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Log Normal Distribution

Welcome to Dealing with Materials Data, this is a course on collection, analysis and
interpretation of data from material science and engineering. We are looking at some of the R-
tutorials. So, we had an introduction to R and then we learned how to describe data using R

and this is the module on probability distributions.

And in this module, we have looked at discrete distributions. We have also looked at the
uniform distribution which is sorry normal distribution which is a continuous distribution. And

we are going to continue with continuous distributions.
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' Module: Probability distributions

Log normal distribution
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Log normal distribution

o If log(x) is distributed normally, x is said to follow lognormal distribution

af{x).—%%m[ M_‘l

forx>0>0
f(x) = 0 otherwise

o Change of variable y — log(x): resulting distribution is standard normal with o = i,
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o Kolmogorov: Law of fragmentation
Large collection of particles resulting from particle fragmentation (such as a mineral):
approximately follows lognormal distribution

Q—— Dutg it Mok Dot m )
09 = e ep [ 120
forx>0,>0
fx)=0
Change of variable y — log(x): resulting distribution is standard normal with

a=upf=o0

So Kolmogorov is the one who came up with the law of fragmentation. He showed that large
collection of particles which result from particle fragmentation, you know, this is very

important in mineralogy, in geology and such areas where you are trying to break and make



smaller particles. And in such cases, the particles their size distribution is actually a log number.

So, this is what Kolmogorov showed.

And in the case of grain size for example, sometimes it is said that the data follows log normal
distribution. I am going to show you one data which comes from a paper of underwood, Ferrite
grain size, which we will plot and see that it follows log normal. But if you use our fit distr
plus, fit distribution plus library and try to do the fitting, you will see that it is not quite log

normal.

And this is a common, in fact, many data sets that is expected to be log normal, I have verified

and rarely you get good fit for log normal.
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Particle size distribution

@ J E Smith and M L Jordan, Mathematical and graphical interpretation of the log-normal
law for particle size distribution analysis, Journal of Colloid Science, Vol. 19, p. 549
(1964)

o Log-normal law: excellent for particle size distribution analysis

o How to gather data and how to analyse

There is one more data set which from Smith and Jordan, so it is says mathematical and
graphical interpretation of log number law for particle size distribution analysis from Journal
of Colloid Science. And they also say that log normal law is excellent for particle size
distribution analysis.

And they also describe in their paper, how to gather data and how to analyze the data for log
number of distributions. So, we will take data which is given in this paper and try to see if it
follows log normal and also try to generate from our R-model, the data and try to see if we can
compare the distribution that we generate with the empirical data and say anything about the
distribution.
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Log-normal distribution in R

o lnorm

o dlnorm, plnorm, qlnorm, and rnorm

o Plot the probability density, cumulative distribution function and quantile function for
log-normal distribution (with mean and standard deviation of 2 and 1 respectively)

o Generate 20 random deviates of log-normal distribution (with mean and standard
deviation of 2 and 1 respectively)

P
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Of course, the log normal distribution for in R, the command is Inorm. So, dlnorm, plnorm,
glnorm, rlnorm are the commands as a function calls. So, you can get the probability density
cumulative distribution function and quantile function using these 3 functions. The random

deviates are generated using rlnorm.

So, we are going to use standard mean of 2 and standard deviation of 1 and we are going to
generate these quantities just to check. So, we will now do the R tutorial for log normal

distribution



(Refer Slide Time: 04:31)

I Y Y Tl XY |
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1 Log-normal distribution

fpar (afrowsc(3,1)
K << 90q(0,50,0. 1)
plot(x,dinors(x,2,1)

plot(y,qlnoraly, 2,1 x

REOMABRNOE

R is free software and cones with ABSOLUTELY NO WARRANTY,
You are welcone to redistribute it under certain conditions,
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors, [P S —
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, ‘help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R,
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You are welcone to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details. Values
X num (1:501) 6 0.1 0.2 0.3 0.4 0.5 0.
Natural language support but running in an English locale y nun [1:101] 6 6.01 6,62 6.63 6.64 0

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications. LS —

Type 'demo()' for some demos, 'help()' for on-line help, or

"help.start()' for an HTHL browser {nterface to help. N

Type 'q()' to quit R.

