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Hello and welcome to the course on Dealing with Materials Data. Today, we are going to start 

a very important and a fresh subject called Regression Analysis. Regression analysis plays an 

important role in data analysis, where you have two sets of data, one is a response value, while 

the others are the independent values and the most common analysis that is being used or it 

should be used to begin with, is a regression analysis and now we will go through this session 

on various aspects of regression analysis  
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So, the outline is for this particular session is going to be, first we will define, what is 

regression? There are two kinds multiple regression versus simple regression. We will talk 

about the random error and the regression coefficients. The least squares estimates of 

regression coefficients, the expected value of for least squares estimates of regression 

coefficient, it is variance. The estimate of variance for random error and we will, at the end we 

will give a slide on most commonly used notation. This slide will be useful in future for 

reference.  
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So let us start, as I said suppose we have a response variable Y and some independent variable 

X1, X2, Xr and you know that there is some relationship between Y and X1, X2, Xr or you at 

least suspect that there might be a relationship between Y and X1, X2, X3, Xr. The simplest 

relationship that can exist between them is a linear relationship which can be expressed as  

• 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑟𝑥𝑟 + 𝜖 

This Epsilon is a very important point. In the reality when we get the data, we cannot be always 

sure that the relationship will be exact like this. If you do not consider epsilon this relationship 

is a mathematical relationship. When you add an epsilon quantity, which is called a random 

error. Epsilon expresses represents a random error in this relationship. This is where the 

relationship becomes random or statistical in nature.  

Now,If r = 1 , then 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜖 is called simple linear regression 

 

In general, with r independent variables, it is called multiple regression and the notation wise 

𝛽0,   𝛽1,   𝛽2 … 𝛽𝑟 are called regression coefficients and they are generally unknown they need 

to be estimated from the data.  
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So, then you have a random error. Generally, it is assumed that the random error has an 

expected value of 0. There is a random error epsilon, which has a expected value 0. What it 

means is that on the average Y actually equal to this value on the average. But otherwise there 

is a plus or minus error in it. This plus or minus error is represented by epsilon and that we can 

say that it is plus or minus average is by saying that it is expected value is 0.  

So, in other words, if you recall our previous sessions, we can say that expected value of Y 

given 

• E(Y|x1, x2, …., xr ) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑟𝑥𝑟 

Because the expected value of epsilon is 0 there is no epsilon here. So, the regression 

coefficients beta 1 beta 0, beta 1, beta 2 and xr need to be estimated given the values of X1, 

X2, X3, Xr.  

It means that the independent variable will be a given fixed random fixed values for us not a 

random variable in this particular case and Y is going to be random variable. Because of the 

randomness of epsilon. First we will discuss in detail, the estimation procedure for beta 0, beta 

1 and sigma square, which is a variance of epsilon, variance of error through the case of simple 

regression that is  

• 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜖, 𝐸(𝜖) = 0 𝑎𝑛𝑑 𝑉𝑎𝑟(𝜖) = 𝜎2 
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What estimation we could have done? The most commonly use estimator is called least squares 

estimator. What are we really trying to do? Let us take the case. This is X and this is Y axis. 

Suppose we have a few data points, which go like this and you have to fit a line through it, you 

have already done this exercise in algebra and this line we fit in such a way that the distance 

between the actual, the line and the actual value is minimize. This is called least squared 

estimator. 

So, we would like to find estimate 𝛽0,   𝛽1 by  minimizing the squared error between values of 

Y and its estimator 𝛽0 + 𝛽1𝑥1. So, let us denote the estimator to differentiate between the actual 

values beta 0 and beta 1 and its estimator we called the estimators A and B.   

So, what we are trying to do is, we want to minimize the sums of squares of  

𝑆𝑆 =  ∑(𝑌𝑖 − 𝐴 − 𝐵𝑥𝑖)2

𝑛

𝑖=1

 

 I guess you already know, why do we take a square? Because if we do not take a square, the 

sum of the distances that you calculate that is without the square if you take Yi minus A minus 

B xi the best is when it becomes 0. If you take a mean value.  

