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Bernoulli trials and binomial distributions 

Welcome to Dealing with Materials Data. In this course we are trying to understand the collection, 

analysis and the interpretation of a data from materials science and engineering. We are in the third 

module which is on probability distributions and we are going to begin with some discrete 

probability distributions, specifically we are going to talk about Bernoulli trials and the Binomial 

distributions.   
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Let us consider an ideal solution of A and B or random solid solution of A and B. If you pick a 

random atom, is it B? If you ask the question then the answer is either yes or no. In other words 

there are only two outcomes and if you are looking for B atoms and if you find a B atom then you 

can say that the outcome is a success and if you do not find a B atom you can say that the outcome 

is a failure.  

So, but success and failure are, within quote marks, because suppose if your interest is not in B 

atom but in A atoms, then finding B atom will be considered as a failure and finding A atom will 

be considered as a success. Because there are only two outcomes, success is compliment to failure 

and failure is compliment to success.  

And what is a probability that the answer is ‘yes’. So, like I said it is a random solid solution and 

you pick random atom. What is a probability that it will be a B atom? That is basically given by 

the composition of the alloy. Suppose, if it is a 50 atomic percent alloy then the probability of 

finding the atom to be B will be 50 percent because we have assumed the random solid solution 

or we have assume that it is like a ideal mixture.  

So, any random atom that you have pick, the probability that it will be of type B will be given by 

the alloy composition itself. So, xB will be the probability and this probability is the same for any 

of trials. In other words, implicitly we are assuming that it is a large number of atoms from which 

we are picking some and so this process is not going to change the composition. Or we are 



assuming that we are just probing and finding that it is a either B or not and then we are going to 

leave that atom there.  

So, it is not going to change our probability so any number of times you do this experiment. So, 

these are the or the assumptions that have gone in and we are also going to assume that the outcome 

from different trials are independent that if you have made one measurement it is not like the 

second measurement is going to be affected by your first measurement. So under these conditions 

so that there are only two outcomes and the probability of the success is some p and it remains 

same for all trials and different trials are independent.  

                         𝑓(𝑥𝑏 , 𝑘) =  𝑥𝑏
𝑘(1 − 𝑥𝑏)𝑘 where 𝑘 ∈ {0,1} (0 𝑖𝑠 𝑁𝑜  𝑎𝑛𝑑 1 𝑖𝑠 𝑌𝑒𝑠) 

Describes the result of every Bernoulli trial. If it is xB, it is a B atom then the probability is xB and 

k is 1 so 1 minus xB will have 1 minus k in the exponent so because k is 1 that is 0, so that will 

give you 1 so you will get xB. If it is not a B atom then because k is 0 xB to the power 0 will become 

1 so 1 minus xB to the power 1 minus 0, so it will become 1 minus xB so that is a  probability of 

finding a non B atom in an alloy of composition xB. So this is a Bernoulli trial. 
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Based on Bernoulli trial you can now ask the question suppose the alloy was not random, it is an 

ordered alloy say, let us day that there are specific sites which are occupied by A atom and there 

are specific sites which are occupied by B atom. Now, will the trials be Bernoulli? They will not 

be, because if you do different trials if you pick random atom depending on where the atom was 

picked from, depending on the site the probability of finding a B atom will be different for different 

sites. So, this cannot be considered as a Bernoulli trial if it is a random solution or if it is a ideal 

solution you can consider this as a Bernoulli trial.  
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If you, now conduct such Bernoulli trials, suppose you conduct n independent Bernoulli trials of 

which k are successful what does that mean? You say try to look at some 100 atoms and you find 

that about 55 atoms are B ., so the result of such an exercise of conducting n independent Bernoulli 

trials of which k are successful is known as a Binomial distribution. And the probability mass 

function of Binomial distribution, it depends on k how many successful trials you got and how 

many total trials you conducted which is n.  

                             𝑓(𝑘; 𝑛) =  
𝑛!

𝑘!(𝑛−𝑘)!
𝑥𝑏

𝑘(1 − 𝑥𝐵)𝑛−𝑘 

The mean value of the Binomial distribution is n times xB, whatever is the probability that you are 

assuming and variance of the Binomial distribution is n times xB times 1 minus xB. You can notice 

that the variance is proportional to n because of which if you take relative uncertainty that will go 

as 1 by square root of n because sigma will go as root n and you are dividing by n because that is 

the number of trials so you will get 
1

√𝑛
.  

And this a very nice information to have because this shows you that if you do larger and larger 

number of experiments your uncertainty goes down, your relative uncertainty goes down because 

your variance is proportional to n. So, this basically gives you the assurance that you can improve 

your accuracy by doing large number of experiments. This is not surprising because if you take 10 

atoms and find that some three of them are B.  



And if you conclude that the composition is 0.3 because you had the probability as xB and you did 

10 and the mean value that you got is 3 so 3 divided by 10 will be 0.3 that will be the mean that 

you will decide, but if you do probably 100 maybe you will get 35, so you can get better accuracy 

may be you do 1000 and then you get some 367 or something. So, you can improve the accuracy 

by doing larger number of experiments so that is what this gives this information on variance gives.  
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Suppose, if you choose a random alloy and let us say that consists of not two types of atoms but 

m different types of atoms such alloys are known and they are equi-molar multicomponent alloys, 

they are also sometimes known as high entropy alloys. In such cases what happens, again you can 

describe using a similar distribution function which is known as a multinomial distribution 

function, Binomial is for two and Multinomial is for more than 2. So, if you have m different types 

of atoms and sometimes these types of materials are made for example 20 percent of 5 different 

components you make an alloy, so in that case you will get the multinomial distribution.  
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Now, Binomial distributions are common whenever we have n independent events and each one 

has two outcomes and the success is with probability p and failure is with probability 1 minus p 

and these events are independent and the probability is also the same for every trial. Whenever this 

happens you will see that the result will be a Binomial distribution. In microstructure analysis and 

in the case of geometric probabilities, for example, this will again be Binomial because they are 

like Bernoulli trials.  