> par(nfrows=¢(3,1))

> X < 5eq(0,59,0.1) { -“‘____-—---'*
> plot(x,dlnorm(x,2,1)) . v v
> plot(x,plnorm(x,2,1))
> y <+ $¢q(0,1,0.01)

> plot(y,qlnorm(y,2,1))

> par(nfrowsc(1,1)) [ E——

txy )|
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The first exercise as usual, we are going to make 3 plots. And we are going to plot between 0
and 50. And the first one is log normal, the probability distribution function. The second one
is a cumulative distribution function. And as we indicated for dinom, the mean log is to a 2 and

standard deviation log is 1.

So, that is a value we are using. So, you can see the mean log 0, standard log 1. Standard
deviation of log 1 is what by default it uses, but you can change those values. And of course, I
am also going to do the quantile plot. So, there are going to be 3 plots. So, you can see that
this is the distribution and this is the cumulative distribution function and this is the quantile

plot. Of course, you can plot just the plots individually to get a better idea how they look.
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Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale X nun [1:501) 0 0.1 0.2 6.3 0.4 0,50
y nun (1:161) © 0.61 0,62 6.03 6.04 6.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help
Type 'q()' to quit R,

> par(mfrow=c(3,1))

> X < 5eq(0,50,0.1)

> plot(x,dlnorn(x,2,1))
> plot(x,plnorn(x,2,1))
> y <- 5eq(0,1,0.01)

> plot(y,qlnorm(y,2,1))
> par(mfrow=¢(1,1))

> plot(x,dlnorn(x,2,1)) ;

AERobRRPOR
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Natural language support but running in an English locale Values

X num [1:501) 0 0.1 0.2 0.3 0.4 0.5 0.
R is a collaborative project with many contributors. y nun [1:161] 6 6.61 6,62 6.63 6.64 0.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()’' for on-line help, or . . -
-t

‘help.start()' for an HTML browser interface to help
Type 'q()' to quit R.

> par(nfrowec(3,1))

> X <- seq(0,50,0.1)

> plot(x,dlnorm(x,2,1))
» plot(x,plnorn(x,2,1))
>y <- seq(0,1,0.01)

> plot(y,qlnorm(y,2,1))
> par(nfrowec(1,1))

> plot(x,dlnorm(x,2,1))
> plul(:,plnovn(x,),!))

CEobhRROO*R
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Natural language support but running in an English locale f Sncpuma
Values
R is a collaborative project with many contributors. X nun (1:501] 0 0.1 6.2 6.3 0.4 0.5 6.
Type 'contributors()' for more information and y nun [1:101] 6 0.01 6,02 6,63 6.64 0...

‘citation()' on how to cite R or R packages in publications,

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()’ for an HTML browser interface to help. S
Type 'q()' to quit R. ol

> par(nfrow=¢(3,1))

> X < $eq(0,50,0.1)

> plot(x,dlnorm(x,2,1))
> plot(x,plnorm(x,2,1))
> y < seq(0,1,0.01)

> plot(y,qlnorn(y,2,1))
> par(nfrowsc(1,1))

> plot(x,dlnorm(x,2,1))
> plot(x,plnorn(x,2,1))
> plot(y,qlnorn(y,2,1))

CmobRRPO*R

So, this is the distribution function of standard log normal distribution. So, if you see some data
follows distribution like this then you expect it to be a log normal. So, that is what we are going
to see, you will see many data that looks like this, but it need not be log normal because there

are competing distributions which described similar kind of data is what we are going to see.

And of course, we will see the cumulative distribution function goes like that okay and the
quantile function, it goes something like this, so because it is the inverse of the cumulative

distribution function.
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R is a collaborative project with many contributors. e et

Type 'contributors{)’ for more information and Values

‘eltation()' on how to cite R or R packages in publications. X nun [1:20) 5.21 16,53 3.85 7.59 1.64.
y num [1:161] 6 6.81 8.62 6.63 6.64 8._

Type 'demo()’ for some denos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.
Type 'g(})" to quit R.

