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So, good morning everybody. So far we have discussed different types of crystal structure of 

different materials and how their binding with each other, their geometric formation by 

arranging the atoms and all this we have discussed. Now we will try to shift the next part of 

this course that is called interstitial sites.  
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We have observed that in case of simple cubic or body centred cubic or face centred cubic 

maximum part of that unit cell is occupied by the atoms, but there exist few holes (we de) 

that is corresponding to the with the coordination of different atoms and that positions is 

generally called the interstitial sites of the atoms. Now, the interstitial sites can be defined 

based on the coordination (of) respect to the surrounding atoms. 

For example, if we start with the, from the very simple interstitial site for cubic structure. If 

we see the cubic structure the 8 cornered atoms exist within the cube itself. Now the cornered 

atoms are attached along the edge. So at the body centred that space (())(2:02) and we will 

theoretically try to find out what is the specific size of a sphere that can be exactly fit in the 

body of the simple cubic structure. 

But in this case it is necessary to know that the ratio of the size where we are representing the 

size equivalent to the sphere and the radius of the atom. Based on this ratio there are 



formation of the different type of crystal structure and specifically we can found out in case 

of compound material. For example, in case of cubic structure the (maxi) the radius ratio that 

is we can say that small r by capital R. The small r represents the exactly, exactly size of the 

sphere means the size of the site and capital R is the size of the atom. 

That ratio if we calculate then it becomes point 732 in case of cubic structure. The derivation 

for the same will be discussed the later but how this ratio can be found out. Now if we look 

into the other sites, for example tetrahedral sites, octahedral sites; in this case the tetrahedral 

sites having the coordination number 4.  

(Refer Slide Time: 04:20) 

 

So in case of octahedral site if we look, the coordination number is 6. There exists 3 atoms 

and above there is exist the another 3 atoms, so the interstitial site is having the coordination 

number 6. 

In this case the radius ratio is 0 point 414 that means the interstitial if the site of the 

interstitial site is like a sphere so the radius ratio of the sphere and the atom is point 4 1 4 

when it is exactly fitting in that space. But in case of tetrahedron when exactly (s) fitting the 

interstitial site, the radius ratio in this case is (point 22) point 225 and in case of octahedron it 

is point 414. In case of cubic site it is 0 point 732. So, depending upon the atomic 

arrangement the interstitial site we have the different coordination number like 4, 6, 8 and it 

is hardly found, the coordination number of 3 or 2. 

But, the radius ratio actually varies over a range point 225 to point 414 in case of tetrahedron, 

but in case of octahedron it is the next stage point 414 to point 732 but point 732 is exactly 



the size of the (Inters) radius ratio in case in case of cubic site. So it is important to know the 

why the radius is so varies over a range depending upon the stability and the structure itself. 

But, at the same time it is important to know the number of holes in simple cubic, BCC and 

FCC structure we will try to investigate subsequently. But if we start with the simple cubic 

structure, it is having only one cubic site where the radius ratio is point 732.  
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Now we will try to investigate the, what are the tetrahedral sites exist in BCC and FCC 

(struc) structure. Let us look into first the BCC structure. If we see the the BCC structure see 

this tetrahedral site actually makes the coordinate with 4 surrounding atoms. So this forms 

actually tetrahedral sites in BCC structure and on the face there exist 4 such tetrahedral sites 

in BCC structure so if we estimate there are 6 faces and each faces there are 4 tetrahedral 

sites so there exist 24 tetrahedral sites. 

But if we want to estimate the actual number of the tetrahedral sites that means that 

contribute to the unit cell then it becomes that looking to the sharing of the tetrahedral sites as 

(corres) in the surrounding unit cell. So here the 50 percent of the volume of the tetrahedral 

site exist within the unit cell. So total 24 into sharing is the 50 percent so then there exist total 

number of 12 sites such sites in BCC structure and position of the tetrahedral site can be seen 

that half along the X axis distance, along the Y axis which is 1 fourth distance, along the Z 

axis it is one distant. So this is the position which indicates the position of the tetrahedral sites 

in BCC structure. 

But as I told that, again the tetrahedral sites may exist in FCC structure as well, but the 

position of the tetrahedral site in FCC structure is different from the BCC structure. Here if 



we see, this tetrahedral sites marked in the red colour that actually exist full volume inside the 

unit cell, so in FCC structure there exist 8 such interstitial sites and the position of the sites is 

the 3 fourth from the X axis, 1 fourth with respect to Y axis and 3 fourth with respect to the Z 

axis. So this is the typical position of the tetrahedral sites in (BCC) FCC structure.  

Now if we observe that actually FCC number of FCC sites, here it is 8 sorry number of 

tetrahedral sites in FCC structure is 8 but we can found out the this co-relation, but this is 

simply observation that is equal to the 2 times of the total number of atoms. So we know that 

in FCC structure total number of atoms is 4 and so there exist total number of 8 such 

tetrahedral sites in case of FCC structure, okay?  
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So next slide, we will try to estimate octahedral sites in case of BCC and FCC structure. In 

octahedral sites that simply indicates the having coordination number 6. So in BCC structure 

we find out that there existence of the one octahedral site exactly at the face centre. The 

position of this octahedral site is the half from the X axis and half from the Y axis and 1unit 

from the Z axis. So sharing of such tetrahedral sites is that only the 50 percent.  

Since there exists 6 faces and sharing is the 50 percent volume within the unit cell so in such 

case total number of octahedral sites in BCC is 3, but at the same time along the meet of the 

edges there exist also another tetrahedral sites in case of BCC structure. And if we try to 

investigate what is the total number of sites here the total number of sites along the edges is 

12 but sharing volume within the unit cell is only the 25 percent (as if) that is 1fourth. So in 

this case there exist 3 number of such octahedral sites, so total number of octahedral sites in 

BCC structure is 6. 



