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Sampling Distribution 2 

Hello and welcome to the course on Dealing with Materials Data. From the previous session, we 

have been dealing with area we are leaning about the area on sampling distributions.  
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In the previous session, first thing we did was we introduced or sometimes reintroduced the 

concept of random sample and a population. What is a population and what is a random sample 

vis a vis a population and we also said that the whole purpose of doing statistics, the reason for 

following so much of science of statistics is to understand the population through a random sample. 

We said that if the population distribution function is known to us in the, up to a level of it is form 

then we say that it a case of parametric estimation.  

Where we have to estimate the parameters of the distribution, but if the form of the distribution is 

not known then we call it a non-parametric case. In the present course, we are going to consider 

only the parametric case. Then we introduced what is known as sample mean, basically, we would 

like to understand the parameters of the distribution.  

So, we assumed that the population distribution F has a mean mu and a standard deviation sigma 

and then, we introduced what is a quantity statistic called sample mean we found it expected value 



and its variance and we found its distribution through central limit theorem. We basically, say that 

it is expected value is same as the population mean and its variance is the population variance 

divided by its size of sample and the central limit theorem we said that as if when n is very large 

the population mean will tend to a normal distribution with as population mean. What I want to 

say is that the sample mean when n is large the sample size is very large will follow a normal 

distribution with mean as the population mean and the variance as the population variance divided 

by the size of the sample. Then we discussed a special case or an example in which we 

approximated the binomial distribution by normal distribution using central limit theorem. When 

the n the number of Bernoulli trails in the binomial distribution is very large.  
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In the present case, we are going to talk about the sample variance its expected value. Then we 

will also discuss certain distributional properties of sum of independent normal variables and sum 

of independent chi square random variables. We will use these properties to derive the sampling 

distributions form a normal population and we will see that if sample if the sample is drawn from 

the normal population what is the distribution of sample mean, and what is the distribution sample 

variance.  
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So let us begin we define sample variance please recall the first few lectures in descriptive statistics 

it is exactly the same definition. X1, X2, X3, Xn be an independent random sample from a common 

distribution F with a mean value mu and a variance sigma square. Then the sample variance is 

define as shown here,  

𝑆2 =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋̅)2
𝑛

𝑖=1

 

=
1

𝑛 − 1
[∑𝑋𝑖

2 − 𝑛𝑋̅2] 

= (𝑛 − 1)𝑆2 = ∑𝑋𝑖
2 − 𝑛𝑋̅2 
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Let us try to find its expected value to with this we get 

(𝑛 − 1)𝐸(𝑆2) = 𝐸 [∑𝑋𝑖
2 − 𝑛𝑋̅2] 

= 𝐸 (∑𝑋𝑖
2) − 𝑛𝐸(𝑋̅2) 

= 𝑛𝐸(𝑋1
2) − 𝑛𝐸(𝑋̅2) 

 

Because X1, X2, X3, Xn all are distributed identically as F with a mean value mu n variance sigma 

square. So they are identical, so instead of taking summation of n  of them, I can as well take n 

times expected value of X1 any one of. This is X1 I can even take X2, so X1 is not important but 

what it says is, that the common expected value from the distributed F is being taken. Now we 

apply the general rule of random variable that expected value of any random variable  

𝐸(𝑊2) = 𝑉𝑎𝑟(𝑊) + (𝐸(𝑊))2 

and applying these to each one of these component of expected value of S square we find this and 

it finally simplifies which you can verify very easily through simple algebra.  

(𝑛 − 1)𝐸(𝑆2) = 𝑛 [𝑉𝑎𝑟(𝑋1) + (𝐸(𝑋1))
2
] − n [𝑉𝑎𝑟(𝑋̅) + (𝐸(𝑋̅))

2
] 



= 𝑛𝜎2 + 𝑛𝜇2 − 𝑛 (𝜎
2

𝑛⁄ ) − 𝑛𝜇2 = (𝑛 − 1)𝜎2 

𝐸(𝑆2) = 𝜎2 

It is expected value of S square that is expected value of sample variance is the population variance. 

