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Hypothesis Testing VI 

Hello and welcome to dealing with materials data course, we have come a long way in learning 

about hypothesis testing, all the way we have worked with the case in which we have 

considered normal distribution as the population distribution.  
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So, if we review it quickly, what we have seen is we have tested the null hypothesis, if the 

population is normal which mean Mu and variance sigma square.  

• Considered various cases of testing of null hypothesis 𝐻0: 𝜇 = 𝜇0 under following 

alternatives 

• 𝐻𝐴: 𝜇 ≠ 𝜇0 

• 𝐻𝐴: 𝜇 > 𝜇0 

• 𝐻𝐴: 𝜇 < 𝜇0 

In both the cases, we found that if the population variance sigma square is known, then it 

reduces down to testing a hypothesis using the test statistics Z, which is a standard normal 

variate. It is a normal variate with mean 0 and variance 1. In case we assume that sigma square 

is unknown, then it reduces to a test statistic which is a students T distribution statistic.  



And it is distributed a students T distribution with N minus 1 degrees of freedom. The 

advantage of the two is that none of the two statistics distribution under H0, when you assume 

that null hypothesis is true, does not it does not depend on any other parameter then the value 

n or in case of Z it does not depend even in the size of the sample. 

Something I have not shown here, but we also went through a testing of hypothesis process for 

testing that the sample, the population variance is equal to a given value sigma 0 square. And 

we found that Chi square that is N minus 1 sample variance divided by the sigma naught square 

is the Chi square variate and that variate if we call W then or we have called it Y probably that 

is the variate which has a test statistic, it becomes a Chi square distribution with N minus 1 

degree of freedom.  

So, it does not have any other parameter, only parameter is a known value depending on the 

sample size. And again, we tested the three alternatives and we found three critical regions in 

which we can reject the hypothesis when we assume that null hypothesis is true.  
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So, then comes what we want to do now, as I said before, we already made an assumption that 

the underlying population distribution is normal, but that may not be always the case. And as 

it was mentioned earlier also that in the material science and metallurgical engineering number 

of times the data do not follow a nice symmetric distribution like normal and we cannot really 

apply central limit theorem because the data size is not sufficiently large.  

So, in this presentation today, in this session today, we would like to derive our test statistic to 

test the hypothesis, the same two hypotheses that the population mean is equal to a given value 



versus its three alternatives. And population variance is equal to given value versus its three 

alternative, but the underlying population distribution will not be assumed to be normal. In this 

case, as a case we have assumed it to be Weibull distribution.  

(Refer Time Slide: 04:54) 

 
We had mentioned it earlier, you just observe the test statistic that we found in testing the 

hypothesis that Mu is equal to Mu 0, when sigma square or the population variance is known 

is Z which depends only on X bar and rest of them are known parameters. If you say sigma 

square is unknown, then sigma square gets replaced by the sample variance.  

So, T statistic is depends on X bar and S and otherwise Mu and Mu 0 and N which are all the 

known quantity. This X bar and S are very special statistics, because expected value of X bar 

is always Mu and variants of X bar is always sigma square over n no matter what the underlying 

population distribution.  

Also, if you look at it, the expected value of S square is also sigma square, independent of what 

distribution, underlying distribution is it need not be normal. So, this actually indicates that the 

same Z and T can well be used as test statistics to test the same hypothesis Mu is equal to Mu 

0 when sigma square is known, and Mu is equal to Mu 0 when sigma square is unknown.  

And we can follow the practice only thing is assumption of normality makes life easy because 

the distributional aspect of the test statistics Z and T become very obvious, one is a standard 

normal distribution and the other is a T distribution with n minus 1 degree of freedom, which 

may not be the case when you deviate from the assumption of normality.  



But well in that case, with the advent of computers and so much of computing facility and 

software, there always should be possible to find a numeric solution through either the 

numerical analysis or through Monte Carlo simulation and that is exactly what we are going to 

demonstrate or rather show it here. So, let us consider a case that we want to test the hypothesis 

Mu is equal to Mu 0 under Weibull distribution.  
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So, here I have given you a situation in which such a problem can arise. Suppose, there is an 

indigenous engine component and this component is now need to be replaced where we earlier 

the manufacturer was using it important component. Now, the developers of the indigenous 

component have to show that its performance or the performance criteria that the important 

component meets is are also made by the indigenous component. And suppose the criteria is 

matching the low cycle fatigue life LCF life is the property we would like to compare.  