Similarly if we try to investigate what is the number of octahedral sites in case of FCC 

structure we found that along the edges also there exist such 12 number of octahedral sites 

but volume sharing is only 1 fourth so that is total number is 3 and along at the body centred 

there exist one octahedral sites so total 4 sites exist in case of FCC structure. So observation 

here is that octahedral sites in FCC structure is equal to the number of atoms.  
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But in case, the similar investigation can be carried out in case of HCP crystal structure. if we 

look into that octahedral sites exist in HCP crystal structure and that the total number is 6 and 

all the 6 sites are existent within the volume of the unit cell. So here 6 number of octahedral 

sites in HCP crystal structure which is again equal to the number of atoms in case of HCP 

structure. So this is 1 observation and secondly in tetrahedral sites in case of HCP structure if 

we found out that there are 6 edges and along the edges is sharing is only 1 third. 

 There exists (once) long one centreline and 3 such sites exist inside the volume. But this 

number of sites with respect to the symmetric part of this things, if we divide the total volume 

in HCP structure is a symmetric with respect to the centrepoint then multiplied by 2 is 

actually represents the total number of tetrahedral sites exist in case of HCP structure. So here 

total number is 12. But typical observation here is that number of atoms in this case is the 50 

percent of the number of tetrahedral sites. That means total number of tetrahedral sites equal 

to 2 times of the number of atoms in case of HCP crystal structure.  
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Now we come to that point, the structure of the crystalline solids. So we did the regular 

investigation what is the total number of interstitial sites and what is the atomic arrangement 

of the, atomic arrangement within the unit cell different type of crystal structure; now we will 

try to find out who the crystalline solids is formed looking into the prospective of the simple 

crystal structure of different materials.  

So first step compound material is to find the structure to check the charged neutrality. So 

here will charge neutrality should be maintained. Then for example CaF2; Ca2 plus is having 

2 cations and F is having 2F minus anions. But general form of the any kind of solids can be 

represent in this type a AmXp where m and p determined by the charged neutrality based on 

the valance electrons exist and outer cell of the structure. But, how the geometric stability can 

be found out by looking into the structure of the specific crystal? If we see that first structure 

actually the interstitial (s) site try to disperse the other atoms but still we can consider is a 

stable (s) structure if the ratio between the interstitial site and ratio of the atoms maintain upto 

certain level. 

Second structure we see this is can be considered the stable structure; here the interstitial site, 

there atoms is exactly fitting in the interstitial sites. Third is the, the atoms are not exactly 

fitting the interstitial sites even it is smaller than that. So third can be considered as a unstable 

structure because that space cannot be remain vacant without fitting exactly or more than that 

of the such. So, first 2 can be considered as a stable structure.  

So that is why when you try to find out that radius ratio actually that is beating in the 

interstitial sites and the atoms in the other existence the corner points (of) of a cubic or any 



other kind of structure; this we define the radius ratio over a range. So, first point indicates 

that atoms is exactly fitting in the interstitial sites and second site indicates that it is go, the 

(ra) ratio can go out to certain extent. So this is a case of first one, instead that produces the 

stable structure according to the r by R (r) ratio.  
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 If we further investigate the structure of different crystalline solid, specifically the compound 

material if we see that how many anions can be arranged around a cation accordingly it can 

be, the stable structure and reformed. Now we try to investigate few (struct) structure of a 

compound materials, for example this zincblende so probably the ions can be Zn plus plus 

and S minus. 

 So in this case the cation and anion reformed and a smaller its size takes the interstitial 

positions and if we see that year the interstitial positions is created in such a way that the 

coordination number is falling as 4. So in this case the radius ratio between the atoms, 

positions in the interstitials part of the atoms in the other parts can follow this range, point 

225 to point 414. So this is the stable structure in case of zinc sulphide, ZnS. 

Now similarly (way) we can find out the initial structure as well if we see that interstitial 

positions are occupied and here it forms coordination number 6; that means accordingly the 

size and accordingly the radius ratio varies from point 414 to point 732. So first one indicates 

that interstitial position is exactly fitting by the atoms. If we consider the cesium chloride that 

it is actually positions there is a one interstitial site exactly at the body centre and here it 

creates the coordination number 8 so accordingly the radius ratio varies from point 732 to 1. 

So point 732 is the that value indicates the exactly fitting of the interstitial position.  
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Now, we will try to incorporate the details discussion on the different types of structure. First 

we will look into the structure of NaCl. Tracy at sodium ion basically purple in colour and 

smaller in size but chloride ion which is red colour but it is larger size because chloride ions 

having some extra (cell) extra electrons outside the cell. Because of that, it is having the 

larger in size. Now in this case specifically the overall structure of the crystal represents that 

2 interpenetrating FCC (st) lattices were the coordination number both cation and anion are 6 

here and number of atoms if we try to estimate here it is 4. So that is number of cations is 4 

and number of anions also 4. 

Now if we try to find out the inter-atomic distance between Na and Cl that can be found out 

looking into the arrangement of the atoms. So if we look into this bottom figure, here if we 

see the corner atoms are the chloride ions in the longer edges there exist some sodium ions. 

So here between the Na and Cl is simply position from centre to centre point, this distance is 

basically half of the edge length that means half of the lattice parameter a. So point 5 a. But 

between sodium to sodium or between chloride to chloride ion, that we need to consider 

along the diagonal, face diagonal. So from here to here it is basically the total distance of the 

diagonal equal to root 2 a and half of this is the centre to (ce) centre distance between sodium 

to sodium ions that is corresponding to a by root 2. 