 

 We will learn in future this called in unbiased estimator of sample variance. When a statistic like 

S square its expected value is exactly the population variance and S square is the sample variance 

then it is called the when expected value of S square is equal to the population variance. It is called 

unbiased estimator S square is an unbiased estimator of sigma square. We will learn about it in 

future. Now, let us recall few things which we have mentioned in the past and in case it has not 

been it is the first time let us start it.  
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Let X1, X2, Xn be independent normal random variables with a mean mu1, mu2, mu3, mun and 

variance is sigma1 square, sigma2 square, sigma n square. One way I have to put a comma, so that 

it is mu1, mu2, mun it is mu1, mu2, mun and variances is are sigma1 sqaure, sigma2 square, sigma 

n square etc. Then summation of these random variable is also distributed as normal with mean as 

summation of means and variance is summation of sigma square. 

Please remember when the 2 random variables are, they are independent then the sum of variance 

sum of the random variable, variance of sum of the random variables is sum of the variances. So, 

this is what we have used here.  
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Next we would like to see in the case where X1, X2, X3, Xn are independent chi square random 

variables with degrees of freedom k1, k2, k3, kn.  

∑𝑋𝑖  ~ 𝜒2 (∑𝑘𝑖

𝑛

𝑖=1

)

𝑛

𝑖=1

 

This should be very obvious because the chi square with k degrees of freedom itself has been 

defined as a sum of squares of standard normal random variable.    

So, the it just the additive nature of the independent chi square random variable comes very 

naturally. Now let us consider so far what we have been doing we said that f is some distribution 

with mean mu and variance sigma square. Now I am defining the form of f and I am saying that it 

is a normal distribution, so I am saying that now I am taking sampling from the normal population.   
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So let X1, X2, Xn be independent identical distributed normal random variables with mean mu 

and variance sigma square. Then what is the distribution of sample mean? Well sum of independent 

normal variable is distributed as normal. Therefore, sample mean is also distributed as normal with 

mean and variance as this, because remember here I think am telling something very obvious 

expected value of ax is a times expected value of x.  

So, this gives you that expected value of  

𝐸(𝑋̅) = 𝜇 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑋̅) =
𝜎2 

𝑛
 

 

Which we have already proved and therefore if the sum of the independent normal variable is 

distributed as normal. Therefore, sample mean is distributed this and further normalizing it the 

random variable X bar with respect to is mean and variance. We get X bar minus mu divided by 

sigma square root n is distributed as normal 01. Please remember X bar minus mu divided sigma 

square root n is called normalizing random variable X bar. It is also known as standardizing, 

standardizing random variable X bar.  

So, for any random variable if you do any random variable W minus expected value of W divided 

by variance of W is the normalization refers to normalization. So, it says this is of course this is 

not just normalization it is actually a normal distribution, so this defines the distribution of a sample 



mean when the population itself is a normal population. Then the sample mean is distributed 

normally as mean as a population mean and variance as a population variance divided by size of 

the sample and if you take X bar minus mu divided by sigma square root n it is distributed as 

normal 0 1. 
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Now if you take a distribution of sample variance, we have to do some calculation in order to 

understand it, so let us start.  

∑(𝑋𝑖 − 𝜇)2 =∑(𝑋𝑖 − 𝑋̅ + 𝑋̅ − 𝜇)2 =∑(𝑋𝑖 − 𝑋̅)2 + 𝑛(𝑋̅ − 𝜇)2 

 

∑(
𝑋𝑖 − 𝜇

𝜎
)
2

=∑(
𝑋𝑖 − 𝑋̅

𝜎
)

2𝑛

𝑖=1

 + (
√𝑛 (𝑋̅ − 𝜇)

𝜎
)

2𝑛

𝑖=1

 

 

So I have basically, divided this by sigma square and this by sigma square and I get this identity. 

