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Welcome to Dealing with Materials Data, we are looking at the Collection Analysis and

Interpretation of Data from Material Science and Engineering.
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Module 6

Case study 3: Calibration

I S — m 2

We rea in the module on case studies and this is a case study on Calibration.
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Calibration

o Calibration: important for experimental measurements using equipments;
o What the equipment reads and what the actucal value should be

o Example: Compass in a ship to read directions

o Magnetic materials in the ship: affect the reading

o Magnetic north and true north: should be corrected

o |dea: use a material / condition where the result is known to get the correction

£



Calibration is important for experimental measurements using equipment and what the
equipment reads and what the actual value should be, there could be sometimes discrepancies.
The very well-known example that is also described in Berenson’s textbook, for example, is
compass reading in a ship to read directions, because there are a lots of magnetic materials in

ship that affects the reading.

In addition, the magnetic north and the true north are slightly different. So you will read
something in your compass, but is that the north that you actually see? Or should you correct
for the values? That is given by the calibration. So if you have a calibration curve when your
magnet, your compass read something then you can add the correction and actually know the

true value.

So the idea is to use a material or condition where the result is known and use the equipment
to make the measurement because we already know what the result should be, we will know
what the error that the equipment is giving and keep an information of this error, so that we
can correct it when we make a measurement on an unknown material or in a new situation, so

that is the basic idea behind calibration.
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Nanoindentation: calibration

o A contact area function for Berkovich nanoindentation: Application to hardness
determination of a TiHfCN thin film, D Chicot et al, Thin Solid Film, 558, p.259, 2014.

o An improved technique for determining hardness and elastic modulus using load and
displacement sensing indentation experiments, W C Oliver and G M Pharr, J. Mater.
Res., 7, p. 1564, 1992.
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So we will look at calibration in the context of nano-indentation. There are two papers which |

am going to use, | strongly recommend that you look up these papers, one is old paper and very
well-known paper form Oliver and Pharr, this is from Journal of Materials Research, an
improved technique for determining hardness and elastic modulus using load and displacement

sensing indentation experiments.



And based on this but slightly simplified one is given in Thin Solid Films, contact area function
for Berkovich nano indentation and this is the fitting that I am going to do. If you read Oliver-
Pharr, you will see that actual function that you have to fit is very complicated and off course
one can do take data and do that fitting also.

But to simplify things and to give you an idea of how the methodology works, | am going to
do a very simple fitting. We are still going to do ax plus b kind of fitting, linear fit, but it will
tell you some of the ideas behind calibration and if you want a more complicated one, of course,
you will be able to do because that is fairly easy for you now knowing all the regression and

linear models and fitting and things like that, so it’s easier to follow.

So what we are going to do is we are going to take some formulae from here but the fitting for
the contact areas versus the contact depth will be done using very simplified module that is

described in this paper.
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Nanoindentor

o Contact area of the indentor at peak load: using the measured depth and indentor shape
function :

o Experiment: measures the load versus depth

o Contact area: needs calibration since the shape change of the indentor due to bluntness
of the tip should be accounted for

o E = TFiA where S is the slope of the load versus depth curve at unloading and A is the
contact area; E, is the reduced modulus of the material

o Choose fused quartz for which E; is known (69.6 GPa) and estimate A

o Ais related to the contact depth he

o Measure h. from the same experiment

o Carry out a large number of experiments and generate A versus h, data

o Fit A=f(h)

o From experimental measurement of h, then, one can get A

o Chicot et al: VA= ah +b
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So the contact area of the indentor at peak load that we want to get using measured depth and

the indentor shape function. So the depth measurement is made and we know what the indentor
is, but sometimes the experiment is load versus depth, so we will know the load, we will know

the depth and that is from where we are getting the depth.

And from this we have to somehow get some parameter which will help us get this
measurement because this is not directly measured, so we want to make this function of the

contact depth. But that contact depth area relationship depends on the indentor shape, we know



the indentor shape, but the problem is the indentor gets blunted with use and or there are small

changes in its shape and they can actually affect the contact area that you measure.

So we need to calibrate the area; that contact area that you get for a given measured depth and
particular load versus depth curve that you obtain. How do you do that is what is described and
that is the calibration part. Like | said for calibration, we always should have a material on
which we know what the value should be and use that to back calculate what the equipment is

actually reading and so we get.

So here is the relationship that connects the reduced modulus of a material to the slope of the
depth, load versus depth curve which is the S and the contact area is A. So if you know the
contact area and the slope of the curve, you can actually get the reduced modulus. So we take
a material for which we know the reduced modulus which is fused quartz and that is 69.6 GPa.

So we are going to use this value and so we are going to estimate A, or route A.