Now if we look into that ZnS structure here the green colour represents smaller in size that is 

the Zinc and red coloured which is large in size that is Sulphur which is also having FCC 

structure. But dashed line indicates the unit cell here also the coordination number equal to 4. 

That coordination number, if we look into that, it is in continuous contact with the 4 



surrounding atoms and both the cases either if we consider the cation or if we consider the 

anion, both the places we will be able to find out the coordination number is 4 in this case. 

Now interatomic distance between zinc to zinc or between sulphur to sulphur, it is along the 

half of the body diagonal, so that means a by root 2. These are the typical structure in case of 

compound material but it is very obvious the, this structure which is little bit different from 

the pure metals having the (s) simple cubic, BCC or FCC structure.  
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If we try to predict the AX structure, here first step is to check their valance electrons and 

then consider the charge neutrality we can find out the zinc plus plus and S minus minus is, 

ratio is 1 is to 1 therefore the formula stands like ZnS. Next step is to consider the ratio of the 

Zn plus plus and S minus minus. So that radius ratio is usually come point 402. So by looking 

into that, point 402 we can find out that what maybe the coordination number of interstitial 

sites. So in this case by looking into the standard table of the coordination number point 402 

actually lies between this range point 225 to 414. So we can say that the coordination number 

should be 4 in this case. 

Anion packing is that FCC and finally the structure is the Zinc blende structure. So, but in 

this case it is also necessary to investigate what is the total number of anions the cell, that is 

4, how many tetrahedral sites exist, that is 8, and how many cations to fill the holes, that is 

the 4. So this is the way to investigate the structure, (was) looking into the other prospect like 

the valance (elect) electrons and the radius ratio between the anion and cation.  
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Now, we will come to the structure of diamond cubic structure. So, it is also important to 

know because carbon is one of the important materials, and carbon exist in various 

polymorphic form. So first we will try to investigate the crystal structure of diamond. It is not 

necessary the polymorphic form of carbon can exist or the similar kind of structure. 

Diamond, as we know, it is a very hard material and having very low electrical conductivity 

and it is important to know that it is having very specific properties. Typically it is known for 

very hard material. 

So looking into that properties if we try to investigate the crystal structure of diamond cubic 

structure, it is a combination of 2 FCC sub lattices and silicon and germanium also follow 

similar kind of structure. Now, if we look into the unit cell, here the coordination number is 

4, because one atom is continuous contact with the another 4 atoms and interatomic distance 

between cc and be investigated as point 422a, where a is the lattice parameter. But, in details, 

the number of atoms per unit cell, coordination number, packing fraction we will try to 

discuss later (on) we will try to evaluate what are this all this parameters.  
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Now, we look into the another polymorphic form of carbon that is graphite. So in graphite if 

having the structure is looks like the carbon atoms exceptionally arrange but there is a layer 

wise, it is (bo) bounded by the covalent bonds. So, this type of structure means the graphite is 

having very good lubricative properties, good electrical conductivity and specifically more 

than diamond having chemical stability even at very high temperature. So if we see the 

structure is that the one carbon atom is connected the 3 carbon atoms, but (is) it is other way 

it is connected to the second layer by using the secondary bond that is called Van der walls 

bonds. So what the secondary bonds is generally weak in structure.  
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Another polymorphic form that is called structure of Fullerenes that typically known as the 

single molecule having the 60 number of carbon atoms that is called the C60. So, typical 



characteristics of the structure is having the carbon atoms in the form of 20 hexagon and 12 

pentagon but no 2 pentagons share a common side. So this is the typical structure of C60. 

Similarly another polymorphic form, this we know recently used or maybe nowadays widely 

used that is called carbon nanotube. It is also another polymorphic form of carbon.  

Carbon nanotube is known, a very extraordinary properties like high tensile strength, 

electrical conductivity, high ductility, high heat conductivity and nowadays this is having the 

tremendous use of carbon nanotube. So detailed structure of these things it is a, may not be 

the scope of this course.  
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So, so far we have discussed the basic fundamental things of the crystal structure as well as 

the very basic parts of the atomic structure. Now, in sary we can say that first we looked into 

that classification of the different materials, what are the modern materials need, and the 

types of materials using nowadays. Secondly we actually went back to the very basic part of 

what is the lattice point, what is the unit cell, (how) how to the lattice parameter co-relation is 

happening in case of different type of simple cubic structures. 

 Next we try to demonstrate that different type of common structures of the metals like simple 

cubic, BCC, FCC, HCP structure; then we analyse that the close packed structure typically 

the hexagonal close packed structure and cubic close packed structure. So cubic close packed 

structure and hexagonal close packed structure (also) 1 certain (())(33:40) is having the 

similar type of atomic arrangements but if we consider the 3-D arrangement of the different 

stacking layer, that are different in case of hexagonal close packed structure.  



The stacking layers actually varies in the form of 2 different types like AB, AB in that form. 

But in case of cubic close packed structure the stacking arrangement happens in the ABC, 

ABC in that form. So that are the difference between the close packed structure between HCP 

and CCP. Also it is mandatory to mention that cubic close packed structure, when you try to 

consider the stacking sequence in this case the stacking sequence should consider the normal 

to the plane 111 in case of FCC structure. 

 Now, then we have discussed the atomic radius, coordination number, relation between 

atomic radius and the lattice parameter and packing density or different type of crystal 

structure. Then we have discussed the allotropic and the more fixed transformation of 1 pure 

metal and as well as for compound materials. Then we discussed the crystal structure of the 

different type of important materials like diamond, graphite, etc.  

