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 Special Random Variables 4   

Hello and welcome to the course on dealing with materials data. We are going to continue 

our sessions from the previous few sessions on Special Random Variables. Let us review 

what we have done in the past.  
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We first considered the discrete random variables, which have a very special distribution. 

The first one we considered was the uniform, discrete uniform random variable, then we 

considered Bernoulli trial I see that there is a spelling mistake in Bernoulli trial it is should 

be this way, let me just correct it, it should be Bernoulli trials.  

Then we found that there are three distributions, which come out of repeated Bernoulli 

trials, the first one is a binomial distribution, which has, over here. So, first is the binomial 

distribution, where you carry out n independent Bernoulli trials and look for the number of 

successes or number of trials, which has resulted in success.  

Then comes the Geometric distribution, in which you wait till the first success occurs in 

your trial. So, you carry out number of trials still the first successes encountered. Negative 



binomial is a rather generalization of Geometric distribution in which you try to get the X, 

you want to get a probability of conducting X successive trials to get exactly n number of 

successes. So, you have to conduct X independent Bernoulli trials until you get the nth 

successful trial.  

Then we came to Poisson distribution and we showed that a Poisson distribution occurs in 

the case where the probability of any occurrence is very small, when the sample value is 

very large. So, when a Binomial distribution has a very large n, but a small probability of 

success, in such a way that n multiplied by P, that is the number of trials multiplied by the 

probability of success remains constant.  

It tends to Poisson distribution. You will see or you might have already seen in the tutorials 

and R sessions that are being conducted that Poisson occurs also during the nucleation of 

atoms in the physics, in the field of physics, so there also the Poisson distribution is useful.  

We also saw then the distribution which is called Hypergeometric distribution, in which 

we understand that there are m items of which n items have a special characteristic maybe 

they are defective or they are certain kind of atoms or they are certain kind of elements. 

So, it has a special characteristic.  

So, there are m number of total items of which n number has a special characteristic, 

characteristic and you are drawing a sample of size X, and you want to estimate a 

probability that exactly k of them will have those characteristics. In that case, X follows 

Hypergeometric distribution.  

And we gave an example of 3d atom probe filled ion microscopy in which most of this 

except for Poisson most of the distributions are covered, Poisson as I said before, it has 

been given separately in R session, giving you certain examples in material science and 

materials engineering for Poisson distribution. It is very interesting that even in that R 

session this the same 3d atom probe filled ion microscopy example is discussed in more 

details.  

Then we moved on to Continuous distribution and we introduced first Continuous Uniform 

distribution. And we mentioned that it has a very special importance when it comes to 



generating random numbers from different distributions using pseudo random number 

generator and pseudo random number generator actually tries to generate the uniform 

distribution, the variates of uniform distribution.  

Then we introduced a Normal distribution and we gave some distributions which I derived 

from the normal distribution, which are Chi square, which are Chi square, t distribution 

and F distribution, when we move on and we look into the inference in statistics, these 

distributions are going to play a very significant role.  

(Refer Slide Time: 06:11)  

 

 



So we come to our present session, we want to cover the importance of Normal distribution, 

the Central Limit Theorem and steps to demonstrate central limit theorem. So, where is the 

importance of central limit theorem? Well, many years ago when Galileo was taking 

observations from the out in this space, and he was observing stars and constellation, under 

the exactly same circumstances, he found that the observations did not have, were not 

exactly identical.  

He was actually unhappy with this fact. But it took 200 years for Gauss to come and 

establish that such an error, which can be attributed to human error or to machine error is 

a common factor and these errors are generally distributed as a normal distribution, we call 

this Normal distribution also as a Gaussian distribution to give a respect to Gauss who 

realize this particular distribution.  

Now, what is central limit theorem? central limit theorem actually says that, when you have 

large number of random variables of observed independently from nearly identical 

distributions, nearly in the sense that the parameter value may not be the same, but the 

distributions are same, then the mean of these largely observed random variable also 

follows, no matter what is the original distribution of the random variable.  

The mean of these observations follow Normal distribution. 