So we have a measure of A, but we want to develop a calibration curve in such a way that by
looking at the contact depth, we will say what the area is which means you need to relate A to
contact depth and the contact depth will be measured form the same experiment, so it should

involve the same values that you measure.

And so you can generate a large number of experiments in which you will measure this hc and
A using a known material and so you can develop a relationship between A and hc and then
use that to do the analysis on a new material. And the idea is to carry out large number of
experiment and generate this A versus hc data and you fit A to some function of hc and so from

then an experimental measurement on a new material of this hc one can get the A.

And then you use it to get the mechanical properties of the material. Chicot et al give this root
A is equal to a hc plus b so you have to determine the slope and the intercept so that is what
we are going to do, but if you see Oliver-Pharr’s paper, you will see that it is a very complicated
function, it goes as some, with known constant hc square plus some eight unknown constants
which go as h, h to the power half, h to the power one forth, h to the power a eighth etc. up to
h to the power 128. So we are not going to do this very complicated fitting, we are going to use

a very simple fitting to do the analysis.
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Data generation

P versus h curve for fused quartz
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So this is how the load versus depth curve looks. So this is the loading part and then it is held

for a while and it is unloaded, this is the peak load and the depth at peak load is this quantity
and we are going to fit the unloading part to a straight line and we are going to fit slightly after
this max, we come a little bit down and take the data and do the fitting and the intercept actually

gives the depth that you get from this slope line.
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Data generation

0 VA= \2“252 where S is the slope of the load versus depth curve at unloading and A is
the contact area; E, is the reduced modulus of the material (fused quartz with reduced
modulus of 69.6 GPa)

0 he = hpax — (%‘*’—‘ with ¢ = 0.75 and P,y is the maximum load (with the corresponding
depth given by hpmay

o Do for all 36 plots and save data as a csv file

7
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There is a relationship. So we already know this, so root A is root pi by 2 S by Er,, so pi by 4
S squared by Er squared is actually giving you the A because we know the Er and we can

measure the slope from the this curve. So this is basically the slope of this red line you see here.



So you can get this quantity, so a is known and the contact depth h is given by hmax minus

epsilon Pmax by S.

Epsilon is 0.75, Pmax is the maximum load, and the corresponding depth is hmax, so we know
hmax, we know Pmax, we know S, all these come from the data itself, so by multiplying with
this epsilon you can get a hc. So we have hc and A measured from the curves, so we do it for
all 36 plots and save the data as a CSV file and then do the analysis on the CSV file to get the

calibration curves.
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[plot(x,y:

skip=3

1 <+ 1.e-6*Pn P P Dby Vo

... [440:500]
epth. .nm. [440:560]

S <- fitScoefficients[2]
hs <- epsilon*Pm/S

he <- hm-hs

Ac <- pi*S*S/(4*ER*ER)
X <= 1.e-9* ..M.

y <- 1.e-6*XSLoad...N.
plot(x,y

abline(fitScoefficients,col="red ’1|
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IWed Jun 19 13:01:52 2019 | =
+ Number of Points = 720
« Depth (nm) Load (@N)  Time (s)
0 35361743 0
3434999  53.394227 0.016667
7620436  86.052569 0.033333
11487368  118.970438 0.05 |
14.878467 151.636564 0.066667
17.627788  186.411178 0.083333
20.860398  218.952269 0.1
23457652  251.461833 0.116667
26.047297  286.507504 0.133333
2864363  319.323534 0.15
30923512  351.715007 0.166667
33.196104 386.536268 0.183333
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So let us do that as usually, lets open R and start doing this analysis. So the first one that we

o

want to do is that we will take one of the data and do this fitting exercise. Just to give you an
idea of what is happening. Okay, so we know the Er, we know the epsilon and we read the data
and in this QuartzAreaCalibration directory, there are 36 data sets. First 3 lines are skipped

because if you open the data set, you will see that the first 3.

So it gives some data off when this measurement was made and number of points etc. So we
are going to skip these there steps and then the lines and then we are going to read the header
and then we are going to read the data. So that is what it does, skip three lines and then read
the next one as header and then the rest is data and Pm is nothing but the maximum of the load

and it is micro newton, so we are going to multiply it by 10 power minus 6.

And N at which point the maximum load is measured, the corresponding depth we want, so
which max actually gives the line number, so if you take that line number and measure the
depth that is hmax and that is in nanometre so we are multiplying by 1 e power minus 9. And
then you can go to the data and see somewhere about 440 to 500 is where we are doing the

fitting and that is because that is the point.
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P versus h curve for fused quartz
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So let us go back to this curve, so the 440th to 500 data point is somewhere here and this is
what we are using to do the fitting. So with the max, we come slightly below and so | am just
doing it to show how it works, actually you have to take 5 percent or 10 percent off from the
Pmax and from there we have to choose, of course, when you do this analysis yourself you can
also try those things but in this case | am going to take for 40 to 500 to be slightly below the
hmax and that is here we are taking the data and we are going to do a linear fit.
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> setwd("~/Desktop/DealingWithMaterialsData")
> ER <- 69.6e9

> epsilon <- 0.75

> X <- read.csv("Data/QuartzAreaCalibration/DataSet1.csv",skip=3,he
ader=TRUE)

> Pn <- max(X$Load...N.)