We tried to find out what are the different interstitial sites exist in the simple cubic structure 

like BCC, FCC and HCP structures and what are the importance of the radius ratio and what 

(are), how to estimate the radius ratio is in case of different crystal structures. Then we 

focused on the crystallographic directions and planes and we try to represent the different 

direction in planes in case of simple cubic structure, hexagonal structure by the form of 

Miller Indices. Then we discussed the stacking sequence of the different close packed 

structure.  

So hope with this (di) discussion on the basic crystal structure it will be beneficial understand 

the very basic (())(36:09) of the crystal structure. And now next part will be the, the to 

strengthening the knowledge of the (theo) theory so far we have discussed, we will try to 

focus on some numerical problems in the next part of this work. Thank you. 

So after discussing about different theory or behind the different type of crystal structure of a 

specific material; that was the very basic understanding. Now we will try to focus on some 

problems to strengthen our knowledge on the different type of crystal structure and how to 

estimate or how to correlate the different parameters which generally used in the study of 

crystallography.  
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So we will try to focus on this, this type of typical problems like theoretical density of BCC 

iron; theoretical density if it is not pure metal; then what, how to estimate the packing 

fraction of the HCP crystal structure; radius ratio of the cubic site, how to estimate that; 

packing fraction of the Diamond crystal structure; what are the different type of planar 

density, linear density (once) on specific plane or 1 specific direction (on) of a unit cell; then 

how to construct the different crystallographic (d) direction and planes; finally the allotropic 

transformation and what is important (h) and how we can practically consider the allotropic 

transformation of material to design sensor and finally interplanar spacing how to estimate 

this in case of 1 specific to crystal structure.  
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So first problem is that let us look into the theoretical density of BCC iron. So we have done 

through the theoretical part now we look that BCC iron, the lattice parameter is given point 

2866 that is a equal to point 2866. Now we know (in) for BCC structure atoms per unit cell 

equal to 2 V have already estimated. Next, atomic weight of iron it is known to us 55 point 85 

gram per mole and then N equal to Avogadro’s number that is the unit is given atoms per 

mole. So density we can find out, the mass by volume; so mass can be represents in terms of 

what is the number of atoms per unit cell and what is the atomic weight and V is the actually 

volume of the unit cell and N is the Avogadro’s number. 

So from this we can find out that 2 is the number of atoms, a is the atomic weight, N is the 

Avogadro’s number, a is the volume, and finally it is coming 7 point 882 grams per 

centimetre cube. So this is purely calculation from the BCC iron and by looking into the 

parameters of (crys) crystal structure of BCC iron. But practically if we try to find out the 

bulk of the material iron we find out density is almost near about this value. So this is the 

theoretical estimation. But one important thing is that here when we try to estimate these 

things we need to focus on the what are the units are given if necessary we can transfer the 

units and so my point is that units consistency should be maintained when you doing some 

numerical calculation related to this problem.  
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Next problem, second problem; so a construct the 12 bar1 the direction in a cubic unit cell, 

how we can do that? So first, first thing is that we try to find out in the direction that what is 

the coordinates for that. So if we see along the X axis there is 1, along the X axis there is 1 

unit. Along the Y axis it represents 2 units but that 2 units is along the negative direction of 



Y. And the Z direction it is 1 unit. So we can construct in such a way that we can, first we can 

produce the 2 unit cell along the Y direction, but it should be the opposite to the Y direction. 

So first we need to chose the origin here and we need to define the axis X Y and Z. With 

respect to that axis first we can draw one unit cell with reference to the negative Y direction 

because we knew to produce the 2 units negative to the Y direction. And adjacent to (tho) we 

can draw another unit cell and now we try to represents this units along X Y and Z directions. 

So, O, it starts from 000 and final point is comes 1 minus 21, that is the coordinate of the 

final point, say point A. 

So here along the X axis we move 1 unit so upto this point; next negative to the Y direction 

we can move 2 units this is one unit and next we move upto 2 unit, so now at this point. Next 

part is the we (move) need to move 1 unit along the positive Z direction, so from here to up to 

that point a. So this is the final position, now we can join the line between O and A and that 

actually represents the direction OA within a cubic unit cell. So this very can construct the 

different direction within the unit cell.  
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Now third problem we can focus the construction of the plane in a cubic unit cell having 

Miller Indices 210. So in this case the, you are trying to construct the 1 plane within the unit 

cell. So here the Miller Indices of the plane is given 2 bar 10. So, first step is to find out the 

length of the intercepts along X Y and Z directions. So, if we assume first of all the X 

component so intercept length along the X direction is minus half, along the Y direction the 

intercept length is 1, along the Z direction intercept length we can consider as infinity.  



So when we try to place or try to draw the plane first thing we need to find out the intercept 

length along the Y direction that is negative of half, it should be (also a) here it is X axis (oh 

ok), so along the X axis it is minus half, so if this is the origin so opposite to X axis we; if this 

is the unit length, so we consider this point is equal to half of along the (opposite) along the X 

axis in the negative direction; and (s) with respect to the Y axis, this is the intercept length is 

this, because along the Y direction this is the unit 1 unit. 

But since intercept length along the, with respect to the Z axis is infinity, that means the plane 

should be parallel to the Z axis. So we extend along the Z axis but it is, should be the parallel. 

Now we can construct the plane like this, so if we check it at this plane is having intercept 

length with respect negative X axis is (point half) minus half, positive Y axis is 1 and parallel 

to the Z axis. So this is the plane or having the Miller Indices 2 bar 10. So similarly (we can) 

we can construct the several planes in case (of) in, within the unit cell if we know the Miller 

Indices of that.  

