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So, we are into now new lecture, what we will do is that first we will review the last 

lecture and then we will go through the new concepts. 
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So, in the last lecture we started our analytical solution to the polarizability of dielectric 

materials and in this, first we took what was, first we took electronic polarization and 

there we looked at the effect of electric field on the electron cloud around the nucleus 

and shifting of centres of charges, which gives rise to and then which gives rise to, what 

is called as, electronic polarization. 
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And then how do you work out the polarizability? You calculate the forces due to 

electronic field and the opposing force which would be Coulombic force and equate 

these two forces to find out what is the equilibrium separation or what is the equilibrium 

distance. And this gives rise to the dipole moment and from that we can find out what is 

electronic polarizability. 
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And the conclusion that we do from this exercise was as for larger the atom is, larger the 

polarizability is. So, larger atoms can be polarized more than small atoms can be. 

(Refer Slide Time: 01:40) 

 

And this is also seen as a difference in anions and cations because anions, typically, tend 

to have larger radius as compared to cations. So, for example, you see in case of fluorine, 

chlorine, bromine iodine, as the size of the ion is going, going to increase, the alpha 

value, which is the polarizability value also increases. And similarly for cations, as the, 

as we go from lithium to sodium to potassium, the value of polarizability also increases. 



However, if you compare these, so these are your anions and these are your cations, so if 

we compare and that too, these are alkali cations, so if we compare these alkali cations 

with these halogens you can, you can see, that polarizability in case of cations is much 

more smaller and this is again due to, typically due to size of the smaller, size of the 

cations. 
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Now, the next thing that we discussed was ionic polarizability. Now, this, this arises 

from what we learnt earlier was ionic polarization. So, we know what ionic polarization 

is, we just took a case of sodium chloride and when the field is 0, then all the atoms are 

sitting in, their all the ions are sitting in their equilibrium positions. As a result, whatever 

dipole moment components are there, they cancel each other because the symmetry of 

the lattice and hence, the net dipole moment is equal to 0. 
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When you applied field, then there is a relative displacement of ions with respect to each 

other. So, for instance, in this schematic diagram, the anions, the cations are all shifted 

towards right, which means, they are closer to their right anion in anion neighbour as 

compared to their left anion neighbour. 

So, as a result, the distance between one side, distance between cation-anion on the one 

side is different as compared to the distance on the other side. And this results in net 

finite, net magnetic, net dipole moment. Excuse me, it is not magnetic, it is just dipole, 

electric dipole moment and this is finite and this happens when you apply electric field. 
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So, again we, we, we, applied, we, we did the force balance, so the force, which is due to 

electric field is q E. 
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And then the restoring forces k d, which is the, if you consider these bond between the 

ions as a spring, so based on that we find, found out what is the separate, what is the, 

what is the displacement d and this displacement d is given as q E divided by Y d naught. 
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And from this you can work out what the dipole moment is and then and this gives you 

ionic polarizability alpha ionic, which is q square divided by Y d naught. So, what this 

expression tells you is, that larger this Y and Y is Young’s modulus, larger the Young’s 

modulus is, smaller the polarizability is. Similarly, larger the d naught is, smaller the 

polarizability is, which means, bigger unit cell where separation between the ions is 

much larger. There will be far less polarization and the more important thing is Y and 

this Y is Young’s modulus, which is and Young’s modulus higher or lower Young’s 

modulus is because of fundamental reasons such as bond strength. 

So, higher the bond strength is, higher the modulus is and less the polarizability is. So, 

what it means is, that the materials, which have higher modulus or high stiffness, higher 

bond strength or higher melting point materials, they tend to have lower polarizability as 

compared to the ones with lower modulus. And this is true for, of course, the ionic 

systems where you have a group of cations and anions and mostly in case of symmetric 

lattices. 
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So, when you look at some of the examples, the examples are, we can calculate, we can 

work out the values of directly constant for variety of materials. So, what I have taken 

here is a group of cadmium, zinc based materials and cadmium based materials. So, zinc 

oxide, zinc sulphide, zinc solenoid. So, as you as you go from zinc oxide to solenoid, the 

bonus strength, increases, decreases. As a result, the modulus in the melting point 

decrease, as a result the polarizability increases and as a result, diode electric constant 

increases. And same is true about cadmium sulphide and cadmium solenoid. 

