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Vacancies

In this video we are going to discuss point defects.

(Refer Slide Time: 00:13)

So, one of the most important point defects is simply a vacancy and a vacancy is a vacant

site in a crystal. So, we make a guess let us say that there may be some vacant sites in a

crystal because nothing is really going to be perfect in our life and so some defects can

be there, so there may be some vacant sites. But the real surprising fact is that there must

be certain fraction of vacant sites in a crystal that there is no way we can make a crystal

with no sites vacant that is possible only at absolute 0 and absolute 0 as you know from

thermodynamics itself is unattainable.

So, we will see this in detail in this video why it is so that certain crystal sites have to be

vacant. There should be certain concentration of vacancies in equilibrium in a crystal.



(Refer Slide Time: 01:13)

So, we talked about equilibrium and by equilibrium here we mean a thermodynamic

equilibrium at constant temperature and pressure, which means that we should have a

minimum Gibbs free energy.

So, a crystal with vacancy should lower the free energy in comparison to the perfect

crystal of course, this lowering cannot continue forever otherwise all the sites will be, all

sites can never be vacant there will be no crystal. So, there will be certain equilibrium

concentration  which  will  minimize  the  free  energy  of  the  crystal.  So,  what  is  that

equilibrium concentration of vacancy? So, we will try to formulate this or try to answer

this Question.



(Refer Slide Time: 02:10)

So, since we want to have an equilibrium crystal, crystal in equilibrium. So, we should

try to minimize the Gibbs free energy. So, what is Gibbs free energy? So, we know by

the definition Gibbs free energy is H minus T S, where T is the absolute temperature and

H is the enthalpy. An enthalpy H itself is defined as E plus PV, where E is the internal

energy, P is pressure and V is volume, then S in the free energy expression as you know

is entropy.

(Refer Slide Time: 02:57)



For the current case the entropy S is best given by the Boltzmann formula S is equal to k

log W this is a statistical  relationship given by Boltzmann where k is the Boltzmann

called constant and W is the number of microstates corresponding to a given macro state.

(Refer Slide Time: 03:29)

Let  us  see what  we mean by this.  The meaning of W in the number of microstates

corresponding to a given macro state. So, vacancy increases enthalpy H of the crystal

due to breaking of bonds. So, energy is required to break the bond. So, in particular I am

now currently focusing bonds formed by the central atom and in this two dimensional

example this central atom is forming 4 bonds.

Now, if I want to create a vacancy there I will have to break these bonds. So, let me

break these bonds and by breaking this bond now I can remove the atom, but you can see

if  I simply remove the atom the number of atoms is decreasing,  this  is not going to

happen the number of atoms should be conserved. So, really to create the vacancy I have

to remove the atom from its normal place and then place it somewhere else.

Now, in this system that somewhere else that somewhere else we will see can be many

locations in a real crystal like it can be the dislocation core, we have already seen in the

case of climb dislocation climb that if atoms go and join the dislocation core then their

location  from  which  they  move  will  be  created  vacancy.  So,  these  atoms  can  join

dislocation core or they can join grain boundary or if none of these are present like in the

crystal shown here they can come to the surface. So, I place them on the surface.



.  So, on the surface it will again form a bond. So, although 4 bonds were broken to

remove this atom from here one bond has been regenerated to put it on the surface. So,

effectively for this atom 3 bonds are broken. So, certain effective number of bonds have

to be broken to create a vacancy in a crystal and each bond breaking will require certain

amount of energy and the certain amount of enthalpy to be provided to the crystal to

make this replacement of atom from its normal location to let us say a less favorable

location in this case the surface.

So, if we now think that each such creation of vacancy is requiring an enthalpy delta H f,

f the subscript, f is for formation. So, enthalpy of formation of a single vacancy is delta

H f and if I am creating n vacancy then the total enthalpy increased due to the creation of

n vacancies little n vacancies will be n times delta H f. Of course, we are assuming that n

is very small. So, only quite a few sites are vacant and also they are far apart such that

the number of bonds broken is constant for each vacancy.

(Refer Slide Time: 06:38)

Now, let us try to see the meaning of W, the number of microstates corresponding to a

given microstate. So, I am showing you here a let us see 5 by 5, 25 atom crystal, but one

side is vacant. So, we really have 24 atoms with one vacancy, but this vacancy can be

located here as in this first figure or somewhere else as in the second figure or third

figure or fourth figure. So, these are 4 example of where a single vacancy could have

been located in this crystal.