But steps; in this case the steps can be followed like that; first step is to find out the intercept 

length and then we can point out the intercept length but looking into that point then we can 

draw the plane with respect to the specific points. But, careful, it is different from the 

construction of the direction, because in construction of the direction it is not necessary to 

find out the step as a, like finding the reciprocals; we can directly plot, find out the coordinate 

and we can directly plot the direction in a unit cell. But in case of plane, first we need to find 

out the intercept then we can represents the plane according to the intercept length.  
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Now we shift to the next problem. Find the interplanar spacing for a 221 plane in simple 

cubic lattice pose lattice constant is 4 point 12 into 10 to the power minus 10 m. So 

interplanar distance that we have already discussed, that distance can be like this; a by root of 

h square, l square, where h, k, l is the Miller Indices of the plane and d is the interplanar 

distance and a is the lattice parameters. So, lattice parameter is given, Miller Indices also 

given then we can find out the distance just to focus on that what units we are using. So, in 

terms of meter, in terms of nanometre we can represent.  
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Problem 5, we can see that magnesium oxide follows the similar crystal structure of NaCl; 

the structure is, we can observe from the figure. Now we need to find out the theoretical 

density of magnesium oxide; all the data are given, atomic radius of magnesium ion, atomic 

radius of oxygen ion, atomic mass of magnesium, atomic mass of oxygen, this all (are) are 

provided now we need to find out the theoretical density. We will be following the similar 

procedure (wh) what we did for pure metals. But here we need to be careful when we try to 

applying the formula of theoretical density of any compound material, see that is, was given 

like that; nA by V into N. 

So n equal to number of atoms within the unit cell, A is the atomic mass or atomic weight and 

V is the volume of the unit cell, and (n) N is the Avogadro’s number here. But here since in 

this compound structure the number of anions and number of cations, I, that means 

magnesium ion and oxygen ion, the number is the same that is total n equal to 4. But since we 

have the different values of the atomic mass or different values of the atomic radius in case of 

magnesium oxide so, A can be represented like that, is that consists of AMg plus, magnesium 

plus, atomic mass of oxygen. So that can be found out that total is the 40 point 312 grams per 



mole, but here magnesium oxide number, total number of atoms equal to 4. But, that is equal 

to for both anion (and) as well as cation. 

Now, how to estimate the volume V in this case? To estimate the volume we know simply if 

we know the lattice parameter a, the volume indicates the a cube. But, how radius of the 

individual ions and the lattice parameters can be correlated? So if you see along the edge if 

the orientation of the atoms is like that, that a is equal to twice, 2 times of r sodium ion plus 

times of r chlorine ion, chloride ion. And here which is same for the magnesium oxide so 

where the Mg plus plus and n minus minus, so here it should be the, I think, r, r. So if we add 

it and then it becomes, point 396 nanometre and from here we can find out the edge lengths 

or maybe lattice parameter and from that we can find out the volume. Once the volume is 

found out, so this is the volume and this is the Avogadro’s number and this is number of 

atoms and this is the atomic mass. So we can find out, this is the theoretical density of 

magnesium oxide.  

So it is almost equal, equivalent to the similar procedure what we followed in case of pure 

metal, but we should be very careful when we try to estimate the atomic mass, that is consist 

of both the magnesium as well as (ox) oxygen ion but at the same time we need to know what 

are the number (of) is there any difference or obviously it should be the same, the number of 

anions and cations there, and how to link between the lattice parameter and the radius of the 

ions. So looking into the available parameter we can find out the theoretical density of 

compound material in case of magnesium oxide here.  
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Next problem, we will try to theoretically estimate that what is the packing density or atomic 

packing factor for HCP crystal structure. If we look in the HCP crystal structure, here along 

the base, hexagonal, 2 atoms are in continuous contact so from here we can easily correlate 

between the lattice parameter a and the radius of the atom which is a equal to 2r where a is 

the lattice parameter and r is the atomic radius. Now what is the total number of atoms for 

unit cell, here we can find out that along the corner are 6 atoms but sharing volume of the 

atoms within the unit cell is only 1 sixth.  

This is the case for the bottom surface, this is the case for the upper surface and 3 atoms 

inside exist the, this is the stacking sequence layer A and 3 atoms stacking sequence layer B, 

again it is stacking sequence layer A; so in this case the, on the stacking sequence at the layer 

B there exist 3 atoms which completely inside the unit cell. So, that is why 3 comes here and 

another 2 these atoms and that base atoms actually half of the atoms exist inside the unit cell 

one from base, another from the upper side. So, total numbers of atoms within the unit cells 

comes as 6. 

Now we need to find out since in this cell there are 2 parameters are there a and c, so it is 

necessary to find out the correlation between a and c. So first if we look into on the base, OG 

is the half of the height and (n) normal to the base. So OG we consider the half of the height, 

which is basically c by 2. You can find out the OX, OX basically we are (co) we are focusing 

on this part A, O and some C for example.  

So here, if we find out the OX; OX which is equal to 2 third of the OE so OE can be found 

out, this is this length, so OE is basically root 3 by 2 into lattice parameter a; actually this is 

the base A. So, OE is the root 3 by 2 into A and OX is the, is of course OX is the 1, 2 third of 

the OE or the EX equal to one third of the OE. So here it is coming a by root 3.  
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And again if we look into that triangle, OG, OX and GX, OG, OX and GX looking into this 

triangle, but, this triangle we are considering that OG actually, the distance along the Z axis 

of this HCP structure and the OG actually represents the half of the distance along the Z axis. 

That means if along the Z axis the parameter is C, basically OG represents the half, C by 2. 