So, these two parts have given you some idea about the electronic and ionic polarization. 

So, what we are now going to take up is, we are not going to, now we are going to take 

up is what it called as dipolar polarization, the third part of the polarization. 
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So, this is, let me just see, which lecture was last one. So, last one was 18th, so this 

would be 19th lecture. So, here what we will start is dipolar polarizability. Now, dipolar 

polarizability happens when there are dipoles, which are present and they are present 

independent of each other, which means, material has a permanent dipole moment. So, 

for instance, I can give you example of let us say, so this is hydrogen, hydrogen, oxygen, 

so this is naturally water molecule. So, you have a component. 

So, you have basically two components and these two components will have a net dipole 

moment going in from this direction; this is positive, this is positive, this is negative. So, 

you have a component, this direction component, that direction vertical components 

cancel each other. So, as a result, you have a finite mu net for this molecule. 

Now, each of these molecules, what it means is, that has a dipole moment. So, what we 

say, permanent dipole moment and these materials are called as polar materials. So, for 

instance, a water molecule has a permanent dipole moment and as a result, it will have, it 

will be called as polar material. On the on the other hand, if you take example like 

methane, methane is CH 4, so here in this case, all the dipole moments, dipole moment 

components cancel each other, that means, mu net is equal to 0. So, a symmetric 

molecule like methane will not have a dipole moment, but asymmetric molecule like 

water will have a dipole moment and that is why, materials having permanent dipole 

moment are called as polar materials and materials, which do not have a permanent 



dipole moment, they are called as non-, they are called as non-polar materials. So, this is 

just a definition, which you must remember. 
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Now, what happens is, that in water, in case of water, for example, so you have many of 

these water molecules, now in case of water molecules each molecule’s orientation is 

independent of each other because of high thermal energy at room temperature. So, this 

thermal energy prevents any kind of alignments. So, what you have here is, basically, 

what we have is random aligned molecules due to kT. So, so at a finite temperature T all 

these molecules have sufficient energy to randomize their orientation with respect to the 

each other. 

So, when you have such a situation, so so given the fact, that each of these molecules 

will have mu, now since these, now what this will look like is, all the mu-s are in various 

different directions, so what the picture looks like is as if you have mu-s present in all the 

directions. If you have mu-s present in all the directions, then mu net for such a system 

will be equal to 0 and this happens when temperature is finite. Typically, room 

temperature and electric field is equal to 0. So, in the absence of any electric field and at 

a finite enough temperature, all these water molecules are randomly located with respect 

to each other and because of this randomisation assisted by the thermal energy, that is 

present leads to a picture in which all the dipole moments are randomly distributed. As a 

result, mu net is equal to 0. 



So, so despite having permanent dipole moment a molecule like water does not give rise 

to any, any dipole moment, any appreciable dipole moment in the absence of electric 

field. When you apply electric field, then what happens? When you apply electric field, 

then the picture changes and what happens is, that schematically, all these molecules, 

which are present, they tend to align with the direction of, in the direction of applied 

field. So, the picture changes a little bit. 
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Now, the picture changes in such a manner, so I am not going to draw the molecule. So, 

let us say the previous picture was like this, so each molecule is represented by each of 

these, each of these arrows. So, this is the green, so green one is when E is equal to 0. 

Now, what I do is, that I apply electric field, let us say, electric field applied in, applied 

in this direction. So, what happens is, that this mu, so this application of electric field 

tends to rotate these dipole moments in that direction. Now, this rotation depends upon 

the strength of the field. Typically, it is not complete, but it is sufficient enough to give 

rise to, what is called as, a permanent finite dipole moment. 

