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Atom probe and hypergeometric distribution 

Welcome to Dealing with Materials Data. In this course, we will learn about the collection analysis 

and interpretation of data from material science and engineering. We are in Module 3 and we are 

looking at probability distributions, specifically we are looking at discrete probability distributions. 

So far and we have looked at the Bernoulli trials, binomial and negative binomial distributions and 

we are going to continue with more discrete distributions and we are using a practical example 

where these distributions are important.  

Specifically, it is a characterization tool it is a microscopic technique to find out the volumes at 

very small length scales of samples and this is known as atom probe and we are looking at the 

process of detecting atoms in atom probe technique and how we can calculate the error bars 

basically the uncertainties that come about knowing the process knowing what happens in the atom 

probe bar technique in terms of selection and detection of atoms.  

Can we say something about the actual composition of the sample based on what we measure and 

say how much is there? So, there is a error in the process of both selection and detection and if we 

know them, can we say how much is the error in the actual sample in the composition that we give 

for the actual sample? So, that is the question that we are trying to answer.  
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So, we will continue with atom probe and we will see that, we looked at the selection process and 

we came to the conclusion that it is binomial specifically it is negative binomial. So we said that, 

ok. So, suppose if you have to detect 100 atoms, how many failures will happen before you reach 

the target of 100s. So that is what the negative binomial distribution was and we saw that for a 

detected efficiency of 0.6, obviously, you will fail about anywhere between some 50 to 70 times 

before you actually reach 100.  

So, that is what the negative binomial distribution showed and we, of course, calculated the 

cumulative distribution function, quantile function and so on and we also learned how to pick 

random variants from the distribution. So, if you want to simulate this process, for example, then 

it is important to pick random variants when you are simulating this process for the first stage to 

use the negative binomial distribution and calculate the values.  
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So, now we are going to look at the hypergeometric distribution and we will find out why it is 

relevant for the atom probe technique and so this is again just to remind you the schematics from 

Danoix et al. So, we have a specimen and the specimen has proportion of the atoms and we take a 

volume V of this specimen and we pull out the atoms from that volume. So, that is m atoms from 

volume V are pulled out of which j of them are of type A and so the proportion p of the atoms in 

this is j by m.  

Now, these atoms are expected to fall on the detector and out of the atoms that fall on the detector 

n of them get detected out of which i of them are A atoms and we hence we able to calculate the 

proportion p0 of the A atom. So, this is the actual measurements. You will say, ok detection 

happened for 100 atoms and the third 33 of them are of type A. So 33 by 100 is the composition 

that you would measure at this point and it will have its own error. And what we are saying is how 

much is the error in the actual sample composition that we give based on this value.  

So, that is what we are trying to answer. So, we looked at this process of pulling out m atoms and 

we realized that these atoms when they fall on the detector, either they get detected or they are not 

detected and based on this binary process, given the detector efficiency, one has to think of 

negative binomial distributions to know how many failures will happen before you reach a success 

of a given number of atoms. So that is the negative binomial and now we are going to see how 

hypergeometric is relevant.  
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So let us say that the n is the number of detected atoms. So, the measured 𝑝𝑜 =
𝑖

𝑛
 and that is but in 

the probed volume there are  
𝑗

𝑚
 . So, this is p and this is p0 that we measure. So, what can we say 

about a p0 and p, we can say that p naught is an unbiased estimate of p. Why because the detection 

is independent of whether it is an A atom or not an A atom irrespective of what is the type of atom 

the detector always detects that and just that it does not detect all atoms that fall on it.  

It detects only a fraction of them, but that fraction is not a biased towards detecting for example, 

it is not like if 20 A atoms fall it will detect 18 and 20 B atoms fall it will detect only 10, if that 

happens then this proportion that we measure has no relevance to the probed volume or unless you 

know how much is the differences you cannot say anything about the composition in the probed 

volume.  

However, in this case, because the detector is independent of whether the A or non A that is falling 

on it, it is going to detect with the given efficiency that efficiency remains the same. So, we can 

think of p0 as an unbiased estimate of p. So, our interest is to estimate the variance in p0, how much 

is the variance in p0. So, then we know how much is the variance going to be in the value that you 

are giving for composition for this specimen.  