Hear OG square equal to OX square plus GX square. So OG we have already estimated that 

is a square equal to OX; OX equal to a by root 3, so a square by 3 and GX equal to C by 2 

square if we look into the OG square, it is the equal to the a square. 

So from here we can find out the c by a ratio is basically 1 point 63. But we can find out the 

packing density actually volume occupied by atoms, volume of unit cell; divided by volume 

of unit cell we can find out the packing density in this case, but first before that we need to 

estimate the c by a ratio. If we find out this and other terms can be proceed as usual.  
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Now we come to that point that is next problem which is allotropic, related to the allotropic 

transformation, when there is a change of the structure from BCC to (s) any other crystal 

structure it is associated to some other change of the volume. For example 1, if we consider 

the titanium is a BCC crystal structure and 882 degrees centigrade with lattice parameter a 

equal to point 332. Below this temperature, titanium has a HCP structure were lattice 

parameter is different.  

Now we need to find out the percentage of volume change when BCC titanium transforms to 

the HCP titanium, we need to find out whether it is contraction or expansion. Okay, let us see 

how to solve this problem. Since the crystal structure changes with temperature as well as 

the, there is a, there may be the change in the density, so, we need to consider the some 

reference when, maybe here we can consider the fixed mass as a reference to compare the 

change of the volume. 

 In case of BCC crystal structure above 882 degrees centigrade the density can be calculator 

like that from the formula of the theoretical density calculation but here in case of BCC 

structure, total number of atoms is 2, and A is the atomic mass and BCC, Vc is the volume of 

the unit cell that corresponding lattice parameter is given so from there we can find out the 

volume and Avogadro’s number. So finally it can be estimated that 54 point 65 and the ratio a 

by Na, that gives atomic mass by Avogadro’s number, suppose the unit in, representing in 

terms of nanometre. 
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Now this is the theoretical density estimation of (BCC) BCC structure but when there is a 

change of the temperature exist in the HCP structure then similar way we can find out the 

theoretical density where we need to know that number of atoms are different in this case, 

maybe in HCP crystal structure, total number of atoms is 6, A is the atomic mass. Here we 

can estimate the volume of the unit cell in case of HCP structure and Avogadro’s number is 

given as Na. 

Now here if we find out this things we will find out that (50), the density is coming 55 point 

02, A by Na nanometre the power minus 3. So this are the 2 different densities assuming the 

2 different type of crystal structure. Now over a fixed mass the volume (assume) in case of 

BCC structure will be the mass by density, in case of HCP structure similar we can find out 

the volume. So, obviously the, for the same mass, the volume of BCC and volume of (BCC) 

HCP structure are different. So in this case the volume is less, in case of HCP structure as 

compared to the (BCC) BCC structure and it is obvious from the, these 2 calculation. 

Now material constants like atomic mass, total mass and Avogadro’s numbers remain 

constant so change of the volume can be estimated that, this is the change of the volume with 

respect to the final volume and in terms of percentage we can estimate is around minus 0 

point 68 percentage. So there is a volume (con) contraction but at the same time we found 

that change of the volume percentage is very less, only minus point 68 percent. But (it he) it 

may be very important in case of any structural changes when there is a change of the 

temperature in case of (titanium) titanium.  
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Another example for the allotropic and polymorphic transformation we can consider. In this 

case, in case of pure iron, that we know there is a change from BCC to FCC with respect to 

temperature and ceramic materials like SiO2, ZrO2 they also change the structure from 

monoclinic to tetragonal crystal structure. So of course it is associated with some volumetric 

changes. Now, looking into the change of the volume, it is possible to design the sensor. let 

us look into that how we can estimate this things. 

So, look, take the example of iron and there is a change of the volume from crystal structure 

from BCC to FCC. BCC structure, the lattice parameter is given as point 2863 nanometre but 

FCC structure, the lattice parameter is given as point 3591 nanometre. Of course the same 

material, but they have 2 different lattice parameters of course there having the (s) crystal 

structure or atomic arrangements are different in these 2 cases. 

Now when we try to find out the accuracy of required instrument we need to change the sense 

of the (volumic volume) of volume during the transformation from BCC to FCC or vice 

versa. Now, how we can estimate the volume change? Here, volume change from final to 

initial and here it is the, with respect to the initial volume, VBCC. If we see that here we are 

trying to put some reference (())(67:38) compare the change of the volume keeping the total 

number of atoms remains the same. 

 In FCC, total number of atoms is 4 but in BCC structure total number of atoms is 2. 

Therefore to compare with respect to the total number of atoms remains the same, even they 

change the crystal structure, we multiplying by the 2 in case of BCC structure to compare the 



volumetric change. So here also we multiplying the 2 since the ratio of the number of atoms 

in FCC and BCC is 2.  

So now putting the other lattice, putting the lattice parameter if we estimate the volume 

change then we can find out some percentage change maybe we can see that if we estimate 

that suppose it is the coming as x; x maybe the numerical value but finally we estimate this 

thing with these parameters, maybe it may contracts. So volume contraction will be there. 

Suppose that there is a x percent of the volume contraction when there is a change of the 

structure from BCC to FCC in case of pure iron.  

Now, if we, so that makes 1 centimetre (co) cube iron contracts to 1 minus x by 100 

centimetre cube iron after transformation. Now if we try to use this information and if we try 

to design one sensor having 1 percent accuracy then the instrument must be detect a change 

of the volume should be, this is the, this comes to 1 by 100, that means this comes from the 

accuracy level of the instrument as per the requirement and second plot comes from the, that 

what is the volume change can be detected when there is a change of the crystal structure. 