So, for instance, if the direction of field is this, will become like this, anyway. So, this 

will tend to become like that, this will tend to become like that. So, all of them will tend 

to orient themselves slightly along the applied field. So, if this has happened, which 

means, there is a natural, there is a, there is a net tendency of dipoles to align in the 

direction of applied field. As a result, what happens is, that this mu net is not equal to 0 



and which means, which means, this gives rise to a finite dipole moment and then this 

gives rise to polarization and this results in large enough epsilon r. 

Now, what you will see in many books is, many books show complete alignment in the 

direction, applied field, that is not necessarily true. Because if all the water molecules 

were completely aligned, the direction, applied field, the dipole moment or the dielectric 

constant, that you would observe will be huge. But what we see practically is epsilon r of 

the order of 80, which is large, but it is not huge. So, what it, what it basically suggests, 

that there is alignment, but that is not complete alignment in the direction of applied 

field. So, but whatever is given in the books is schematic diagram, it is just for the sake 

of illustrations, so do not take it literally as if all the molecules are going to align in the 

direction of applied field. 

So, this essentially highlights, that orientation of all the dipoles is just a bit shifted 

towards the direction of applied field leading to, basically, an average non-zero dipole 

moment in the direction of applied field. 

So, now thermodynamically speaking, what, what, what we need to do if such a situation 

is stable, then it must have a minimum free energy and for what you need, for to 

calculate free energy. To calculate the free energy you need something called as internal 

energy and then you need something called as entropy. 
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So, because you know, that for any for any stable system delta G must be negative and 

what is G meant, where delta G is nothing but your Gibbs free energy and G is composed 

of two terms, H minus T S, where H is enthalpy, which is a built up of a component of 

internal energy. So, H represents internal energy and S is entropy. So, these two factors 

have to be taken into account in order to calculate what is delta G. So, we must know 

what is delta S and we must know what is delta H. 

So, for this, now as we, as we are saying, that all the dipoles are not completely aligned, 

some of them are aligned, some of them are slightly at certain angle, which means, we 

have a scenario. So, what we have is, basically we start with the picture like this, 

schematic. So, you take a charged dipole like this, apply an electric field E, which 

means, you will have, you have a mu and this angle, let us say, is theta. So, if this angle 

is, so this is a general picture. 

So, theta will vary from minus, minus 90 to plus 90 because all these dipoles will be, so 

you can have. So, you can have dipoles going from, since you have dipoles going from, 

all the way from, so you have dipoles going all the way from, let us say, this is theta, so 

theta goes from plus 90 degree to minus 90 degree or plus pi 2 to minus pi by 2 or minus 

pi by 2 to plus pi by 2. But since you have net, slight tendency of dipoles to align in the 

direction of applied field, as a result, you have a net number of dipoles, which are finitely 

aligned, which are order, net number of dipoles aligning with the applied field giving rise 

to a net dipole moment and that we will calculate in while . So, this is the picture. 

So, a schematic diagram is, you have a, you have a charged dipole, which is aligned at an 

angle theta with respect to the applied field with the dipole moment vector as mu. 
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So, the internal energy, let us say, so the internal energy is, let us say, U and this U is 

nothing but U depends upon the orientation of this charged dipole with respect to the 

applied field. So, U is nothing but a function of this theta and this U can be written as, U 

can be written as minus of mu dot E or mu E cos theta. So, you can see, naturally when 

theta is equal to 0 what it means is, that complete alignment and this means, U is equal to 

minus mu E, which means, minimum energy and when you have theta is equal to 180 

degree, then you have complete misalignment or both are out of phase and then U 

becomes plus mu E. So, you understand the sign of, the significance of this sign minus. 

This sign minus represents basically the, the reduction in the energy of the, internal 

energy of the dipole when it aligns completely with the applied electric field. 