So, it involves two variances, we have already seen there is a negative binomial and there is a 

variance associated with it and because m is itself as an estimate, it is not just a single number. So 

there is an estimate there and then we there is an estimate for p0. So that is what we are trying to 

find out, what is the variance in p0. So, the problem is you measured i out of n, and this n have 

been arbitrarily selected from m; arbitrarily selected because the detector does not have any 

favorites, it detects both A and non A with the same efficiency.  

Now, given m which contained j A atoms, what are the different ways in which i A atoms are 

chosen in a group of the n. So, that is the question we are asking. So, we know that there were m 

atoms out of which n got detected in that n what are the different ways in which i of them happened 

to be A atom?  

So, this is the question we are asking i is a random variate of the real valued random variable I, let 

us say capital I, then the I is a distribution and that distribution is called hypergeometric distribution  

                                         𝐼 𝐻(𝑗, 𝑚 − 𝑗, 𝑛) 

So, what is this hypergeometric distribution? Basically it answers this question given m which 

contained j A atoms, what is the difference? What are the different ways in which i atoms are 

chosen in a group of n. So that is what hyper geometric distribution is.  
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It is called sampling without replacement from a finite population, ok. if you have an urn of j atoms 

and the m minus j B atoms, let us say or m minus j non A atoms and if you draw n atoms from this 

urn, then i of them or A, that is given by the hypergeometric distribution and the parameters are j, 

m minus j and n.  

So, this is the hypergeometric distribution by definition, so it is a sampling without replacement, 

and it is a finite population. So because it is a finite population, every time you pull out an atom, 

if it happens to be A or B, then depending on that the further probability of picking another A atom 

will change. So it is a finite population.  
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                                                  𝑝(𝐼 = 𝑖) =  

𝑗!

𝑖!(𝑗−𝑖)!

(𝑚−𝑗)!

(𝑛−𝑖)!(𝑚−𝑗−𝑛+𝑖)!
𝑚!

𝑛!(𝑚−𝑛)!

 

Remember this is the number of total number of atoms out of which n of them we are detecting 

and here we have j of them in that population to be A out of which i of them we are detecting and 

the m minus j of them are non A out of which we are detecting the n minus i have non A yet so, 

that is what this quantity is and so the expectation value for the hypergeometric  

                                                          𝐸(𝐼) =  
𝑛.𝑗

𝑚
= 𝑛𝑝 

                                                   𝑉𝑎𝑟(𝐼) =  
𝑚−𝑛

𝑚−1
𝑛𝑝(1 − 𝑝) 

                                           𝐸 (
𝐼

𝑁
) = 𝑝; 𝑉𝑎𝑟 (

𝐼

𝑛
) =

𝑉𝑎𝑟(𝐼)

𝑛2 =
(𝑚−1)𝑝(1−𝑝)

(𝑚−1)𝑛
 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑝 = 𝑝0, 𝑚 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑎𝑛𝑑 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑛

𝑄
, 𝑜𝑛𝑒 𝑐𝑎𝑛 𝑠ℎ𝑜𝑤 𝐸 (

𝐼

𝑛
) = 𝑝0 

                                            𝑉𝑎𝑟 (
𝐼

𝑛
) ≈

(1−𝑄)𝑝(1−𝑝0)

𝑛
 



Remember, we are making several assumptions and approximations we are our first assuming that 

the m is a constant, which is not true, it is only an estimate it cannot be constant number and we 

are assuming m is large which might be ok. So, you can do an experiment by pulling out large 

number of atoms and we are assuming p is equal to p0 which is also a good assumption or 

approximation. If so, then the variance is one minus q p0 into one minus p0 by n. So, this is the 

hypergeometric distribution.  
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So, let us take a look at hypergeometric distribution a little bit it how to deal with it in R. So, it is 

given by this command hyper. So, you have dhyper, phyper, qhyper and rhyper and these are mean 

for probability density, cumulative distribution, quantile function and this is for generating random 

variants and hypergeometric distribution has 3 parameters we saw.  

So, let us say that we pulled out 170 atoms and let us say that 85 of them are actually of type A 

and we want to know if you detect 100 of them and then what is going to be the number of A atoms 

that they are going to have in this 100 i that is the value that is interest to us. So, that is what the 

hypergeometric distribution is going to give us. So, we will do as usual using R.  
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So, let us open R and the version is 3.6.1. So, we get the working directory. So, we are in the right 

directory. So, we can deal with up. So, this is a repetition sort the earlier plot that we made for the 

negative binomial distribution. So, n is equal to 100, m is equal to 170, j is equal 85 that is given 

to us. So, we are again going to make a column of row of plots, 3 rows are there and so, 3 plots we 

are going to make and for x the sequences 0 to 100 in steps of 1, for y it is 0 to 1 in steps of 0.01.    