» par(nfrowsc(3,1))

> % <- 36(9,50,0.1) ——
= plot{x,dlnorm{x,2,1))

> plot(x,plaorm{x,2,1))

>y <- 3eq(0,1,0.01)

= plot(y,qlnorm{y,2,1)) 7
> par(nfrowsc(1,1)} 3
> plot(x,dlnorm{x,2,1)) :
= plotx,plaorm{x,2,1))

> plot(y,qlnorm{y,2,1))

> % <= rlnorn(20,2,1)

= hist(x)

2 |
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Of course, one can generate random deviates from log normal distribution. And that is what,
we will do and plot that data as a histogram and here is that data. So, this generates random
deviates from log normal distribution, again with the same mean and standard deviation, and

then we are going to have histogram plot.

And you can see that the data goes like this. Okay so, it has a long tail but it peaks somewhere

closer here in the beginning and then it goes down.
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> plot
> plot
>y«
> plot
> par(
> plot
> plot
> plot
>X <
> hist
> X <
‘

> X

50.62
6 0.61

> plot

/Data/FerriteSizeVarsualiusbers .cav® |

cannot open file '

Data/Ferrite$

o8 Error in file(file, "rt*): cannot open the connection

ry(fitdistrplu

#7 Loading required package: NASS
#¥ Loading required package: survival

#7 Loading required package: npsury

G —

(x,dlnorm(x,2,1))
(x,plnorm(x,2,1))
seq(0,1,0.01)
(y,qlnorm(y,2,1))
nfrow=c(1,1))
(x,dlnorm(x,2,1))
(x,plnorm(x,2,1))
(y,qlnorn(y,2,1))
rlnorm(20,2,1)
(x)
read,csv( “Data/FerriteSizeVersushumbers.csv”,
header=FALSE)

viow

10,0631 2713
2 0.0501 4341
30,0398 8313

4 0.0316 7630

51 3359 'y
9l

V19

99

X 6 obs. of 2 variables
Values
y nun [1:161] 6 0.61 0,62 6,03 0.04 0.
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> plot(x,plnorn(x,2,1)) e

> y < seq(0,1,0.61) Data

> plot(y,alnorn(y,2,1)) X 6 obs. of 2 variables

> par(nfrow=c(1,1)) Values

> plot(x,dlnorn(x,2,1)) y nun [1:101) © 6,61 6,62 0,03 6.64 0.

> plot(x,plnorn(x,2,1))
> plot(y,qlnorn(y,2,1))
> x < rlnorn(20,2,1) . - o
> hist(x) G
» X <- read,csv("Data/FerriteSizeVersusNumbers.csv",
header=FALSE)

> X

Vi ow
10,0631 2713
2 0.0501 4341
3 0.0398 8313
40,0316 7630
5 0.0251 3359
60.0199 49
> plot(x$vl,x$v2)
3 | 1 W

)

So, let us take a look at a couple of data sets. The first one that | want to use is from underwood.
And so let us read that data first. So, it is for ferrite size versus numbers that is what Underwood
has given. So this is the size and these are the numbers. So, if you plot, so you see that the data

goes like this.

So, Underwood says that this could be expected to be log numbers normal approximately and
let us check.

(Refer Slide Time: 08:21)
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o Loading required package: NASS

#1 Loading required package: survival

## Loading required package: npsurv
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> plot(x,plnorn(x,2,1)) ~iltosity

> plot(y,qlnorn(y,2,1)) Data

> x < rlnorn(20,2,1) X 6 obs. of 2 variables

> hist(x) Values

> x < read.csv(“Data/FerriteSizeVersusNumbers.csv”, y nun [1:161] 6 6.61 6,02 6.03 6.04 0,
¢ header=FALSE)

> X

viow o e
10,0631 2713 TR AT
2 0.0501 4341
30,0398 8313 ,

40,0316 7630 '

5 0.6251 3359 :
60,6199 491 i
> plot(xsv1,xsv2) i

> library("fitdistrplus")