So, the idea is that we square the distance, so that we remove the sign of the difference between 

Y and A plus B xi and then we take a square of it and now we try to find A and B which would 

minimize, which would minimize the sums of squares SS, SS is called SS because it is sum of 

squares, it is a sum of squares. 
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So, the easiest way of doing it is by taking a partial differential, partial differentiation with 

respect to A.  

• 
𝜕𝑆𝑆

𝜕𝐴
= −2 ∑ (𝑌𝑖 − 𝐴 − 𝐵𝑥𝑖)

𝑛
𝑖=1 = 0 

•  
𝜕𝑆𝑆

𝜕𝐵
= −2 ∑ 𝑥𝑖(𝑌𝑖 − 𝐴 − 𝐵𝑥𝑖)𝑛

𝑖=1 = 0 

And this is a very simple simplification, you will come to know that when you do this little 

algebra A turns out to be  

𝐴 = 𝑌 ̅ − 𝐵𝑥̅ 

B turns out to be which looks a little bit complicated, but as we go on you will recognize this 

term, 

𝐵 =
∑ 𝑥𝑖𝑌𝑖 − 𝑛𝑥̅𝑌̅𝑛

𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 − 𝑛𝑥̅2
=

∑(𝑥𝑖 − 𝑥̅)𝑌𝑖

∑ 𝑥𝑖
2𝑛

𝑖=1 − 𝑛𝑥̅2
 

 If you look at it very carefully this comes very close to correlation coefficient. But how to 

derive it. I leave it to you, I think it is a good exercise to simplify this to get to this equation.  

Now, we come to what is the distribution of A and B? Remember that now you are Yi is a this 

whole thing is estimated using the value, let us start the pen. This whole thing is estimated 

using value Yi and Y bar. Remember that xi and x bar are given values. So, they are not random 

variables.  



It is the Yi which is a random variable and therefore A and B now are random variable and we 

must know, what is distribution like as we are done in the past. While working out the 

estimation theory and the hypothesis testing, we need to know the distribution of this random 

quantity, which we are going to use as estimator. 
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So, how to find a distribution of A and B? First we make an assumption, on the distribution of 

Y. Remember that Y is defined as 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝜖 

So far our assumption were only  

𝐸(𝜖) = 0 𝑎𝑛𝑑 𝑉𝑎𝑟(𝜖) = 𝜎2 



Remember just to remind you that this sigma square does not depend on the data value i.  

So, this is the relationship with respect to i is equal to 1 to n. But this sigma square is not 

dependent on i. So, in this relationship, now only we are adding an assumption. There is no 

distributional assumption made so far, no distribution assumed for epsilon only so far. So, far 

we have not made any assumption that is being made now.  

Now we are saying that suppose epsilon is distributed as a normal distribution with mean value 

0 and the variance common variance sigma square for all i is equal to 1, 2, 3 etc n. Why this is 

a normal? Because it is very common to and it is very well known fact. That by enlarge the 

errors are distributed as normal distribution. 

It is a very old story, that it was the Galileo who made so many observations of stars and when 

he found that every time when he makes an observation there is a minute error and that error. 

After 200 years, it was Gauss who found that this error behaves in a very perfect bell shaped 

curve and it was called the Gaussian distribution therefore it has become a normal distribution. 

But that is the side story.  

So, any error to be assumed as a normal distribution is a natural process. So, here we assume 

it as a normal distribution with mean 0 and variance sigma square. and therefore it implies that 

our Yi for i is equal to 1 to up to n is also distributed as a normal distribution. 

Assume that 𝜖~𝑁(0,  𝜎2),  𝑡ℎ𝑒𝑛 for i = 1,  2,  … ,  n 

𝑌𝑖~𝑁(𝛽0 + 𝛽1𝑥𝑖, 𝜎2)  

Now we can find an estimated value of B. Because B you please recall the previous slide the 

estimator of A involves B. Therefore, first we must try to find the expected value of B and use 

it in the estimation expected value of A and therefore we come here and we find that expected 

value of B can be found by, you remember that these are all the constant values given values 

to us.  