Now, if you think in terms of real atoms and atomic positions that is if you are thinking

really automistically then all these configurations are different. But if you think in terms

of macroscopic behavior the thermodynamic behavior of the material then you do not

expect  them to  be different  macroscopic  property, you do not  expect  to  be different

because  of  their  different  locations  of  vacancies  in  these  crystal.  For  example,  they

should have the same temperature or they should have the same pressure and the same

macroscopic  volume.  So,  none of  these  a  macroscopic  parameter  will  change  if  the

vacancy shifts from one location to another location in these systems.

So,  microscopically  if  we  think  of  exact  atom  positions  then  these  are  4  different

microstates, but macroscopically thermodynamically they will behave as a single macro

states. So, I will say that these are 4 different microstates corresponding to the same

macro state.

(Refer Slide Time: 08:39)

So, now we can think of configurational  entropy due to vacancy as in if there are n

number of atoms and we create n vacancies in the crystal little n vacancies in the crystal

capital N number of atoms and little n number of vacancies then the total number of sites

which we are playing with is N plus n because vacant site also we are counting as site.

So, there are atomic sites, the filled sites, capital N and they are vacant sites the little n.

So, the number of microstates in this case will be in how many ways from N plus capital

N plus small n sites we can find little n sites to put my vacancies. So, this as you know



from a mathematics is N plus n C n or factorial of N plus little n divided by little n

factorial capital N factorial. So, this becomes the number of microstates in the presence

of vacancies.

Now, according to the Boltzmann expression the entropy S due to this introduction of

these little n vacancies in the crystal will be given by the formula delta S is equal to k log

W. So,  this  will  be  the increase  in  entropy of  the  crystal  due  to  the  introduction  of

vacancies. So, I replace the value of W as we have just calculated here into this and then

expand the logarithm to get this final expression.

So, far so good, but these numbers the factorials  the argument of the factorial  made

argument of the log N plus n factorial this is a very very large number we are talking of a

atomics system. So, even a mole Avogadro number of atoms will be 10 to the power 23

atoms. So, this will be a very large number. So, there is a process to simplify finding

logarithm of factorial a large factorials and that will come to be very very useful for us.

So,  if  we will  look at  that  approximation  that  mathematical  approximation  given by

sterling known as a Stirlings approximation and that is log of factorial N for large N its

simply N log N minus N.

(Refer Slide Time: 11:24)

So, here you can see that here we have to find first the factorial of a large number and

then top take the log. Here that finding factorial has been removed we have to simply

take log of N multiplied by N minus N mathematically this simplifies the process very



much. for example, if you now let us see how good is this approximation.  So, let us

begin with the first column I am making of N and then second column is the exact value

log N factorial and the third column is the approximate value N log N minus N.

Let me begin with a very small number just 1. So, for 1 log factorial n is 0 and N log N

minus N is minus N. So, this is quite different and when you can see that difference. But

anyway the approximation is for large N, so at the moment we have not reached that

large limit an approximation is not good. But even if we go to 10 we start finding that it

is becoming a good approximation.

Now, log factorial N exact value was about 15 whereas, the approximation is giving a

value of 13. So, we are making an error of 2 in 15 which is still 12 13 percent error. But

if you go to 100 now the exact value comes to 363 and the approximation is only 360.

So, now, the error is only 3 in 360 it is less than a person.

So, even for 100 the approximation is within 1 percent to the actual value and as we go

to larger and larger value you will find that actually the difference saturates to about 3.

So, a difference of 3 will be coming in a much much larger value Avogadro number of

atoms for example, if you go to this will be a very large number and the error will hardly

be perceivable.

So,  Stirlings  approximation  is  a  very  good  approximation  for  large  N and  you will

appreciate  the mathematical  simplicity  if  you really  try  to  calculate  this  number  log

factorial  N for that first you have to calculate factorial  N and factorial  N itself  is an

extremely  huge  number.  here  by  mathematica  I  have  calculated  and  showing  you

hundred factorial up to the last digit and you can see it is a really really huge number.

So, first calculating the factorial will become very a huge task and then you have to take

logarithm of this large number whereas, in this case we will take only log of 100 and

multiplied by 100 and subtract 100. So, you will get 360. So, by much less work you are

getting a very good approximation. So, let us now use this Stirlings approximation into

our work.
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We have already seen that we have come to this expression for increase in entropy due to

introduction of little n vacancies in a crystal composed of capital N atoms.