So, so U, mu U will vary from minus plus mu E to minus mu E as it goes from theta is 

equal to 180 degrees to 0 degrees. So, it depends how you take it. You can take minus pi 

by 2 to plus pi by 2 or you can take from, in the, in this case we are, we are, we are 

measuring, so let me just make a, make a correction there because I told you, so we are 

measuring theta from here. So, what basically it means is, that let me just make a 

correction here, this would mean 0 to 180. So, as a, so theta is increasing in this 

direction. So, closer to, so if this is E, then closer to E is equal to 0 and further away 

from E will be 180. So, it means the same, but just for the sake of clarity let us take 0 to 

180 instead of minus pi by 2 to plus pi by 2. 
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So, now, we can work out what internal energy is. So, this U theta, as we know, is equal 

to minus of mu E cos theta and we can take the mode of these in a, just to take the scaled 

values of these. So, what, what it means is, that you have, since you have many more 

thetas available, what you will have is, this is the applied field, right, and then you have 

one dipole like that at theta, another dipole like that at theta, and you might have several 

dipoles. 

So, if you have, so you can have, you can have, this is the applied field and around the 

applied field you will have all these dipoles making an angle theta. So, what this makes 

is a kind of cone around. So, all the dipoles, which are oriented at an angle theta with 

respect to applied field E, will make a cone, which is, which has an apex angle of theta or 

apex angle of 2 theta. Similarly, you will have some other dipole moments. So, this is, let 

us say, theta 1. You will have some other dipole, which are making an angle theta 2. So, 

they will make another, this will be theta 2. You might have something in this direction 

as well, so theta 3. 

So, what basically I am coming to is, now in order to calculate the net dipole moment 

along E you will have to integrate this overall energy with respect to theta in order to 

find out total dipole moment. But before we do that we need to find out, what is the net 

number of dipoles, which are aligned in the direction of E, then only we would be able to 

find what is the net dipole moment?  
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So, in order to do that we need to first calculate, so first, so we need two quantities, one 

is number of dipoles and then we need the dipole moment component and then we need 

to multiply these two in order to get a complete picture. So, now, in order to get, first of 

all minimise the free energy. We said we need entropy; we need internal energy. We 

know what internal energy is, but we do not know what entropy is and to calculate the 

entropy of the system is mathematically not very easy. 

So, what, what gives us respite is what is called as Boltzmann approximation. So, what 

we are saying is, using the Boltzmann approximation, Boltzmann approximation gives us 

a number N, let us say, N number of dipoles having energy U of dipoles making angle 

theta, and that is given by, as, that is proportional to exponential of minus U by kTs, that 

simplifies our life. So, basically if you have scenario like this, so this is E and this is the 

dipole moment mu, this is angle, angle theta for this cone. What I am saying is, that 

using Boltzmann statistics I can calculate number of dipoles at angle theta having energy 

U theta, this can be given as N U theta is equal to exponential of minus of U theta 

divided by or proportional to exponential divided by k B T. So, this makes sense, this is 

nothing but Boltzmann statistics. 
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So, what N U theta would be, or you can say this just as N and this N theta would be 

equal to A constant exponential minus of U theta divided by k B T, where kT is nothing 

but Boltzmann constant and you can find the value of this constant in any book. So, now 

what we can do is that we can calculate the component to dipole moment parallel to the 

applied field. 

(Refer Slide Time: 26:02) 

 

The component of, so so what we can, we can, we can remake this picture now as, so so 

this is the direction of applied field, so I will just turn it 90 degrees on the counter 



clockwise. So, this is your, this is E, this is one cone, we, we might have another cone 

and these allowing on the, so so this basically looks like as if it is a sphere; hang on. 
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So, what, basically we draw it as a sphere. Let us say, this is the direction of applied field 

E. So, the first cone, let us say, is this; another cone can be this, alright. And so what we 

are interested in basically, so let us say this angle is theta and this angle is d theta. So, 

this is the picture, that, so this is the spherical representation of dipoles. 