So, assume that we have a data, sample data from the indigenous component X1, X2, X3, XN 

and we would like to, from this data we would like to show that the mean LCF value and the 

standard deviation of LCF value from this sample is same as what you would get from the 

important component. Remember, it is one can show that LCF values can follow closely 

Weibull distribution.  
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So, let us set up the problem, we want to test if LCF of indigenous component is same as that 

of an important component. So, for comparison we have two pieces of information, we have 

an LCF data X1, X2, X3, XN which is a random sample of size N. And we have mean value 

of important component Mu 0 and a standard deviation of important component sigma 0.  

Let Mu denote the mean value of LCF of indigenous component and sigma denote the standard 

deviation of the indigenous component. Then, in the present case, we would like to test the 

hypothesis that Mu is equal to Mu 0, where the population distribution is Weibull.  
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In reality, we have to assume three parameter Weibull distribution. In the case of special 

random variable, we have given a very brief introduction to three parameter Weibull 



distribution. So, we will revisit it here, the probability density function of three parameter 

Weibull distribution is given in this format,  

𝑓(𝑥) =  
𝑐

𝛽
(

𝑥 − 𝜉

𝛽
)

𝑐−1

𝑒𝑥𝑝 {− (
𝑥 − 𝜉

𝛽
)

𝑐

} 

 

where the 𝜉 is called the location parameter 𝛽 is called the scale parameter and C is called the 

shape parameter.  

Now, let us take a transformed variable W, which is equal to 

𝑊 =
𝑋−𝜉

𝛽
  ~ 𝑊𝑒𝑖𝑏(0,  1,  𝑐) is called standard Weibull distribution 

Weibull distribution with location parameter 0, scale parameter 1 and a shape parameter C. So, 

it means that this is this depends only now on one parameter which is called C, it is shape 

parameter.  

This is also called a Standard Weibull distribution. Remember standard normal distribution 

does not depend on any parameter. Standard Weibull distribution depends on one parameter 

which is a shape parameter. The mean of standard Weibull distribution Mean of std Weibull 

distribution 𝜇𝑊 =  𝛤 (
1

𝑐
+ 1) 
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Now, if we transform the variable, the Weibull variable into 



𝑊 =
𝑋 − 𝜉

𝛽
 

⇒ 𝑋 = 𝜉+ 𝛽 𝑊 ∴ 𝐸(𝑋) = 𝜉 + 𝛽𝐸(𝑊) ⇒  𝜇 = 𝜉 + 𝛽𝜇𝑊 

Similarly 𝜎2 =  𝛽2 𝜎𝑊
2  

Let 𝑋1,  𝑋2,  … ,  𝑋𝑛 be random sample from Weib(𝜉, 𝛽, c) 

Then 𝑊1 , 𝑊2,  … ,  𝑊𝑛 is a random sample from Weib(0, 1, c) 

𝑋̅ = 𝜉 +  𝛽𝑊̅ 

𝑆2 =  𝛽2𝑆𝑊
2  
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Let us define Weibull T statistic that is our t statistic that we already know 

𝑇 =  
𝑋̅ −  𝜇

𝑆
√𝑛

⁄
 =  √𝑛

𝑊̅ − 𝜇𝑊

𝑆𝑊
 

I call it T, but it would not follow the student’s T distribution, whatever it may follow, I call it 

a Weibull t distribution and I call this a Weibull t statistic. T is called a Weibull t statistic and 

unlike T distribution Weibull t statistic also depends on one parameter, unknown parameter C, 

which is the shape of Weibull distribution.  

So, it depends on of course, the degrees of freedom should be n minus 1 and because we have 

estimated X bar. So, with the degrees of freedom will be n minus 1, but it will also have another 



parameter along with it which is C. Now, we consider the testing of hypothesis Mu is equal to 

Mu 0 against the three alternatives H1, sorry it should be H1, H2, H3 but there is a mistake 

here. Let us correct it so that the mistake does not continue.  