Loading required g

## Loading required package: lset

REobRRNO~E

» X <- rlnorm(20,2,1) o] § enotmanan

> hist(x) Data

> X < read,csv( “Data/FerriteSizeVersusNumbers.csv", X 6 obs. of 2 variables

+ header=FALSE) Values

> X y nun [1:161] 0 6.01 0,02 0.93 .04 0..
viow

10.0631 2713

2 0.0501 4341 PSR —
3 0.0398 8313 PRGN
4 0.0316 7630

5 0.6251 3359

60,0199 491 '

> plot(x$v1,xsv2)

> library("fitdistrplus")

aqui

) requ
Loading required package: lse
» descdist(data=x)

1st(data
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40,0316 7630

5 0.6251 3359

6 0.0199 491

> plot(x$V1,x5v2)

> \ibrary("fitdistrplus")

Loading required package: MAS

Loading required
> descdist(data=x)
Ere

> descdist(data=x$vl)
summary statistics

n descdist(data

nin: 0.0199 max: 0.0631
median: 0.0357

mean: 0,03826667

estinated sd: 0.01621242
estinated skewness: 0.5773276
estinated kurtosis: f.279673
> Ge XY
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» descdist(data=x)

> descdist(datasxivl)

summary statistics

nin: 0.0199 max: 0.6631
median: 0.0357

mean: 0,03826667

estinated sd: 0.01621242
estinated skewness: 0.5773276
estinated kurtosis: 2.279673
> descdist(datasx$v2)

summary statistics

nin: 491 max: 8313

median: 3850

mean: 4474.5

estinated sd: 2997.485
estinated skewness: 0.1994927
estinated kurtosis: 1.772462

]
AEobRRT@eR

Err n descdist(data X Jata must be 3

e

pulltaze
Data
X 6 obs. of 2 variables
Values
y nun [1:101) 6 6.61 6,02 0,03 0,04 0.
[ —
Cutien and Frey graph
| & "
. o
. -
;"".' x

Data

X 6 obs. of 2 variables
Values
y nun [1:101] 0 6.01 6,02 6,03 6.64 0,
[y S
Cuften and Frey graph
| & =
. T‘.
=

So, we want to use the library fit distr plus then we want to, okay so we want to take this data

and we want to check whether our data follows. As you can see, if it try to look at the data,

then it does not follow log normal really, log number is somewhere here and our observation

lies somewhere in beta. This is for V1, you can look at V2, in fact V2 is more or less like

uniform. So, it is clear that difficult to see that this data follows log normal distribution.
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x <~ read.cov(®../Data/SaithlordanloghornalData. cav®)
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summary statistics °| 8 Smommna

...... Data

nin: 0.0199 max: 0.0631 X 6 obs. of 2 variables

median: 0.0357 Values

mean: 0,03826667 y nun [1:101] 0 0,01 0,02 6.03 0.04 0..

estinated sd: 0.01621242

estinated skewness: 0.5773276

estinated kurtosis: 2.279673 . -
> descdist(datasx$v2) ol
summary statistics Cuen and Frey graph
nin: 491 max: 8313 .
median: 3850 "l ®

mean: 4474.5 1+

estinated sd: 2997.485 I 1

estinated skewness: 0.1994927 I .' ‘

estinated kurtosis: 1.772462 o

> x < read,csv("Pata/SnithJordanLoghornalData.csv . .

descdist(datasx$Size B o e

YT

...... Data
nin: 491 max: 8313 X 18 obs. of 3 variables

median: 3850 Values

mean: 44745 y nun [1:161] 0 0.01 0,02 6.03 6.04 0.
estinated sd: 2997.485

estinated skewness: 0.1994927

estinated kurtosis: 1.772462 . -

> X < read.csv(“Data/SmithJordanLogNormalData.csv") s .
> plot(x)

> library(fitdistrplus) o

> descdist(datasx$Size) .| & -
summary statistics e

nin: 0.25 nmax:i 23.5 é
median: 7.2 ]
mean: B8.856111 «

estinated sd: 7.17718 . ]
estinated skewness: 0.6621157 1 2 $ 2 —
estinated kurtosis: 2,335249 ' ! : ‘