> Pm <- 1,e-6*Pn

> N <- which.max(X$Load...N.)

> hn <- 1.e-9*X$Depth. .nm. [N]

> P <- 1.e-6*X$Load...N.[440:500]

> h <- 1.e-9*XS0Depth. .nm. [440:560]

> fit <- In( P ~ h)

> § <- fitdcoefficients[2]

> hs <- epsilon*Pm/S

> he <- hm-hs

> AC <- Pi*S*S/(4*ER*ER)

> X <- 1,e-9*X$Depth. .nm.

>y <- 1,e-6*XSLoad...N.

> plot(x,y)

> abline(fitScoefficients,col="red")
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fit List of 12
X 720 obs. of 3 variables
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N <- whi (X$Load...N.)
hm <- 1.e-9*X$Depth. .nm. [N]
P <- 1,e-6#X$Load. ..N. [440:500]
h <- 1.e-9#X$Depth. .nm. [440:500]

n( P~ h)
§ <- fit$coefficients

List of 12
720 obs. of 3 variables

Named num 8.33e-13
0.75
o =
.0

n

Yon

10007 15007 20007 25047
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> N <- which.max(XSLoad. . .N.)
> hn <- 1.e-9*XSDepth. .nm. [N]

> fit <- Wn( P~ h)

> § < fitScoefficients[2]
> hs <- epsilon*Pn/S

> he <- hm-hs

> Ac <- pi*S*S/(4*ER*ER)
> X <- 1.e-9*X$Depth..nm.
>y <- 1.e-6*X$Load...N.

> plot(x,y)

> Achc <
A<

Ache[,2]

1H <- Ache[,3]
plot(H,A)
A <- s

m<- n(A
plot(H,A)

0
3.434999
7.620436
11.487368
14.878467
17.627788
20.860398
23.457652
26.047297

28.64363
30.923512
33.196104

> P <- 1,e-6*X$Load. ..N.[440:500]
> h <- 1.e-9*XSDepth. .nm.[440:500]

> abline(fitScoefficients,col="red")

read.csv("Data/Achc.csv")

Load (@N)

35.361743

53.394227

86.052569
118.970438
151.636564
186.411178
218.952269
251.461833
286.507504
319.323534
351.715007
386.536268

P

vEel Q

c%oo [ %

Time (s)

0
0.016667
0.033333

0.05
0.066667
0.083333

0.1
0.116667
0.133333

0.15
0.166667
0.183333

ouse

O}
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> P <- 1.e-6%K$Load. . .N. [440:500]

> fit <- In( P ~ h)

> § <- fit$coefficients[2]
> hs <- epsilon*Pm/S

> hc <- hn-hs

> AC <- pL*S*S/(4*ER¥ER)

> X <- 1.e-9*X$Depth. .nm.
>y <= 1.e-6*X$Load...N.

> plot(x,y)

> A <- Ache[,2]

> H <- Ache[,3]

> plot(H,A)

>

> A <- sqrt(A)

>me< In(A~H)

> plot(H,A)

> abline(m$coefficients,col="red")

=
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> h <- 1.e-9*XSDepth. .nm. [440:500]

> abline(fitScoefficients,col="red")
> Achc <- read.csv("Data/Achc.csv")

m@@

Values
Ac
epsilon

T Pats Pkan Nty Vowar

List of 12
720 obs. of 3 variables

Named nun 8.33e-13
0.75

v
0000 0002 0004 0008 0008 0010

Values
A
Ac
epsilon

P Pats Pkapn Wy Vewar

List of 12
720 obs. of 3 variables

nun [1:36] 9.13e-07 9.03e-07 8.95..

Named num 8.33e-13
0.75

50008 10007 15007
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> hs <- epsilon*Pm/S et
> he <- hn-hs n List of 12

> Ac <- pi¥S*S/(4*ER*ER) X 720 obs. of 3 variables
> X <~ 1.e-9*X$Depth. .nm. Values
>y < 1,e-6*X$Load...N. A num [1:36] 9.13e-07 9.03e-07 8.95..
> plot(x,y) Ac Named nun 8.33e-13
> abline(fit$coefficients,col="red") epsilon 0.75
> Achc <- read.csv("Data/Achc.csv") L -
o by 101 ¢

> A <- Ache[,2]
> H <- Ache[,3]
> plot(H,A)
>
> A <- sqrt(A)
>sme< Wm(A~H)
> plot(H,A)
> abline(m$coefficients,col="red")
> mécoefficients
(Intercept) H
8.803687e-08 5.393204e+00
> plot(fit$residuals) 0 1 P

I

S v
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> he <- hm-hs ot

> Ac <- PL*S*S/(4*ER*ER) n List of 12

> x <= 1.e-9*X$Depth. .nm. X 720 obs. of 3 variables

>y <- 1.e-6*X$Load...N. Values

> plot(x,y) A num [1:36] 9.13e-07 9.03e-07 8.95..