Suppose, you picked random points from a microstructure, let us say that, that consist of two 

phases, like the steel that we considered earlier which had phase 1 or phase 2, so if you pick random 

points and if those points happens to be either from phase 1 or phase 2, then you can think of the 

process as I pick a point is it  phase 1 or phase 2, so the answer is ‘yes’ it is phase 1 or no it is not 

phase 1 in which case it is phase 2 and what would be the relative probability of this that would 

depend on the area fraction.  

Because if phase 2 has larger area fraction and the random picking will be most of the times end 

up with phase 2. And if phase 1 has more area fraction you will. So, some amount of quantitative 

information about the microstructure you can get by doing exercise of this task. This also happens 

suppose if you have n components, identical components and if you pick and see if it passes quality 

test for example or if it is in working condition for example.  



The answer again is ‘yes’ or ‘no’ and depending on the component that you are choosing and its 

process or property, it might or might not pass with a probability p and if you keep doing n such 

experiments and each one is independent and the probability does not change as you are doing 

your experiment for success then that will also be a Binomial distribution. So, in many, many 

different cases one comes across binomial distributions and this two are just two cases the random 

alloy picking and geometric probability in microstructure analysis are just two examples.  

You might think that the random alloy example is a bit farfetched but we will look at a case and 

understand that it is not so, it is very relevant and we are going to look at one such microscopic 

technique where this has relevance or in any case. So, how do we deal with the binomial 

distributions using odd, this is a set of common theme that you will see that runs through the rest 

of this module.  
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There are always a 4 commands in this case it is a binomial distribution, so binom is common and 

you have dbinom which is for probability density, pbinom which is for the cumulative distribution 

function, qbinom which is a quantile function which is a inverse of the cumulative distribution 

function, rbinom which is for random variate generation.  

We have seen some of these commands earlier are rnom for example we used to get a random 

variates from a normal distribution or the lnom we used to get random variates from a log normal 



distribution. So, we have seen some of these commands earlier and so we are going to do this, so 

it is for binomial so have dnom, pbinom, qbinom and rbinom.  

And similarly for other distributions you will have this d, p, q or along with the distribution so that 

is how this commands work. So, let us now go to R and work with some of these commands. What 

do the probability distribution function and cumulative distribution function, the quantile function 

look like for binomial distribution and how do we generate random variates from the binomial 

distributions so that is what we will do now. 
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Let us go to R, so here is the first set of commands to use dbinom. So x is a sequence, so let us say 

that it goes from 1 to 1000 in steps of 1 and we want to plot x and we are going to get the binomial 

distribution density. And so there are 1000 is the n and 0.5 is basically the probability p.  
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So, this is how the distribution function looks of course you can change the probability and you 

can look at how it changes so you can so it keep shifting from where the peak is going to be so this 

is the dbinom. 
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And so we can do the next one which is the pbinom. Again it is a same sequence so x is from 1 to 

1000 in steps of 1 and now we want to plot x with the cumulative distribution function pbinom for 

when the probability of success is 0.5 so this is how it looks and of course if you shift then the 

probability distribution the cumulative distribution function shifts and so this is also expected. 

Now we want to get the quantiles but remember for quantiles the value should run from 0 to 1 

because it is the inverse for this what is the x is? What we are trying to get?    
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So, the x sequence that we should get should go only from 0 to 1, 0 to 1 in 0.01. So let us call that 

as y you should go from 0 to 1 in terms of 0.1 and we want to get y and this is qbinom and let us 

say for 0.5 so this is the probability the quantile function which is the inverse of the distribution 

function and of course you can get it for 2, you can get it for 4, can get it for 0.6, get it for 0.8 and 

so on. So, this is basically the inverse of the function that you earlier.  
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Finally if you want to generate random variates of course you can use that using rbinom and let us 

do that. So, I am going to make 3 plots and I am going to pick random variates 1, 100 or 1000 or 

10,000, with 0.5 as the probability value and plot the histograms, so that is what you see this is the 

case when I picked 100, this is case where I picked 1000, this is the case where I picked 10000. 

So, this is with 0.5 then what happens if I do with 0.2? So this is what you get for 0.2. What 

happens for 0.8?  

So, you can sort of see that for example 0.8 for small values skews like this and then for 1000 it i 

like this and when it comes to 10000 that is not making much of difference. So probably if you do 

maybe this as some 50 or something we can clearly see the difference let us see so you can see the 



distribution how it changes with the more and more of random variates that you are generating or 

more and more number of times you are repeating this exercise.  

So, we will come back to this there is an interesting theorem which we are going to look at later 

but this is just to show you how to deal with these distributions and work with them using R so we 

have just looked at Binomial and Bernoulli trials. We are going to go through each one of this 

distributions so it is a whole zoo of distributions that we have of which we have chosen only few.  

There are very large number of distributions that are available and so we are going to deal with 

few of them as we go along which are of importance and relevance along with the information as 

to where they are useful or where they should be used and why? If possible. So that is what we are 

going to look at for the rest of this module on dealing with probability distributions using R thank 

you. 

 

 