Now, we have this Stirlings approximation and we applied a Stirlings approximation to

this expression to simplify it to this form. Now, there are no factorials I have simply

capital N plus a small n log capital N plus small n minus small n log n minus capital N

log capital N. So, we have a simplified expression for the entropy increase due to the

introduction of a small n number of vacancies in capital N atom number of atoms. And

we also have an expression for enthalpy, so now, we have the two components which we

require for our free energy the enthalpy increase and the entropy increase. So, if we put

these two together with the temperature we will get the change in free energy of the

crystal.



(Refer Slide Time: 16:00)

So, let us do that graphically. So, on the x axis I have the number of vacancies and on the

y axis the change in free energy, but we will do it in a steps. Now, if n is 0 if there are no

vacancies. So, that is our perfect crystal. So, the perfect crystal is sitting at the origin

here.

Now, our increase in enthalpy was simply n times delta hf. So, and since n is our x axis it

is simply a straight line with delta H f as its flow. So, we have a straight line for enthalpy.

But  if  you plot  the entropy change which was this  logarithmic  expression which we

derived and minus T times delta S because that is what goes in making delta G then you

have a curve like this because of this minus sign this curve is a negative curve and you

have this.

The sum of these two delta H and minus T delta S will be delta G. So, you can add these

two. You can see that initially this delta S curve has a very high slope and then gradually

the slope decreases whereas, the delta H curve has a constant slope. So, initially minus T

S term will be dominant and the delta G curve will come down. but gradually as its slope

decreases and this  keeps growing at  a constant rate.  So,  delta  H will  start  becoming

dominant and the curve will come up. So, if you plot this curve you get something like

this. The red curve now is the sum of this blue curve and the black curve, delta G is sum

of delta H minus T delta S. So, I have this free energy curve.



Once you have this free energy curve you now realize that this is showing a minimum at

certain number of vacancies so that means, this number of vacancy where you have this

minimum in the  curve is  the  equilibrium number of  vacancy which  this  crystal  will

accept which this crystal will be happy with. So, that particular vacancy number I now

label as n equilibrium, so n eq, n equilibrium is the number of vacancies at which the free

energy of the crystal at this temperature is minimum.

(Refer Slide Time: 18:52)

So, then equilibrium concentration of vacancy is easy to find all you have to do is start

with your expression of delta S and delta H and construct your delta G which we have

already done graphically and then differentiate this expression because at equilibrium

this delta G is minimum. So, del of delta G by del n will be equal to 0 the slope of the

curve at the minimum point will be 0.

So, if we simply differentiate this expression I leave this algebra for you please do that.

So, simply differentiate this expression and apply this condition then you will find what

is  the equilibrium number of vacancies.  Here I  am showing it  as a ratio  to the total

number of atoms. So, equilibrium number of vacancies divided by total number of atoms

is equal to exponential of minus delta H f by kT. In getting this final expression in your

algebra you will have to apply this this approximation that the equilibrium concentration

of vacancy is much much smaller than the number of atoms.



So, this is the final expression which you are looking for and this is what answers our

original question that what is the equilibrium concentration of vacancy. This ratio, this

ratio  is  what  we are calling  the equilibrium concentration  of  vacancy and that  is  an

exponential function exponential minus delta H f by kT recall the delta H f was enthalpy

of formation of one vacancy, k is Boltzmann constant and T is temperature.

(Refer Slide Time: 20:51)

Let us look at some values. So, aluminum has an enthalpy of formation of 0.70 electron

volt per vacancy and delta H f is 1.74 electron volt per vacancy for nickel. So, nickel has

enthalpy of formation of vacancy about 2 times more than that of aluminum, more than 2

time. So, you can see aluminum is has a weaker bonding has a lower melting point. So,

has  a lower enthalpy of formation  because bonds are  weak and lower melting  point

means bonds are weaker, and remember enthalpy of formation was nothing, but enthalpy

for breaking the bonds to create the vacancy.

So,  since  the  bond  energies  are  less  in  aluminum  the  corresponding  enthalpy  for

formation of vacancy is also a smaller, similarly in nickel, nickel is a high melting point

material. So, the bonds are very strong and to break those stronger bonds you will have

to provide more energy. So, enthalpy of formation of vacancy is higher in nickel.

Now, if you use this expression to calculate for 0 Kelvin of course, if T is 0 the argument

is infinity an exponential of minus infinity will always be 0, so whether its aluminum or

nickel there is 0 concentration of vacancy at absolute 0. But at all other temperature there



will be certain fraction of sites which will be vacant and these are the fractions shown

here, but you can see that at most reasonable temperature at the room temperature for

example, aluminum has only one in about 10 to the power 12 sites vacant and similarly

this will have about 5 in 10 to the power 30 sites vacant.