• Consider 𝐻0 :  𝜇 =  𝜇0 with following three possible alternatives 

1. 𝐻1 :  𝜇 ≠  𝜇0 

2. 𝐻2 :  𝜇 >  𝜇0 

3. 𝐻3 :  𝜇 <  𝜇0 

We straight away assume that sigma square is unknown. Then the T statistic as defined above 

can be a T statistic  𝑇 =  
𝑋̅ − 𝜇0
𝑆

√𝑛
⁄

 =  √𝑛
𝑊̅−𝜇𝑊0

𝑆𝑊
  for 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻0 :  𝜇 =  𝜇0. 
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Let us define what will be the critical region, you recall what we did in the past and we follow 

the same steps. So, if we fix the alpha and the type one error at alpha, then for the testing the 

null hypothesis against the three alternatives,  

1. 𝐻1 :  𝜇 ≠  𝜇0:  Reject 𝐻0 if  |𝑇| >  𝑡𝑤 ((1 − 𝛼
2⁄ ),  𝑛 − 1) 

 

And of course, there will be a parameter I am sorry, of course, there will be a parameter C, 

which I have missed out. So, this is going to be your critical value, the alpha 1 minus alpha by 



2 comes under the same argument, we are assuming that it is going to be symmetric. If it is not 

symmetric, then it has to have the two value I think it is, it would be more appropriate, if we 

write it that this can be written as  

𝑇 <  𝑡𝑤 ((1 − 𝛼
2⁄ ),  𝑛 − 1)  𝑜𝑟 𝑇 >  𝑡𝑤 ((1 − 𝛼

2⁄ ),  𝑛 − 1) 

This has to be either this or that.  

Then, if we consider the rejection with the alternate hypothesis  

2. 𝐻2 :  𝜇 >  𝜇0 Reject 𝐻0  if 𝑇 > 𝑡𝑤((1 − 𝛼),  𝑛 − 1, 𝑐) 

3. 𝐻3 :  𝜇 <  𝜇0 Reject 𝐻0  if 𝑇 < 𝑡𝑤(𝛼,  𝑛 − 1, 𝑐) 

So, in other words like a Chi square distribution, we are assuming that this distribution will 

also be kind of asymmetric distribution. And then we are taking two values, this is t alpha by 

2 and this is t 1 minus alpha by 2 and with the rest of the parameters, so that is n minus 1 and 

C, here also there is n minus 1 and C, this is the case with respect to this.  

So, if you are looking for this situation, then you are going to look into this area to be alpha 

and therefore, this value is going to be t 1 minus alpha n minus 1 C. And if you are looking for 

the fourth case, if you are looking for this fourth case, then you will have to take some value 

here, where this value, this area is going to be alpha and therefore, this is going to be T Sub W 

alpha n minus 1 and C. I hope this is clear. So, these are going to be the critical region.  
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So, how do we find any critical value and again I have to add a C here. I have to add a C here 

because it is actually, so this should be written as 

𝑡𝑤(𝛼,  𝑛 − 1, 𝑐) 

So, it is a Weibull t distribution depends on degrees of freedom n minus 1 and shape parameter 

of a Weibull distributions C. Therefore, Weibull t distribution does not have any closed form 

solution, the way we have defined it, it does not have a closed form solution hence the critical 

values of Weibull t are generally simulated, we will give you the here how to simulate it.  
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So, this Monte Carlo simulation can be carried out that. 

• Take 𝜇0 

• Calculate using inverse gamma function 𝑐0 =
1

𝛤−1(𝜇0) −1
 

• Generate M number of  samples of size n from Weib(0, 1, 𝑐0),  

𝑊𝑗𝑖 ,  𝑖 = 1,  2,  … ,  𝑛; 𝑗 = 1,  2,  … ,  𝑀 

•  For j = 1, 2, … , M calculate 𝑊𝑗
̅̅ ̅  𝑎𝑛𝑑 𝑆𝑊𝑗

2  

• Calculate Weibull-t statistic   𝑇𝑗 = √𝑛
𝑊𝑗̅̅ ̅̅ −𝜇0

𝑆𝑊𝑗
 

• Sort the statistics 𝑇𝑗 and (1-α)*M would give the Weibull-t critical value 



Once you have M capital M of T, j you sort them out from smallest to the largest. And if you 

take 1 minus alpha time M value of Tj that will be the alpha level critical value of Weibull t 

distribution depending on C0. So, what you really need to do is for different values of C0 you 

have to simulate this or as and when needed, you take what is your M 0, you convert it into 

your C0 and write a nice program, so that every time it generates this critical value and gives 

you, please remember when we do Monte Carlo simulation, it is very important to see the 

stability of it, make sure that the C that is given into it does not conflict with your Monte Carlo 

simulation process.  
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If suppose now we want to test sigma square is equal to sigma naught square okay.  