So, what, so what we want to basically calculate is the dipole moment, so parallel to 

applied field. For that we need, first we need the solid angle d omega, which is, so this is 

the segment; so this is the segment. Let us say d A prime or dA, just dA, let us say, so so 

first we need the quantity and this dA will subtend a solid angle on this part. So, solid 

angle d omega and within the segment theta to d theta. So, solid angles subtended by dA 

within the segment theta to theta plus d theta. So, this is up to theta and then you have d 

theta, sorry, you have a segment of, so what we are interested in number of dipoles lying 

between this segment theta to d theta. 

So, what is this number of dipole, number of dipoles? So, number of dipoles between 

theta and theta plus d theta will be equal to, you have N U theta, which we calculated 

using Boltzmann statistics at any given theta multiplied by d omega and d omega is the 

solid angle. 



(Refer Slide Time: 29:18) 

 

And the total dipole moment, the total dipole moment will be nothing but sum of all 

components of mu E, excuse me, mu, mu, all components of mu along E, basically sigma 

mu. So, this mu E, which is in the direction of applied field, will be equal to number of, 

number of dipoles within that segment multiplied by what is... So, if you go by, if we go 

back to previous picture, if, let us say each of these has value mu, then this will be mu 

cos theta, right. 

So, now what we need to do is that we need, so this is within, for that segment now we 

need to, now what we can see is, that we can vary the theta from 0 to 180 degree. And if 

we vary the theta from 0 to 180 degree, if you want to calculate for all the dipoles, which 

are in this region, then we need to integrate it from 0 to 180 degrees or 180 degrees to 0. 

So, what we need to do is that. 
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So, the total, so the total, the total dipole moment would be from 0 to pi N U theta mu 

cos theta. So, this would be 2 into, because we are taking on the both sides, so 2 into N U 

theta mu cos theta into d omega and number of number of dipoles would be 0 to pi N, 

sorry, we do not need to take 2, because this 2 is already included in the number of 

dipoles because we are taking all the dipoles, which are forming that cone. So, this is N 

U theta into d omega. 

So, if I now, so this is mu total, so if I divide mu total by number of dipoles, which is N, 

this gives me mu total divided by N, gives me average dipole moment. 
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So, this mu average is 0 to pi N U theta into mu cos theta d omega divided by 0 to pi N U 

theta into d omega. Now, we need find out what is d omega? d omega is solid angle and 

by definition, solid angle for this unit area dA would be equal to dA divided by r square. 

And as you can see, so in this sphere, you have sphere, so you basically are interested in 

this strip of thickness d theta and this is the radius of sphere. So, if this is, so basically 

this is theta. If this is r, then the area of this strip, which is this shaded strip, so if you, 

this could be equal to r sine theta into, so this would be basically r sine theta into 2 pi r d 

theta divided by r square. So, r r will cancel each other, what you will have is 2 pi sine 

theta d theta. 

So, basically what I am going do is that you have a, you are just taking a segment of the 

sphere. So, if you just open it up, this will open up like this, so this will be the segment. 

Now, this distance is r r sine theta. So, what you will have is, so if this is r sine theta, you 

have a circle of radius r sine theta. So, the length would be 2 pi r sine theta. So, this 

would be equal to 2 pi r sine theta, whereas this would be r d theta. So, if you multiply 

these two together what you get is r sine... I should have taken 2 pi r sine theta into r d 

theta. So, I will modify this for the sake of clarity, this would be 2 pi r sine theta into r d 

theta divided by r square. So, these cancel each other, so what you have is 2 pi sine theta 

d theta. 



(Refer Slide Time: 35:49) 

 

So, now, you have got a magnitude of d omega. So, if you now put the value of d omega 

what you get is, so mu, average mu is equal to mu coming out of it, this 0 to pi sine theta 

cos theta, you just have to replace d omega into exponential of mu E cos theta by kT or k 

B T into d theta divided by 0 to pi sine theta exponential of mu E cos theta divided by k 

B T d theta. 