𝐸(𝐵) =
∑(𝑥𝑖 − 𝑥̅)𝐸(𝑌𝑖)

∑ 𝑥𝑖
2 − 𝑛𝑥̅2

=  
∑(𝑥𝑖 − 𝑥̅)(𝛽0 + 𝛽1𝑥𝑖)

∑ 𝑥𝑖
2 − 𝑛𝑥̅2

=
∑(𝑥𝑖 − 𝑥̅)2

∑ 𝑥𝑖
2 − 𝑛𝑥̅2

= 𝛽1 

𝐸(𝐴) = ∑
𝑌𝑖

𝑛
− 𝑥̅𝐸(𝐵) = 𝛽0

𝑛

𝑖=1

 

Therefore, it is only the Yi which is a random variable. Therefore, this becomes this now if you 

replace Yi by beta 0 plus beta 1 xi, it will reduce down to the same thing. Shall we do it here?  



So, this quantity cancels and this quantity brings out the beta 1 and the xi square minus 

summation x bar square. So, it will bring you nx bar square and therefore this will become 

beta1. But this is the quantity in which you have to realize, so we have the, this quantity will 

cancel out and this quantity results into this value and therefore it is beta 1 and once you put 

this into it, this is very simple.  

Because this basically gives you the expected value of Y bar, which is nothing but beta 0 plus 

beta 1 x1 bar and then you will again make minus beta 1 x bar and therefore this will become 

beta 0. So, this is how the distribution in the distribution of A and B, we find that expected 

value of A. So, expected value of B is beta 1 and expected value of A is beta 0.  

Just go back and think a little bit. Because epsilon is assumed to be normal with 0 mean and 

variance sigma square Yi becomes normal with a expected value of beta 0 plus beta 1 xi and 

variance sigma square and you can see that, the estimate value of B is also a function of Y with 

certain constant and estimate or the, the expected or the estimate of beta0 A is also a function 

of Y only rest of it is a constant.  

You will find that this two are also distributed that is A and B random variables are also 

distributed as normal. So, all we know to know is its expected value and its variance. So, in the 

next case, we will go, we are going to find out the variance of B and variance of A. 
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So, the variance of A and B again you have to follow the same formula. Variance of A and B 

is  



𝑉𝑎𝑟(𝐵) =
𝑉𝑎𝑟[∑ (𝑥𝑖−𝑥̅)𝑛

𝑖=1 𝑌𝑖]

[∑ 𝑥𝑖
2  −𝑛𝑥̅2𝑛

𝑖=1 ]
2 =

𝜎2

𝑆𝑥𝑥
 , where 

𝑆𝑥𝑥 = ∑ 𝑥𝑖
2  − 𝑛𝑥̅2

𝑛

𝑖=1

 

𝑉𝑎𝑟(𝐴) =
𝜎2 ∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛(∑ 𝑥𝑖
2 −   𝑛𝑥̅2𝑛

𝑖=1 )
 

Because when you do the variance, the constant is square what formula we have used here, if 

you recall is that if a variance of a random variable x is sigma square. Then variance of random 

variable ax is a square sigma square. 

So, this formula is used being here. Therefore, the denominator which is only a multiplier 

remember xi is a given value, so it is a constant value. We understand it is not a random 

variable. So, it is only seats, comes out as a squared of it 1 divide by that as a square of it and 

then you have to take the variance of Yi with its multiplier and therefore that is also going to 

be and another formulae if you know that variance of x is sigma1 square and variance Y is 

sigma 2 square. Then and X and Y are independent or to be very clear not co-related.  

In that case, variants of X plus Y is variance of X plus variance of Y. So, using that formula 

we can simplify this. By stating that, this is equal to summation of Xi minus X bar whole 

square. This part comes out because of this and then you have a variance of Yi and you know 

that variance of Yi this part is equal to sigma square.  