> abline(fitScoefficients,col="red") Ac Named num 8.33e-13

> Achc <- read.csv("Data/Achc.csv") epsilon .75

> A <= Ache[,2] T o gy W

> H <- Ache[,3] e 0,14

> plot(H,A) Normal Q-Q Plot

>

> A <- sqrt(A) .

>me<- Im(A~H) 3 ™

> plot(H,A) i P

> abline(n$coefficients,col="red") é % i

> nScoefficients :
(Intercept) H

8.803687e-08 5.393204e+00

> plot(fit$residuals)

> qqnorm(fitSresiduals) 2 1 0 ! 2

> Thaorstical uanties
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And the slope is actually our S and we know that hc is hmax minus hs which is epsilon into
Pm by S. This is a Pmax and this is the slope that you read from the curve. So we now, and AC
is pi S squared by 4 Er squared, so that also we know and so you can do that and in this case
we are also going to plot this points and then we are going to also fit the line that we are doing
in red which will basically give you the curve that you see in this presentation.

So this is the curve that we got. So this is the data and this is the max and then it comes down
and then we are choosing some points here and then we are fitting a straight line, we are taking
the S and we can calculate all the values. So you have to now do this for all the 36 data points,

right? And that is what is shown in this.

So I am not going to do redo this here, but this shows you that you can take data set 1 and do

this and we also generate a data frame which has 36 rows and 2 columns and the 2 columns are



Ac and hc and we are going to do this for every data set, we store the data. Then we do it for
data set 2 and that is the second line of the data. We do it for data set 3; that is the third line of
the data and so on and so forth.

So you do it for all 36 of them, okay. It is the same code, just that there is no plotting and you
can do it for all 36. Once you do all 36, we are going to right the data as a CSV file. This is
something that we have not done so far, you can also like read CSV, you can use write CSV
and write the data file. So now that we have the data, we are going to do the other analysis, so

that is the analysis that we will do let us do this.

So what is analysis? So we read the data and once you read the data, then you say that okay,
the second column is A and the third column is H. That is because if you look at the data, the
data also has the line number, so let us open the tab. Okay. So the data when it is written, it
also has the line number, so | want to skip the line number part and it is Ac and hc, so that is

what we are reading.

So we plot this h versus A and we take square root of A and we fit it to a straight line. Square
root of A is some m h plus c and so we plot this data and then we plot also the line. So let us
just do this part first. So this is the data that we are getting and now let us do the square root A
and plot and then plot the square root A versus h and then the fitting that we have achieved. So

this gives you the fitting and if you look at m dollar coefficients.

So this is basically telling you that if you can measure a contact depth, 5.393204 times contact
depth plus this intercept some 8.8 and 10 power minus 8 is basically the contact area that you
measure, so now that you have this relationship for any material you just need to measure this
quantity and you can get the contact areas and you can see that the fit is good. Of course there
are other ways of checking that the fit is good.

So let us plot the residuals and you can see that residual is equally distributed and randomly
distributed, so the error is normally distributed. There is another way to check that it indeed is
normally distributed which is Q-Q norm and you can see that this curve is also a sort of straight
line indicating that we have a good fitting and all the error is normally distributed so it is

basically noise and so we have done the calibration.

So to summarise, calibration is very important. Whenever you use any equipment, it has to be
frequently calibrated, this we have discussed when we have discussed error and ways of

avoiding systematic errors and so many cases calibration leads to either calibration table or



fitting so that you will get a calibration curve. Here is an example where we actually fitted it to

get a calibration curve.

And this curve actually connected the contact area to contact depth and contact depth is what
is measured and we have to get the contact area. In order to do this calibration, we use a material
of known modulus and using that we actually calculated the calibration curves themselves, and
| have given the complete process of doing it as well as the data set will be available for you to

experiment with.

So we are going to stop at this point. | will share this data set. | recommend that you go through
this and the example of the compass reading and how to correct for it that is given in Berenson,
that data is also available online, so you can look it up or you can take it from Berenson’s book
and try to do the calibration curve yourself, so to understand it better. So with this we will
conclude this case study and we will look at two more case studies design of experiments and
hypothesis testing in the sessions to come. Thank you.