So, this vacancy concentration is really really very small at low temperature. But because

of the exponential relationship and it depends upon the material and there are several

orders of magnitude difference in the vacancy concentration of nickel and aluminum.

Aluminum is much much larger number of vacancies at room temperature than nickel

has. But as you start heating and at 900 a Kelvin you have in aluminum about 1 site in 10

to  the  power  4  vacant.  So,  in  10,000  sites  there  is  one  vacancy  now  the  vacancy

concentration this is very high vacancy concentration aluminum at 900 Kelvin is very

close to its melting point.

So, close to the melting point vacancy concentration becomes quite high whereas, nickel

is still far away from it is a melting point. So, although the vacancy concentration has

gone several orders of magnitude higher at 900 k, but it is still much lower than it is

melting the temperature is still much lower than its melting point. So, it can go is still

higher values like 10 to the power of minus 4 as this also a starts reaching its melting

point. In fact, one theory of melting is that the vacancy concentration becomes so high

that the crystal is no more able to support itself and just collapses. So, you get melting.

(Refer Slide Time: 24:36)



This like just tries to clarify one confusion that sometimes the expression is written with

k and sometimes the expression is written with R. The difference is both are correct

expression, but the interpretation for delta H f changes. If I write it with k as I was doing

it till now then it is enthalpy of formation of a single vacancy that is why I recall that I

wrote for aluminum and nickel when I was writing the value I was writing electron volts

per vacancy. So, it is for one vacancy then you use Boltzmann constant. But of course, if

you multiply both numerator and denominator here by an Avogadro number then delta H

f will change to enthalpy of formation of a mole of vacancy whereas, Avogadro number

times Boltzmann constant will become gas constant R.

So, there is really both are the same expression a given differently one with delta H f by

kT another  with  delta  H f  by  RT, but  we  have  to  be  careful  about  the  unit  or  the

interpretation of delta H f if it is k its enthalpy of formation of a single vacancy and if it

is R in the denominator then delta H f is enthalpy of formation of a mole of vacancies.

With this we end our discussion on vacancy, but let us discuss a few more kinds of defect

or other.

(Refer Slide Time: 24:16)

Let us first discuss one interesting effect of vacancy to thermal expansion of the crystal.

This is a, this is very very interesting and this is one way by which this delta H f can be

experimentally  determined.  So,  let  us  do  that.  So,  increasing  vacancy  concentration

increases the volume of a crystal. So, vacancy actually contributes to the expansion, how



does that happen let us see. You remember the diagram which we made where we said

that if we create a vacancy the atom has to be put on the surface.

So, if I put it on the surface there then I have added one site on the surface. So, I have

added an extra volume to the crystal  initially  the volume was limited by this  square

boundary in this two dimensional example, but now here the boundary has expanded to

include this atom. So, the overall volume of the crystal has increased. So, vacancy adds a

volume equal to the volume associated with an atom to the volume of the crystal. You

can think of this system now you can see there are 3 4 5 6 7 and then 3 3 6 and 7 this is a

7 by 7 is square which I have made, so its 49, they were supposed to be 14, then there is

49 atoms here, but there is 1 vacant site.

So, now total number of sites is 50 and the vacant site is also occupying the same volume

as the occupied side. So, although there are only 49 atoms 7 into 7 49 atoms I have a

volume corresponding to 50 atoms because there is one vacant side. So, every vacancy

adds volume equal to the volume associated with an atom to the volume of the crystal.

(Refer Slide Time: 28:36)

Thus vacancy makes a small contribution to thermal expansion of a crystal.  Thus the

total thermal expansion we can write as two components, one is because of the lattice

parameter expansion. So, of course, when you are heating the crystal the bond length

also is changing atom to atom distance is changing.



So,  there  is  an  increase,  there  is  increase  in  the  bond length.  So,  that  is  the  lattice

parameter expansion and the other one is increase in volume as we just discussed due to

vacancy.

(Refer Slide Time: 29:22)

So, if we write the total volume of the crystal as total number of sites times the volume

per site. So, V is the total volume of the crystal, little v is volume associated with one

atom and N is the total number of sites. So, its atom plus vacancy we are assuming that

vacancy is also occupying the same volume as atom. So, the total volume of the crystal

will be N times V if we simply differentiate this expression then delta V will be capital N

times delta small v plus capital V times delta capital N. So, we get this expression by

simply differentiating.

And if I divide this by the original expression V is equal to N v we can write in terms of

fraction. So, total fractional increase in volume is this fraction the first fraction plus the

second fraction. If you look at the first fraction the left hand side is of course, the total

expansion,  but  on the right  hand side the first  fraction will  correspond to the lattice

parameter increase because this little V is the volume associated with one atom.

