we took, where we 

looked into the frequency dependence on the dielectric constant considering ionic 

electronic and dipolar mechanisms. If you want to read about interface mechanisms, it is 

a little bit more complex in beyond the scope of this course. But if you want to read, you 

can again follow the book of Hench and west and where. 
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So, which is given in some detail? So, otherwise we have completed the important 

segments of this phenomenon. In the next class, what we will do is that we will look at 

some of some other methods which are used to characterize the dielectric materials by 

using the same dielectric data. And can be used much more effectively to represent the 

behaviour of dielectrics much more easily. And finally, we will look at some other 

breakdown mechanisms or dielectric materials in the same module.  

Thank you. 