 So, here it is exactly stated, 

• 𝑋1,  𝑋2,  ⋯ 𝑋𝑛 with finite mean 𝜇𝑖  and finite variance 𝜎𝑖
2 , then  as 𝑛 → ∞,   

 𝑋 =  ∑ 𝑋𝑖
𝑛
𝑖=1   is distributed as normal distribution with  

𝑀𝑒𝑎𝑛 =  𝜇 = ∑ 𝜇𝑖
𝑛
𝑖=1   

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎2 = ∑ 𝜎𝑖
2

𝑛

𝑖=1

 

Let us try to understand this. we are not saying that X1, X2, X3…Xn follow normal 

distribution, we are saying that it may come from any distribution, only condition we are 

putting is that it has a finite mean and a finite variance, particularly finite variance. Yes, 



there are distributions which have infinite means or infinite variance.So, we are ruling out 

all such distributions and then we are saying that if you take sum of all these independently 

distributed random variables Xi and if the sample size become extremely large, in that case, 

this summation of the variable, random variable, which is also a random variable let us call 

it X, then X follows a normal distribution, here is what we have to realize that it follows a 

normal distribution with a mean mu and variance sigma square, sigma square,  is a 

summation of all the i  and  is summation of all the i. 
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Now, let us look into the proof, as to generally how it goes. The Central Limit Theorem is 

proved using characteristic function and Taylor series expansion, characteristic function so 

far in our course we have not introduced however, we have introduced what is called 

Moment Generating Function. Do you recall? The Moment Generating Function of any 

distribution we had introduced.  

And this is a another version, sort of another version of a Moment Generating Function. 

And it is called Characteristic Function. It has the same property as Moment Generating 

Function that is its first derivative with the limiting value at t is equal to 0. Will give you 

the first moment, the second derivative will give you the second moment, these are all the 

raw moments, these are not central moments.  



Only difference is that this particular distribution has an imaginary part in it, which is i, 

which is the square root of minus 1. If you use this expansion for any random, 

𝐸(𝑒(√−1)𝑡𝑋) = 𝐸(𝑒𝑖𝑡𝑋) 

 summation of any random variable and use, use this as expected value and use the Taylor 

series expansion and then let n go to infinity, you will find that all of them follow normal 

distribution.  

I am going to skip the proof, proof is available in variety of textbooks, you can go through 

it. The people who would like to pursue this kind of Mathematical Statistics further they 

should go through the proof, because taking a Characteristic function and using a Taylor 

series expansion before letting n tend infinity is a very common technique used for proving 

many theorems in Mathematical Statistics.  

So, here it is repeated again that no matter what may be the original distribution of the 

random variable, sum of the independent random variables, when n is large is distributed 

as normal random variate with mean as sum of its mean and variance as sum of it variance 

with only one assumption that underlying distribution has a finite variance.  
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So, this also has a very specific version, which is a simpler version, which you might have 

come across in your other courses of statistics and this is, it states that X1, X2, X3…Xn 

are n independent and identically distributed random variables. Remember that time we 

did not say they are identically distributed, they were independent and they all had a mean 

i   and variance i.  

Here, we are saying that they are identically distributed random variable with mean     and 

finite variance . Then as n tends to infinity, the standardized normal variate. 

Z=
𝑥̅−𝜇
𝜎

√𝑛⁄
.  

Let us do some revision here as well before we say that it tends to normal distribution. 

Please recall, that expected value of 𝑥̅ is  and the variance of 𝑥̅   in such situation is  𝜎2
√𝑛

⁄  

and therefore, a standard normal variate Z would be defined as 

Z=
𝑥̅−𝜇
𝜎

√𝑛⁄
.  

So, this is what is written here that  Z=
𝑥̅−𝜇
𝜎

√𝑛⁄
 the probability that this variate is less than t is 

approximately equal to probability that a Z which is no N(0, 1) distributed random variable.  

𝑃 [
𝑥̅ − 𝜇
𝜎

√𝑛⁄
 < 𝑡] ≈ 𝑃[𝑍 < 𝑡] 

 

So, Z is less than t where Z is normal, standard normal variate, this can be easily 

demonstrated also by using R which will be done in your R sessions or even using Excel, 

which is what I would like to show you here that quickly without using R even by using 

Excel and generating random numbers, you can carry out the same, you can work out the 

sort of a demonstration proof of this particular version of Central Limit Theorem.  
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So, let us see how that happens. So, here I have given the step by step method to follow. 

So, here what I am trying to show is that I am taking X1, X2, X3…Xn as a Chi square 

random variable with k degrees of freedom. Why am I taking Chi square? Chi square is a 

skewed distribution. And remember Normal is a symmetric distribution.  

So, we want to show that we take a skewed distribution and then the Central Limit Theorem 

applies how it comes very close to the Normal distribution, how it actually turns into a 

Symmetric distribution. So, we want to show that if X1, X2…Xn follow Chi square 

distribution with k degrees of freedom, then the probability of the standardized variable of 

𝑋̅.   that is 

 

𝑃 [
𝑥̅ − 𝜇
𝜎

√𝑛⁄
 < 𝑡] ≈ 𝑃[𝑍 < 𝑡] 

As n tends to infinity, where Z is a standard normal variate. So, to demonstrate for time 

being we will take n to be 500 and k degrees of freedom of Chi square to be 5, and then we 

take the following steps, we first generate uniform random variables using Rand function, 

500 of them.  