So, we have, we have, we have 0 down to this expression for average dipole moment, 

which is due to all these dipole moments, which are, which are at some angle theta 

around the applied electric field, and since they have a natural tendency to incline in the 

direction of applied field, so there are always some, so there is net finite dipole moment 

and this is average. So, we what we have done is, we have calculated total finite dipole 

moment divided by the number of dipoles and this gives rise to average thing. 

Now, in order to solve this equation we take this mu E, mu E divided by k T is equal to 

what is beta, so suppose, and cos theta as equal to x. 
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So, when you substitute in this equation, so supposing mu E by k T is equal to beta and 

cos theta is equal to x and if you substitute in the previous equation, you get the 

expression for average mu, which is mu. So, if you, if you change cos, if you change cos 

theta from 0 to pi theta, from 0 to pi, then naturally x will vary from plus 1 to minus 1. 

Because because if, if theta was equal to 0 degree, cos theta will be equal to 1, theta 

would be equal to pi cos theta or x is equal to cos theta, would be equal to minus 1. 

So, plus 1 to minus 1 x exponential of beta x d x divided by plus 1 to minus 1 

exponential of beta x d x and this is called as, and this whole thing, which is there in this 

body, this is called as L beta or Langevin function. So, this mu becomes, average mu 

becomes equal to mu L beta. So, now this gives rise to, what is called as, a finite value of 

average mu. 
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So, this Langevin function L beta is defined as, cot of hyperbolic beta minus 1 by beta. 

So, we are not going into theory of Langevin function, but basically this function is, you 

know, cot of hyperbolic x, which is nothing but cos of hyperbolic x divided by sine of 

hyperbolic x, so which you can represent in exponential functions of x. So, we are not 

going into details of this, but the values of L x vary between, so this L beta will vary 

between 0 to 1. 

So, when you plot this L versus beta, so if this is L, this is 0, then it varies something 

like, like that and this slope at lower values of beta, which is, which gives rise to, what is 

called as, a asymptotic value, this is 1 by 3. This L beta will give rise to, what you can 

say, is nothing but it will in the end signifies what is the dipole moment. 

So, and what is beta? Beta is nothing but mu E by kT. So, what it tells you is the effect of 

temperature, right. So, higher values, higher values of beta would mean lower 

temperatures. And lower values of beta, on the contrary, would mean higher 

temperatures. So, this gives rise to as an effect of temperature. 
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So, for large values of beta what this would imply? This would imply large field, as you 

can see, that mu E by kT. So, larger the E is larger than beta is or low temperature and 

what that would basically mean is, that larger the temperature is, lower the, sorry, larger 

the field is, lower the temperature is. This situation would tend to align all the dipoles in 

the direction of applied field because lower temperature would mean lower thermal 

vibrations, as a result, lower thermal randomisation. 

So, tendency to align in the direction of applied field will increase and if you have large 

enough field to apply, to align all the dipoles, that would mean, all the dipoles would 

align. So, intuitively, if that means, that is true, then L beta will become equal to 1. So, 

average mu in such a case situation would be equal to mu. So, which means what? It 

means is, that, that all the dipoles are aligned. So, averaged dipole moment for each 

dipole would be equal to mu. So, that is fantastic. So, this is theoretically correct and for 

small values of beta. But this situation is something, which is not practically feasible. So, 

L beta is not 1, is equal to 1, is not practically achievable because large enough field, we 

are talking about very high fields, and low temperature means, temperature closer to 0 k, 

so so practically un-feasible. 
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So, on the contrary, small values of beta, which means, beta is smaller than 1, what that 

would mean is normal field. So, normal magnitude of field that we have encountered in 

devices and moderate temperatures, moderate or high temperatures closer to room 

temperature, etcetera and so for beta closer to 0 this slope becomes, as I said, is equal to 

1 by 3. And as a result, this L beta for a smaller (( )) values is given as 1 by 3 beta and 

this is what we use for the calculation of average mu. 