You see this is very beautiful can you see that because Xi is distributed as normally with mean mu 

and sigma square Xi minus mu over sigma whole square is a chi-square variate because this itself 

is a standard normal variate.  



You see this, this is distributed as normal 0 1, agreed? This we have already shown that it is 

distributed as normal 0 1 and these each individual 1 are distributed as normal 01 and therefore we 

are taking summation and then you are squaring it , you are squaring it. 

So, the whole item will become a chi-square and it is only one normal standard normal variate, so 

it will be chi-square with 1 degrees of freedom. While here you are summing up chi-squares each 

individual if you look at this whole individual it is distributed as chi-square as 1. They are all 

independent because Xi’s are independent and therefore the summation of n chi-squares will give 

you chi-squares with n degrees of freedom. 

Shall I explain it again? Let us start from 

∑(
𝑋𝑖 − 𝜇

𝜎
)
2

=∑(
𝑋𝑖 − 𝑋̅

𝜎
)

2𝑛

𝑖=1

+   (
√𝑛 (𝑋̅ − 𝜇)

𝜎
)

2𝑛

𝑖=1

 

∑ (
𝑋𝑖−𝜇

𝜎
)
2

~𝜒2(𝑛)𝑛
𝑖=1 ,  and (

√𝑛 (𝑋̅−𝜇)

𝜎
)
2

~𝜒2(1) 

 

. 

Now what am I saying is that this inner part Xi minus mu over sigma, because we have said that 

Xi is distributed as a normal distribution it is coming from a normal population with mean mu and 

variance sigma square, we get a Xi minus mu divided by sigma as a standard normal random 

variable. So, Xi minus mu over sigma is distributed as normal 01. Similarly here we know that X 

bar is distributed as a is a normal random variable with mean mu and variance sigma square divided 

by n therefore X bar minus mu divided by sigma divided by square root n is also distributed as 

normal 01, in other words standard normal random variate. 

Now, we take a square of it, so this is where we take a square of it. So, if you take a square of a 

one single standard normal variate then it is distributed as chi-square. Here we take n of these 

standard normal variate and we take square of it and we sum it up. Now remember, each Xi is 

independent, so Xi minus mu divided as sigma is also independent and therefore Xi minus mu 

divided by sigma whole square are independent for i is equal to 1, 2, 3, 4, n and therefore you are 



summing up n independent chi-square random variates and therefore it becomes chi-square with n 

decrease of freedom. 

The question is, what is the distribution of this? Now if we use the fact that sum of two independent 

chi-square random variable with decrease of freedom n and m is a chi-square random variable with 

a degree of freedom n plus m, if we use that very reasonably we can say that this should be 

distributed as chi-square n minus 1.  

I repeat, we know that if the two independent chi-square random variables are distributed with 

degrees of freedom respectively n and m then the sum of the two random chi-square random 

variables independent chi-square random variables will be a chi-square random variable with 

degrees of freedom as sum of the degrees of freedom, so it will be n plus m. 

So, if you consider that this is one degree of freedom chi-square random variable which is added 

into something which gives you a n degree of freedom chi-square random variable in that case we 

can reasonably understand that this has to be chi-square random variable with n minus 1 degrees 

of freedom and this is what is our argument.  
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I have written it down again, this is the identity that we have got, is this the same as the previous 

one. We see that this as we argued before is chi-square n minus chi-square 1 degree of freedom, 

this is chi-square with n degrees of freedom, sum of two independent chi-square random variable 

is also chi-square with degrees of freedom as sum of their degrees of freedom. It is reasonably, 



reasonable to conclude that the center one is also chi-square with n minus 1 degrees of freedom. 

So, what it says if you look at this carefully, this says that, this says that the S, let us go up, I again 

go to arrow we go back and then we use the pen. 