And so we are going to plot the probability density, probability mass function and cumulative 

distribution function and the quantile function and remember the dhyper, you have to give these 

parameters. So, you can see the distribution function, the cumulative distribution function that is 

the probability mass function and the quantile function. So, all 3 of them are plotted and of course, 



if you want to get help in any of these cases, so, for example, if you want to get negative binomial, 

so, you can say dnbinom.  

So, it gives you and it tells you what are the things that you have to give to this function a vector 

of non-negative integer quantities you have to give that is why we give this x and q is a vector of 

quantiles. So, for calculating the quantile plot for example, we need to give the quantiles So, it has 

to be obviously between 0 and 1. So, that is why we have chosen and p is the vector of probabilities 

and so, that is the in given binom and n is the number of observations. So, that is something that 

we have we have not. So, we will use the n, but we want the random period how many of them we 

need right.  

So, here we have to give the size probability and that there is also alternative characterization in 

terms of mean but we did not use for the dnbinom. Similarly, for hyper let us say phyper. So, we 

have to give m and k, x or q or p or things that you give here and what are these m and k. So, here 

it is described in terms of white and black balls in an urn, you can think of them as a and b for 

example, are you A and non A for example, number of white balls in the urn and a number of black 

balls in the urn, that is why we give m and the j and m minus j and k is the number of balls down 

from the urn. So, that is the n for us.  

So, it is, you can think of this as the white or A; black or non A out of which how many of them 

we are pulling out of that is the number of balls drawn from this sample that is n and then this 

distribution gives how many of them are going to be the atoms of type A, hypergeometric 

distribution is used for sampling without replacement and these are the parameters and so, it  gives 

you the information about what this function is giving.  
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And so, this is what we found. So, when we do this plots tell you that for example, if you pull 100 

out of a sample which had 85 A and 85 non A, then you are willing to measure approximately 

about 50 and there is a distribution. So, and this is a cumulative distribution function, and this is a 

quantiles. So, we can also of course, get the random variants and from this distribution so, you can 

get random variants from the hypergeometric distribution.  

So, let us do that. So, we are saying that, ok, let us generate 20 random variants from this 

distribution which has this parameter so we are saying that 85, 170 total, so 85 non A and then let 

us say 100 of them from this sample we take out, then what will be the random variants that you 

would get in such a distribution. So you get numbers like 52, 48, 52 so that is what we saw. So it 

is about 50.  

It is a distributed and so it is closer to 52, 48, 52, 51, 50 and 45 and 46, 47 and so occasionally you 

have some 40, yeah. So, the lowest that you will get is probably about 46 here and you get to 54. 

So, you can generate more random variates and see what happens. So you can then let us say 40 

and then you will see that so it is distributed and occasionally you will see numbers going off like 

56 in this case for example, or 44, in this case for example.  

So, you will have the distribution about 50 and it will show you. So, this is expected because 

remember the composition that we are saying is 50 percent and so about 50 percent is what is 

going to return and it is going to return values about 0.5. So, that is what we expect and that is 



what we see. So, we have now looked at the atom probe technique and there were two stages, 

selection stage and detection stage and we have looked at the statistics and at each stage one is 

negative binomial, the other one is hypergeometric distribution.  

And we have found out because once you know what distribution they are, you know, what their 

variances are going to be, they can be represented in terms of the parameters that represent this 

distribution and knowing this variances of course, we have learned how to do the error propagation 

in the previous module. So, we can use this information we have now and tried to do the error 

propagation and we did discuss during our propagation last time.  

For example, that how to deal with if it is independent how to deal with it is not independent and 

so, we will continue with a similar discussion for the atom probe technique, analyzing the errors 

are random variations that you see in your measurement and how does it contribute to the error in 

your measurement of the composition of the sample.  

So, that is what we will do. So, we have given two examples of for two discrete distributions, the 

negative binomial and hypergeometric they are all based on Bernoulli process and binomial 

distribution. So, we will continue, in the next session we will try to calculate the variance in capital 

p in the sample the proportion of atoms knowing what is the proportion of A atoms in your detected 

number of atoms if you detected n atoms and you profound the proportion to be p0 what can you 

say about the error in the composition that you will get for this sample?  

So, that is the question that we will answer in the following sessions. Thank you.  