Then, we copy the value and value paste it here, because with every operation on the Excel 

sheet, these numbers tend to change, these numbers tend to change. If you do not continue 

with these function, these values tend to change. So we will copy and value paste it, then 

we apply the Chi squared inverse function. You please recall what we did, what we said 

about generating a random variate, random variate distributed by any distribution, so, if 

you recall, we said that if X is distributed as any random variable, any random variable, 

then F(X) is distributed as U (0, 1) random variate.  

So, if you call this Y, then you can generate X by saying that it is F inverse of Y. So, if you 

have Y, you can find X and this is exactly what we are doing. Here we have generated sort 

of Y for U1, U2, U3…U500. Then we apply Chi square inverse function. So, our F is 

actually Chi square function. So, F inverse is Chi square inverse function and therefore, I 

am applying Chi square inverse function with a probability, this is now a probability, 

remember it is coming from uniform random variable, uniform 0 to 1.  

So, this is probability and this is the, what we have taken as degrees of freedom of Chi 

square distribution and we regenerate Chi square five random variables Xi. So, this if I had 

said that this is Xi Chi squared 5 then, I am generating X, X2, X3…X500 for X5.  Now I 

calculate 𝑋̅ and I also calculate Z is equal to 𝑋̅ − 5;Remember that, expected value of X in 

this case will be k, which is 5 and variance of X is equal to 2k, which is 10.  

When X sorry, X is distributed as Chi square 5. So, when that happens, this is the, your 

expected value, which is mu, and this is sigma square. So, I am taking exactly this ratio, I 

am carrying it out here. So if this is a, this is what I am calculating here. Repeat the steps 

1 to 500 times. So, this 500 data point is n, this we are doing hundred times so that we can 

have a nice histogram to generate Z1, Z2, Z3…Z100 and then plot the histogram and let us 

see how does it look like?  
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So, you see here, I have shown one, two and three sample histograms out of hundred, we 

generated hundred histograms, actually, hundred histograms of Chi square 5. So I have 

taken a sample of one, two and three and you can see that how skewed they look, you see 

the distributions are all skewed. Please note that distribution is heavily skewed. I have not 

drawn it beautifully. Let me correct it myself so that it looks better, let us do it again, this 

is better.  

So, this is a typically skewed Chi square distribution. Same is true here, but when you take 

the Z variable which is, summation or which is  

𝑥̅ − 𝜇
𝜎

√𝑛⁄
 

then this Z variable, this is a plot of a Z1 to Z100 and this distribution is looks, a very much 

of a Normal distribution.  

You see how this skewness has slowly, here also I have not drawn it well, let me do that, 

so if you draw a bit carefully so, this skewed distribution, this skewed distribution as well 

as this skewed distribution are turning into a Normal distribution, which is not skewed.  

 



You can carry out this exercise further when you learn different graphical ways of testing 

the two distributions are same. So you can plot this particular graph, which is what is known 

as the PP plot or a QQ plot. I believe you might have already been introduced to this in 

your R sessions during Descriptive Statistics, if you have then you can generate this data 

and plot it like one of those QQ or PP plots and you will see how close it is to normal.  
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So, let us summarize. We started this session by saying that why Normal distribution plays 

a very central and important role, because we encounter it very commonly under many 

circumstances. It was first discovered to explain the error in observations in the 

experiments performed under identical condition and we still observe that.  

The Central Limit Theorem, for a large sample made it almost all pervading distribution 

because as far as the underlying distribution had a finite variance and you had a large 

number of observations coming from the underlying distribution which are identical in 

nature, independent in nature, in that case, if you take either the mean value or the 

summation of it, it tends to follow normal, standard normal variate with common mean, 

mean as a summation of mean and standard deviation as a summation of standard deviation.  

The question is how large should be n? Because when we think about it practically, 

mathematically it is wonderful to say n tends to infinity and you show the, or you prove 



the theorem, but in reality, the question comes, what is really a large n? Well the answer is 

that for generally, naturally less skewed distributions. If n is 30 or more, it is considered 

large enough, but if your distribution is heavily skewed in that case convergence to 

distribution could be slow and you may need very large number of samples.  

So, that time 30 may not be a good large enough, it may go even further to something like 

50, 75, 100 you have to find out how fast it converges. So, with this we complete this 

session on normal distribution and next we want to take all those distributions which we 

encounter most commonly in the engineering data and in particular for materials 

engineering and material science metallurgical data. So, with this we end this session, 

 thank you.  
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