Under the assumption of Normal population testing  

𝐻0 : 𝜎2 =  𝜎0
2 

Leads to test statistic  

𝑊 =  
(𝑛 − 1)𝑆2

𝜎0
2   ~𝜒2 (𝑛 − 1) 

Just as in the previous case of testing Mu is equal to Mu 0 we find rather we observe that 

expected value of S square is sigma naught square or a sigma square independent of what is 

underlying population.  



Hence, W can also be a test statistic for the present case. And when population under concern 

is Weibull, such a statistic is called a Weibull Chi square statistics and the distribution is called 

Weibull Chi square distribution.  
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Again, you can find the critical region. Here also please remember the statistic will depend on 

C. So, let me write it down everywhere. So, we will have this with C, here also there will be a 

C. So, if you are taking null hypothesis, 𝐻0 :  𝜎2 =  𝜎0
2 

and your alternative 

1. 𝐻1 :  𝜎2 ≠  𝜎0
2:  Reject 𝐻0 if  𝑊 < 𝜒𝑊

2 ((𝛼
2⁄ ),  𝑛 − 1, 𝑐) or 

                                               𝑊 > 𝜒𝑊
2 ((1 − 𝛼

2⁄ ),  𝑛 − 1, 𝑐) 

2. 𝐻2 : 𝜎2 >  𝜎0
2   Reject 𝐻0  if 𝑊 > 𝜒𝑊

2 ((1 − 𝛼),  𝑛 − 1, 𝑐) 

3. 𝐻3 : 𝜎2 <  𝜎0
2  Reject 𝐻0  if 𝑊 < 𝜒𝑊

2 (𝛼,  𝑛 − 1, 𝑐) 

If your alternate is sigma square is greater than sigma 0 square, then we say that reject H0. If 

your Chi statistics W is greater than the Weibull Chi square with probability 1 minus alpha N 

minus 1 degrees of freedom and nuisance parameter C. And if sigma square is less than sigma 

0 square is your alternative, then the critical value is Weibull Chi square at alpha probability n 

minus 1 degrees of freedom and nuisance parameter C. 
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How do you find a critical values of Weibull Chi square distribution with n minus 1 degrees of 

freedom and nuisance parameters C, when we have to take the same steps as given to simulate 

the critical values instead of calculating test statistic, which is test statistic, which is Tj you 

calculate wj and sort wj from smallest to the largest and take 1 minus alpha times M th value 

which will give you Weibull Chi square critical value.  

Please remember, here this value given is sigma naught square, so there will be a slight change 

in the beginning, he will take sigma naught square and from that you will calculate there is you 

have to find out the formula for sigma naught squared, which is given earlier and then you have 

to calculate the value of C naught and then do the simulation.  

So, let us summarize it, we defined the testing of hypothesis process for testing Mu is equal to 

Mu 0 and sigma square is equal to sigma naught square under non normal distribution, in 

particular we took the case of Weibull. We did this because we found that the test statistics Z 

and T which we have chosen under normal population, their properties of choosing them for 

statistic is independent of what is the underlying population.  

So, we decided that the same statistic can also be useful, we felt that it can also be useful to test 

the hypothesis under different population distribution. We did that with the Weibull 

distribution.  
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We found Weibull T and Weibull Chi square statistic, we found the critical region and we give 

the steps through Monte Carlo simulation to simulate the critical values. Please remember, 

there is nothing wholly about Weibull. This is just a case has been given to you, because when 

you said that distribution is not normal, there are too many possibilities come up. So, we have 

shown you one possibility, you can change it and see how the test procedure can develop as 

and when the need arises. Thank you.  

 

 