So, when you simplify it, it comes to sigma square divided by Sxx and this is a notation we 

would like to introduce here. Sigma xx is equal to summation of xi square minus or it is the 

same as summation of xi minus x bar whole square i rise from 1 to n. This is a new notation 

we are including here and therefore this becomes a variance. The variance of A can also be 

derived in a similar way and the variance of A can be found to be the same thing. 

𝑉𝑎𝑟(𝐴) =
𝜎2 ∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛(∑ 𝑥𝑖
2 −   𝑛𝑥̅2𝑛

𝑖=1 )
 

 

 Please note that this can also be written as sigma square summation xi square divided by n 

Sxx.  
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Sum of squares of residual. Now one thing is important is we have, there are actually three 

unknown parameters. There are three unknown parameters beta0 beta1 and sigma square. We 

estimated this by A we estimated this by B. What about this? This is the question we want to 

answer and that we are going to do that if Yi is an observed value and A plus B xi is an estimated 

value. Then we define residual Ri as 

Ri = Yi – A – Bxi 

 Then sum of square of residual is defined as summation of Ri square and you can make out 

that Y is a normal random variable. 

𝑆𝑆𝑅 = ∑ 𝑅𝑖
2

𝑛

𝑖=1

 

If you take A plus B xi, this is also a normal random variable. Therefore the difference should 

also follow normal random variable with a mean 0 and therefore summation of Ri square will 

follow Chi square distribution and the degrees of freedom will be n minus 2 because we had n 

data points. 

 

We had n data points and we have already estimated beta0 and beta1, two parameters estimated. 

Therefore, degrees of freedom come to n minus 2. So, this follows Chi square n minus 2, and 

then the expected value of sums of squares of residual divided by n minus 2 is sigma square. 

 



(Refer Slide Time: 26:53) 

 

Finally, we introduced some of the notations  

𝑆𝑥𝑌 = ∑(𝑥𝑖 − 𝑥̅)(𝑌𝑖 − 𝑌̅) = ∑(𝑥𝑖𝑌𝑖) − 𝑛𝑥̅𝑌̅

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̅)2 = ∑(𝑥𝑖
2) − 𝑛𝑥̅2

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑆𝑌𝑌 = ∑(𝑌𝑖 − 𝑌̅)2 = ∑(𝑌𝑖
2) − 𝑛𝑌̅2

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑇ℎ𝑒𝑛  

𝑩 =
𝑺𝒙𝒀

𝑺𝒙𝒙
,    𝑨 = 𝒀̅ − 𝑩𝒙̅ and 𝑺𝑺𝑹 =

𝑺𝒙𝒙𝑺𝒀𝒀−𝑺𝒙𝒀𝟐

𝑺𝒙𝒙
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The distribution of least square parameter, under the assumption that the errors are distributed 

as normal with the sigma square.  

𝑨~𝑵 (𝜷𝟎,  
𝝈𝟐 ∑ 𝒙𝒊.

𝟐

𝒏𝑺𝒙𝒙
), and 

𝑩~𝑵 (𝜷𝟏,  
𝝈𝟐

𝑺𝒙𝒙
) 

𝑺𝑺𝑹

𝝈𝟐
=

𝑺𝒙𝒙𝑺𝒀𝒀 − 𝑺𝒙𝒀𝟐

𝑺𝒙𝒙𝝈𝟐
~𝝌.

𝟐(𝐧 − 𝟐) 

 



Therefore you can write that SSR, sums of squares of residual divided by n minus 1, n minus 

2. It is expected value is equal to sigma square. These are the two tables worth remembering 

and worth understanding this is the crux of today’s lecture.  
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So in summary, we defined the concept of regression. In the case of simple regression equation, 

we estimated the regression coefficients through least squares estimate arrived at their expected 

value and variance estimated the error variance introduced commonly used notation for least 

squares estimate of regression coefficient and their distribution.  