) 1 154 ol wewren
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nin: 491 max: 8313 Data

median: 3850 X 18 obs. of 3 variables
mean: d474.5 Values
estinated sd: 2997.485 y nun [1:101] 6 6.61 6,02 0,03 0,04 0

estinated skewness: ©.1994927

estinated kurtosis: 1.772462

> x < read,csv("0ata/SmithdordanloghormalData.csv™) v ~e e o

> plot(x)

> library(fitdistrplus)

> descdist(datasx$Size)

summary statistics S0

nin: 0.25 max: 23.5

median: 7.2 Mo
mean: 8.856111

estinated sd: 7.17718
estinated skewness: 0.6621157
estinated kurtosis: 2.335249
> plot(x) P I

.| =
EEobRRPOCR

nin: 0.25 max: 23.5 Data

median: 7.2 X 18 obs. of 3 variables
mean: B.856111 Values
estimated sd: 7.17718 y nun [1:101] 0 6.01 6,02 6,03 6.064 0.

estinated skewness: 0.6621157

estinated kurtosis: 2.335249

»plot(x) e e e - -

» X <« read.csv("Data/SmithlordanLogNormalData.csv") G

> plot(x) Cuen and Frey graph
> Iibrary(fitdistrplus)

» descdist(datasx§Size) .| 4
summary statistics | &

i e

nin: 0.25 nmax:i 23.5

median: 7.2

mean: 8,856111 .

estinated sd: 7.17718 . "
estinated skewness: 0.6621157

estinated kurtosis: 2.335249

.I on
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And there is another data, which is from Smith and Jordan, like I told you and let us try to load
that data and see what happens okay, so we want to read the Smith-Jordan log normal data. We
want to plot x and then we are going to use fit distribution plus library and describe the data of

size okay.

So, again here again the data seems to be in the beta, it is not really in, however if you look at
the data, so you can see that it does look like log normal distribution very nicely right. So,
even though it looks nicely like this, when we try to do the fit distr plus you see that it says that
the data is not really following log normal, log number means it should have been somewhere
here but observation falls somewhere in beta. So, this is a problem, it is very difficult to actually

know.
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> X <- read,csv("Data/SmithJordanLogormalData.csv")

> plot(x)

> Uibrary(fitdistrplus) X 18 obs. of 3 variables

> descdist(data=x$Size) Values

summary statistics y num [1:161] © 6.01 6,062 6.03 6.04 6..

min: 0.25 max: 23.5

median: 7.2 . .- -
mean: B8.856111 e
estinated sd: 7.17718 Cuen a0d Frey graph
estinated skewness: 0.6621157 ‘
estinated kurtosis: 2.335249 - { A
> k<o pasd yata/SmithJordantoak \ | &
¢ 1+
) sd( Lo ! :
ecrey il
1 { ]
Y ata.f YY - -

mohB

@an o e

(A

o [ p——
min: 0.25 max: 23.5 T o
median: 1.2 X 18 obs. of 3 variables
mean: 8.856111 Y 200 obs. of 2 variables
estinated sd: 7.17718 Values
estinated skewness: 0.6621157 L] 1,69448038323638
estinated kurtosis: 2.335249 b 1,21902452078246
> x <- read,csv("../Data/SmithJordanLoghormalData.csv") y nun (1:200] 0.129 0.377 0.457 0.476 ..
Error in file(file, "rt") : cannot open the connection - o
In tion: Warning message i
In fi ¢, "rt) Minsogram of y
annot file /0ata/SmithJordanLogNormalData.csv': No
such f r directory

> a < nean(log(x$Size))

> b < sd(log(x$Size))

> y < rlnorn(200,a,b)

> y <- sort(y,decreasing=FALSE)

-

A

> YY <- dlnorn(y,a,b)
> ¥ < data,frame("x"sy,"y"sYY) ——
> hist(y,breaks=15) ‘ v = o

> poin!‘.(xSSil\',xSNunbcl'col:“{rd",zype:'l") ' ™ 0 " »
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> y <- rlnorm(200,a,b) e