So, if it is defined that we need to ensure Y percent of the accuracy in the instrument then 

(what) what should be the age of the volume will be able to detect, that, then in that case delta 

V can be Y by 100 into that x by 100 that actually comes from the structure of the crystals, 

structure of the crystal when there is a change from one structure to another (change). So, that 

amount of the volume change will be able to, we will be able to detect it by the instrument. 

So these are the typical application of the crystal structure when you try to design a sensor.  
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Here we will need to consider another problem related to that packing density or atomic 

packing fraction of diamond cubic crystal structure. First, we need to investigate what are the 

total number of atoms exist within the diamond structure. There are 8 corner atoms, there are 

6 face atoms and atoms lying on the body diagonal is 4, so within unit cell there is a unit cell 

there may be the possibility of constructing the 4 diagonals within that cell, so along the 4 

diagonals 4 atoms exist in diagonal structure.  

So total number of atoms like that, total number of atoms is 8 but sharing of the volume of 

the cornered atoms is 1 eighth, so it should be 1 eighth plus 6 (fate) face atoms and sharing is 

half and plus 4 body diagonal atoms. So in this case total number of atoms is 8. Now what is 

the coordination number in this case here if we find out that coordination number is only 4 

here. So that means one atom is connected to the 4 surrounding atoms in, continuously. 

Now we need to find out what is the lattice parameter a and the atomic radius relation. So in 

this specific structure the body diagonal elements exist and (so) actually 1 fourth of the 

distance along the diagonal on the corner point. So along this corner points, so along the body 

diagonal on the corner points these 2 atoms are in contact but that is in 1 fourth of the total 

distance of body diagonal, so one fourth of the body diagonal so root 3a is actually the 

distance of the body diagonal or length of the body diagonal and this atoms exist at a 1 fourth 

distance. 

 So this is corresponding to the 1 fourth of the body diagonal distance and from this relation 

we can find out between the lattice parameter and radius. Now if we try to find out the 

packing fraction in this case here if we see there are 8 atoms per unit cell and total (vo) 

volume of 1 atom is this and here is the volume of the unit cell. So if we quote these values 

we can find out the packing fraction is the only point 34, although, it is obvious that the 

packing fraction of diagonal structure is very less point 34 percent only. Probably, this is 

because of the coordination number is very poor in this case (pro) only (f) coordination 

number is 4 and so most of the space within the unit cells remains vacant or we can say that 

may not be very compact structure it can form, diamond.  
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Next we try to focus on the problem like this. Sketch, so now we shifting to the construction 

of the directions and planes in case of HCP structure. So first direction first we need to show 

the Miller Indices of this 1110 direction in HCP unit cell and another is the 101 bar 1 in case 

of HCP unit cell, so that; so first problem it indicates the direction but if you see there are 3 

elements is there, so actually this direction in 3 axis system which is equivalent to the 112 bar 

0 in case of HCP cell so that we can easily convert it, if we know the relation between the 3 

axis system to the 4axis system of HCP structure. So if we see that 1120 structure can be like 

that.  

So along the a1 axis, if say, suppose this is the base and if we see that a1 axis, a2 axis 

component a3 axis minus 2 and Z axis or c axis is 0. That means it is existing on this 

specifically base plane. So we, unit distance along the a1 if we consider as a unit distance we 

start from the origin, unit distance along the a1, then unit distance along the a2, so here we try 

to move from (the it) this parallel to the a2 at this point and then unit (so) 2 units negative to 

the a3 direction which is equal to the, opposite to the this direction, a3. So here actually, if 

this is the; so it actually represents that; so now a3 we need to move negative to the 2 units 

along this direction. 

 Now if we join between this origin the point to that point, then it can be same that actually 

this direction indicates the opposite to the a3 axis. Okay, so OA is the required direction 

within the HCP unit cell. Now if we look into that specific plane and HCP unit cell, here if 

we see that 101 bar 1 is the unit cell, the first step is to find out what are the intercepts along 

the different axis where a1 equal to 1 unit, a2 equal to 0, a3 equal to minus 1 and Z equal to 1 



the centre values, but reciprocals of that a1 that is 1, along the a2 reciprocals indicates 1 by 0 

that means it is infinity, and a3 it is minus 1, and Z it is 1. 

Now we will try to find out the, this intercepts along the different axis. So a1 we can find out 

the unit length, this point a2 is infinity that means the plane should be parallel to the a2 axis 

when a3 is the negative 1, so this direction actually indicates the negative direction. So this 

point is the intercept along the negative direction but of unit 1 and Z, along the Z direction it 

is the unit 1. So from here the, this unit 1 along the Z direction is this. Now if we construct 

this point and then that actually define the specified plane and you can investigate this, this 

(ac) plane actually parallel to the a2 axis, that is also satisfying, because it should be parallel 

to the a2 axis. So ABCD is required plane this case.  
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Another case if we, here there is a, how to find the minimum radius of an atom that will just 

fit into the (intersti) tetrahedral interstitial site in FCC nickel. The lattice parameter of nickel 

is given. So in case of tetrahedral site, tetrahedral site can be constitute among the 4 atoms 

and in between that atoms we can find the 1 site and we (need) it is also necessary to find out 

what is the exact size of the atom that (ex) exactly fitting in that tetrahedral site.  

And we observe that tetrahedral site exist both in FCC as well as BCC structure. But here we 

need to find out the tetrahedral site in FCC structure. But basic point starts that if we look 

into that FCC structure there the several tetrahedral sites exist but if we look into, from the 

and the 1 plane is ABC and its same a point O, from the point O is represents the actually, 

height along the Z direction.  