So, and how the volume per atom will increase? The volume per atom will increase only

if the lattice parameter increases you recall, that every unit cell had certain fixed number

of atoms. So, we if we have body centered cubic crystal then in the body centered cubic

crystal there will be two atoms per lattice point, sorry two atoms per unit cell. So, if the



lattice parameter increases then the two atoms per unit volume will decrease the number

of atoms per unit volume will decrease or the volume per atom will increase.

So, this is the increase in volume per atom due to lattice parameter increase. Now, the

second term the delta n by n is because of the increase in the number of sites. How the

number  of  sites  can  increase?  The  number  of  atoms  is  fixed  number  of  atoms  are

conserved. So, the total number of sites will change only if there are more vacancies

getting added to the system. So, this delta N is nothing, but the number of vacancies. So,

the second term is coming from vacancy contribution.

(Refer Slide Time: 32:09)

So, if we write like this delta V in our expression the fractional increase and then I am

changing it to from volume increase to length increase and you know from your a basic

physics that the fractional change in volume is 3 times the fractional changing length in

case of thermal expansion. So, the first one the way on the LHS I change it to 3 times

delta L by L fractional changing length. Delta V by V is due to the volume change of the

crystal, due to lattice parameter increase. So, this is 3 times delta a by a, where a is the

lattice  parameter. And here we have already said that  this  delta  n the change in  the

number of sites has to be due to the addition of vacancies and since we have added

between n vacancies. So, for delta n capital N I am writing this small n for number of

vacancies.



You can now write you rearranged this into this form where now this n by N which was

my vacancy concentration I have written on the left hand side and the other terms on the

right.  If  you  do  careful  experiments  both  the  terms  on  the  right  hand  side  can  be

measured. So, delta L by L is the linear thermal expansion coefficient. Well, it is not a

linear thermal expansion coefficient it is due to the linear thermal expansion and you can

find that by thermal expansion experiments. And this delta a by a is the lattice parameter

change and if you do X-ray diffraction as a function of temperature you can measure

what is the change in the lattice parameter as a function of temperature. So, you can find

delta a by a.

So, you will then get the fraction of vacant sites in your crystal. So, if this fraction of

vacant site is measured as a function of temperature you can then use your a equilibrium

concentration for formula to find delta H f. So, this is one way of getting delta H f.
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So,  we  have  talked  about  point  defects,  but  the  only  point  defect  which  we  have

mentioned till now is the vacant site. So, there is a vacancy which is missing of an atom.

But  then  there  are  other  kinds  of  point  defects.  So,  for  example,  they  may  be  an

interstitial  impurity  by  (Refer  Time:  35:00)  sorry  this  is  L  coming  from  here.  So,

interstitial impurity and this is the an atom which is sitting on a some sort of void or in

testes of the crystal. So, this red atom is an interstitial impurity. But this blue atom is

sitting at a location where black atom should have been sitting, so this is a substitutional



impurity  you  have  met  it  in  interstitial  and  substitutional  solid  solution  when  we

discussed that topic.

So, now we are, we are looking these atoms which are located either in the inter stress or

located at the atomic site, but is a different atom as point defects. So, they are interstitial

and substitutional point defects.

(Refer Slide Time: 35:55)

In ionic crystal we have one two more varieties of defects which can be there. So, here I

am showing a schematic of an ionic crystal. So, you can think of the larger one as anion

and this smaller red one as cation.

So, various kinds of point defects are possible in such ionic solid. So, for example, there

is one which is called Frenkel defect this defect is created if a cation is moved from its

normal location to some other interstitial site in the crystal. So, we have, you actually

have a pair of vacancy pair of defects together there is a cation vacancy as well as a

cation interstitial.

A simple cation vacancy or a simple anion vacancy is not possible because that will lead

to charge imbalance in the crystal and thus the energy of the crystal such crystal will be

much higher because of the charge imbalance. So, they are not may seen, but Frenkel

defect in which a cation is simply misplaced from its site to some other interstitial site

creating the cation interstitial and a cation vacancy this is known as Frenkel defect.



The other kind of defect is a Schottky defect. In this you create a pair of vacant site,

again simple anion vacancy or simple cation vacancy is not possible, but it is possible

that the entire, the whole pair a cation anion pair is missing from the regular side. So, this

kind  of  defect  is  called  Schottky  defect.  So,  this  completes  the  discussion  on point

defects we will go to discussing line defects in future videos.