» y <= sort(y,decreasingsFALSE) Y 200 obs., of 2 variables

» YY < dlnorn(y,a,b) Values

> Y <- data.frame("x"=y,"y"=YY) 3 1,69448038323638

> hist(y,breaks=15) b 1,21902452078246

> points(x$Size,xNumber ,cole"red" ,type="1") y nun [1:200) 6,303 0,351 0.641 0,66 0
> x <- read,csv(",./Data/SmithJordanLogNormalata.csv") YY nun [1:200] 0.6652 0.6744 0.1095 0.1

ning messa
Missogram of y

> 3 <- nean(log(x$Size))

> b < sd(log(x$Size))

> y <« rlnorn(200,a,b)

> y <- sort(y,decreasing=FALSE)
> YY < dlnorn(y,a,b)

> ¥ < data.fr YY)
> hist(y,breaks=15) | — _

> poinis, “Size,xSNumber,col="red",type="1")
AEobhRRPOR
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> y <- sort(y,decreasing=FALSE) § o _

> YY <- dlnorn(y,a,b) Y 200 obs. of 2 variables

> ¥ < data.frame("x"sy,"y"=YY) Values

> hist(y,breaks=15) a 1,69448038323638

> points(xSSize, xSNumber ,col="red",type="1") b 1,21962452078246

> x < read.csv(”,./Data/SmithdordanLogNormalData.csv") y nun [1:200) 6,303 6,351 6,641 .66 0
n file(in rt nnot open the connect YY nun (1:200] 6.0652 6.0744 6.1695 0.1.

. -
)t open file

a <« nean(log(x$Size))
b <- sd(log(x$Size))
> y <- rlnorm(200,a,b)
y <« sort(y,decreasing=FALSE) &
> Y¥ < dlnorn(y,a,b) {
> Y < data.frame("x"=y,"y"=YY)

> hist(y,breaks=15)

> points(x$Size, x$Number ,col="red", type="1")

> plot(x) "

AmobRRPO~R

And there are other competing distributions, which will also give and something like beta,
which, by changing parameters you can fit the data well might do that. So, it is really difficult
sometimes to know which is the right distribution that the data follows. Even though if you
know for physical reasons that the data is expected to follow a distribution that is the

distribution you should use.

So, we are again going to take a look at the Smith Jordan log normal data and | am going to
calculate the mean and standard deviation of the size data and | am going to generate random
deviates with that mean and standard deviation from the log normal. And then | am going to

plot it then I am willing to plot the data.

Then we will see whether there is a better matching that we can see. And of course, you can

see that the histogram of data that | generated with the same mean and standard deviation looks



like this and our data also looks like this. So, it does look like we have data, so every time I run
you get a different distribution because the random deviates are different. So, you can see that

every time the deviates that you generate seem to fit very well the data which is not surprising.

Because from by looking at the data for example, you can see that it looks like the log normal.
So, in the case of grain size and such fragmented particle size etc it is expected that the
distribution is log normal. So, it is always useful to try to see how closely does the log normal

distribution described the data, so log normal is an important distribution.

So, it is used especially in areas like this, where there is reason to believe, based on some of
the theories like kolmographs, law fragmentation, for example, that the data is expected to
follow log normal distribution. But sometimes for example, grain size there are other
competing distributions that will describe what is happening. We have also seen in some cases,
the grain sizes, it was very different. We have seen data while we were doing descriptive

statistics.

So, especially grain size set, data is very difficult to say that it should always follow log normal.
But in other cases where you expect log normal, you will try to fit the data to log normal and
see, even though if you do blindly and try to fit the data to available distributions, there are
other competing distributions which will show up and probably show that they have better fit

to your data.

So, it depends on your needs and purposes. If you know for sure that the data should follow
given distribution that is what you should try to fit for. If you just try to get a description does
not matter whatever distribution that you can get, then of course, you can explore and find the

distribution that describes your data the best.

So, this is log normal distribution and like I said, I have found it very difficult to find any data
that if you use fit dist r plus will show that it is log normal. So, | am not sure unless maybe if
you just generate random deviates and give it to fitd i s tr plus it will show that it is log normal.
In all other cases, | have found that there are always competing distributions and most of the
times that is beta that it shows to be better fitting. But it is a good exercise for you to go look

up for data.

As part of this course, you should also tried yourself to go look for data or generate some such
data and try to do the analysis and see if you can get better data that fits log normal distribution.

Thank you.