So, now what we have is, remember that this quantity is  

∑(
𝑋𝑖 − 𝑋̅

𝜎
)

2𝑛

𝑖=1

~ 𝜒2(𝑛 − 1) 

(
𝑆

𝜎
)
2

~ 𝜒2(𝑛 − 1) 

 

 

 

S square divided by sigma square and we are saying that this is distributed as chi-square n minus 

1 degrees of freedom. Here we are saying that S square over sigma square is distributed as chi-

square n minus 1 degrees of freedom. So, quickly if we see, we saw that if you assume that the 

population distribution is normal distribution with mean mu and variance sigma square then the 

sample mean is distributed, also as a normal distribution with a mean mu and variance as sigma 

square divided by n, the size of the sample. 

And the sample variance in that case is distributed as a chi-square distribution with n minus 1 

degrees of freedom when it is divided by sigma square. In other words this also shows that expected 

value of S square, here there is n minus 1, now it makes sense expected value of S square becomes 

sigma square, which is what we had shown earlier also. Here there should be n minus 1 because 

this divided by n minus 1 is S square. So, S this is n minus 1 time S square divided by sigma 

square.  
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This brings us to another distribution, you remember we introduced a t distribution. In t distribution 

we said that if you if there is if z is a standard normal variate and y is a chi-square random variable 

with n degrees of freedom.  

 

𝑡 =
𝑍

√𝑌 
𝑛⁄

  

where, 𝑍~𝑁(0,1) and Y~𝜒2(𝑛)and that they are independent. 

𝑍 =
𝑋̅ − 𝜇
𝜎
√𝑛
⁄

  ~ 𝑁(0,1)  

𝑌 = (𝑛 − 1)
𝑆2

𝜎2
 ~ 𝜒2(𝑛 − 1) 

Therefore, 

𝑡 = √𝑛
(𝑋̅ − 𝜇)

𝑆
=
(𝑋̅ − 𝜇)

𝑆
√𝑛
⁄

 ~ 𝑡(𝑛 − 1) 

 

 



 

 

Please recall, I mean look at a certain similarity, similarities with this definition of random variable 

and this definition of random variable. 

You see that when sigma is unknown in future we are going to do that if the population variance 

is not known, population standard deviation is not known. Then if you replace it by its estimated 

value which is sample variance or sample standard deviation then instead of a normal distribution 

the standardized or a normalizes random variable having a standard normal distribution, it will 

have a t distribution with n minus 1 degrees of freedom. 

Again, this is what we are going to use in future with respect to interval estimation as well as we 

are going to use it with respect to hypothesis testing. So, please remember what I have I said is 

that if you have a sample n sample of size n from a normal distribution with mean mu and standard 

deviation sigma or variance sigma square then the sample mean minus mu divided by sigma 

divided by square root n that is the standardized or a normalized value of X bar.  

This is a normalized sample mean that is distributed as normal 0,1 but in case sigma is not known 

and you replace sigma by the sample standard deviation then the same normalized sample mean 

with a estimate of or the estimate of a population standard deviation it becomes a t distribution 

with n minus 1 degrees of freedom.  
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So now let us summarize, we first introduced here the standard the sample variance and its 

expected value by not assuming any form of the distribution, we only said that the population 

distribution is F with a common mean mu and a standard deviation sigma. 

Then, we made an assumption that the population is a normal population with mean mu and a 

variance sigma square. Then we said that the sample mean is distributed also as a normal 

distribution with mean mu and variance sigma square with square root n, this should be sigma 

square by n, there is a mistake here, please correct it. It should be sigma square by n then, we found 

that sample variance is distributed as a chi-square distribution with n minus 1 degrees of freedom 

with certain multiplication please remember. 

And I think I should make correction here also because it gives a wrong impression and this should 

not happen. What we really mean to say is that n minus 1 S square over sigma square is distributed 

as chi-square, chi-square n minus 1 degrees of freedom.  

Please make this correction, sorry for this mistake and then we revisited the t distribution by stating 

that the ratio of sample difference between sample mean and the population mean to the sample 

variance by square root n is distributed as a t distribution with n minus 1 degrees of freedom. Next 

we will consider further values on sampling distribution, thank you. 