And this is generally true, because in practical situations for normal fields and moderate 

temperatures, beta tends to be much smaller than 1, much more closer to 0. As a result, 

this L beta is equal to be 1 by 3 beta, is a, is a, is a, is a correct kind of an approximation. 
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So, if you now substitute this what you get is average mu becomes equal to mu E by kT 

1 by 3. This is the beta into mu, so what it gives you is, that mu square E divided by 3 k 

B T; let us include k B. So, what is alpha from here? So, alpha d, which is dipolar, is 

nothing but this because mu is equal to alpha E. So, alpha becomes mu square divided by 

3 k B T. So, this is a fantastic expression because now for the first time you see that the 

polarizability of a material is dependent on temperature. In the previous cases we did not 

see that. So, electronic and ionic polarizabilities were independent of temperature. 

But what we see here is the, as the temperature increases the polarizability goes down 

and which is true because as temperature increases, the randomisation would increase 

and material would. So, the, so the net polarization would tend to go down and so basic 

question holds pretty well for large enough temperatures or moderate temperatures and 

moderate nominal, nominal values of, sorry, what did I do, I rubbed it, nominal values of 

field, this alpha. So, this is the expression for dipolar polarizability. 

So, so what essentially now we have established is, we have established a mechanism to 

look at the polarizability of polar materials, which give rise to fundamental phenomena, 

very important phenomena, called as dipolar polarization. And the polarizability, this we 

have worked out, is worked out at a condition when fields are nominal and temperature 

reasonably high. When the temperatures are very close to 0 Kelvin or the fields are very 

high, so that all the dipoles can be aligned. In that case, the average dipole moment will 



be equal to nothing but dipole moment of each of the dipole or theoretical dipole 

moment. So, so basically this establishes this. 

So far we have established mathematical or sought of analytical treatment of three 

polarizabilities. We looked at electronic polarizability, which is dependent upon the size 

of the atom and which is present for all the materials because all the materials will have 

atoms. Then you have ionic polarizability; ionic polarizability is true for ionic solids, 

symmetric ionic solids. And then of course, symmetric, non-symmetric both, as long as 

you have ions of different case types. 

And then of course, you have dipolar polarizability, which is there for dipole, which is 

there for materials, which have dipole moment and these dipole moments tend to be 

randomly distributed with respect to each other in the absence of, in the, in the, and in 

the absence of applied field. But when you applied, apply a finite amount of field, these 

dipole moments tends to align in the direction of applied field and this gives rise to, what 

is called as, a finite magnetic dipole moment. I keep on saying magnetic, it is electric 

dipole moment. 

And then we looked at the formalism, we said, that if all the dipoles, if the dipoles in 

various places of the crystal, making different angles. So, let us say this angle was theta. 

So, you will have cones of different angles, different thetas with respect to applied field. 

And then what you are interested in calculating the number of dipoles at any angle theta 

and the energy, with having energy U theta, which is coming from Maxwell Boltzmann 

statistics and then we integrate these in order to find out the total number of dipoles. You 

need to integrate from 0 to pi and in order to find out the total dipole moment, you need 

to multiply the component of dipole moment parallel to an electric field multiplied by the 

total number of dipole. So, when you take the ratio of these two, what gives rise to the 

average dipole moment? 

And then we looked into Langevin function and looked at how it gives rise to, what we 

have arrived to, the expression of alpha d, which is the dipoles polarizability, which is a 

very important expression because it, for the first time we have encountered the 

temperature dependence. So, this is a very important outcome, which whose 

repercussions will be much more clear as we go on discussing more about polar 

materials. 



So, we will, we will finish here today. In the next class what we will take is the... So, far 

we have, we have not looked in the effect of frequency in quantitative way, so we will, 

we will look at the effect of frequency or alternating electric field on the behaviour of 

dielectrics. So, which is very important from the point of view of applications and there 

we come, again come in contact with some the fundamental quantities. And we will see 

that at this dielectric constant, which we are saying epsilon r at the moment, it will have a 

real part, it will have an imaginary part. And then we will also learn about quantities 

such as loss factor, etcetera. So, we will finish here, in the next class we will take up 

these topics.  

Thank you. 