So, centre of the tetrahedron is basically exist over the 1 fourth of the distance OP. OP is the 

distance along the Z axis. Now if we see that AP, in this case the 2 atoms are in continuous 

contact and tetrahedral site probably exists here. So first, centre of the tetrahedron is the third 

fourth of the, this distance, this is, we see this as a capital R, this small r. Now on the base if 

we find out AD is the, from the triangular route we can find out the root 3 2 into A, A or in 

this case it is 2R because 2 atoms are in continuous contact. So here it is root 3 R.  

So, OA is the 2 third of AD that is 2R by root 3. Therefore this distance is basically (s) from 

the Centre of the tetrahedral to this distance is basically R plus small r. So then, 3 fourth of 

OP is equivalent to the R plus small r. Now OP can be calculated from other way. So from 

the (triangular) AP square minus of OA square from here AP equal to 2R because along the 

AP 2 atoms are in continuous contact and here we can find out 4R square minus here OA, we 

have already estimated 4R square by 3, so root 3 8 by 3 R is the value of the OP. So we put it 

here, 3 fourth into root 3 8 by 3 R and from here we can find out r by R is equal to point 225. 

So this is the way we can find out the interstitial sites.  
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Now if we put this value in case of nickel then in case of FCC this is the relation exists over 

the face diagonal and from here we can find out the relation between the radius and the lattice 

parameter and since lattice parameter is known to us then putting this value we can find out 

the radius R here and finally that, put the radius here and we will be getting the radius of the 

interstitial site or maybe atom existence in the interstitial site exactly fitting this (point 0) 

point 028 nanometre which is the required minimum radius of an atom that produce the stable 

structure.  
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So in this case just maybe, need to consider that atomic arrangement when you try to find the 

interstitial site that from the tetrahedral that means the having the coordination number of 4. 

So it is like that on the base there are 3 atoms and on the top between, there is a another 1 

atom that actually constitute 1 tetrahedral interstitial site case of FCC and based on that we 

can do all this calculation to find out the radius ratio.  

(Refer Slide Time: 85:55) 

 

Now we will try to focus on this problem that idea about this thing what is the repeat 

distance, a linear atomic density of copper or planar atomic density. Let us look into this 

problem for copper having the FCC crystal structure. So first problem is that what is the 



repeat distance and a linear atomic density on specific direction, 110 direction; in FCC 

copper what is the repeat distance.  

So, repeat distance is basically similar sequence of atoms, 1 specific direction. Since direction 

is specified here so 110 direction in FCC crystal structure actually indicates the face diagonal. 

So if we look into this figure, this is the 110 direction. So 1 atom exist at the corner point, 

next atom exist in this point. So in this case, repetition, repetitions can be considered as this 

distance which is half of the face diagonal. So, face diagonal length is root 2 a and half of this 

a by root 2. So, lattice parameter is given here, so we can find out point 255 nanometre is the 

repeat distance along the direction 110. 

Now, linear density, linear density; when we try to focus on the linear density we need to 

consider along 1 specific linear direction, what is the number of atoms. So in this case along 

this direction 110 number of atoms can be represented so it is a only radius, radial only up to 

half of the atoms exist, then full atom exist; that is the representation along this line and half 

of the atom represented (as) along this line, so representations of the atoms along 1 specific 

line. So in that sense we can find out the total number of atoms is half (this) from this half 

from this and full from the middle one. So total 2 and a half and what is the total length; it is 

the length of the face diagonal root 2a and from here we can find out the 3 point 91 atoms per 

unit length per nanometre here. 
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Now planar density; it is a number of atoms for unit area. So in this case we need to find out 

the planar density on 010 plane so here if we see that number of atoms on 010 plane, 010 

plane or 100 or 001 plane is basically on the indicates an FCC structure on the face. Suppose 



this is the face, here if we find out what is the total number of atoms here, so this 4 cornered 

atoms, is representation here is the 1 fourth of each atom but there exist the number of atoms 

is 4 and 1 representation is this is the full atoms. So, total 1 plus 1, 2 number of atoms and 

what is the area of plane; area of plane equal to simply a square. So from here you can find 

out the 15 point 34 atoms per nanometre square length, is the planar density in case of FCC 

nickel (fa) sorry FCC copper.  

Now, packing fraction on similar plane; here is the area of the atoms on that plane divided by 

the total area of the plane; that actually represents the fraction. So, here you can find out the 

area of the atoms, so it is a total number of atoms 2 and area of each atom equal to pi into R 

square, and a into a is the total area of the plane. So, here we need to know the relation 

between a and R, because only one parameter is given, a is given. So if we look into along the 

face diagonal, for FCC structure can find out this relation. So, this is root 2 a and at the same 

time this is 2R, R and R, so total 4 R equal to root 2 a.  

So from here we can find out the relation between a and R if we put it here then we can find 

out the packing fraction. So, planar packing, but this packing fraction and this is 

corresponding to the planar packing fraction. So this fraction is corresponding to 1 specific 

plane and here also planar density is represented by the number of atoms per unit area but 

planar packing fraction is a, simply the ratio of the area occupied by the atoms and with 

respect to the total area of a specific plane. So these are the ways we can find out this 

calculation.  

So I have discussed the different type of diverse problems (connec) which is connected to the 

theoretical discussions of this structure. Hopefully it will be understandable all these different 

kinds of numerical problems, but at the same time if we can go, or we can follow some 

reference book also we can find out lot of such numerical problems. But it is necessary to 

understand all the problems, or how to solve these problems for further understanding of the 

subjects for the (s) next module.  
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So, this is the end of the module one that is, that was corresponding to the structure and 

properties of the materials. So next we will start in the next module. Thank you very much. 


