Dealing with Materials Data: Collection, Analysis and Interpretation Professor. M P Gururajan, Professor. Hina A Gokhale Department of Metallurgical Engineering and Materials Science Indian Institute of Bombay Lecture 28 Fitting experimental data to distributions

Welcome to dealing with materials data. In this course we are going to learn about Collection, Analysis and Interpretation of data. We are looking at the second module, which is on descriptive statistics using R and we have been looking at how to deal with distributions while presenting experimental results.

(Refer Slide Time: 00:40)

Specifically, we have been looking at some grain size distributions. This is a case where the steel consists of two phases and the grain size data of both the phases is available in a csv file, and it is very clear that if you just look at the mean and standard deviation, it is not sufficient to describe the data. So, we need to find distributions that fit to the given data. So, that is what we want to try in this session. Of course, we have not done probability distributions, and we are going to do that as the next module. So, some of the ideas that we are going to use here, we are going to revisit

after we do the session on probability distributions. But at the moment, we will just use some existing libraries and use this data and look at the fit and identify what fits the given data better.

(Refer Slide Time: 01:40)

So, we use fit distribution plus library, fitdistrplus. This is used to identify the best distribution for fitting the data and it also estimates the parameters of the distribution that fits the data. What we are going to give in this session is a very tutorial introduction. So, I am not going to explain many things, it is just like a command you give the command and you see the results and you will know what distribution it is, and you will give another command just to fit it for that distribution, but we will revisit and discuss some of the details after we go through the probability distribution module.

(Refer Slide Time: 02:21)

In order to understand how this distribution works, of course it is important to know about skewness and kurtosis and you might have already been taught about skewness and kurtosis. Skewness tells how long is the tail and it is said to be positively skewed, if the data is having a long tail on the right, and it is said to be negatively skewed, if the tail is on the left side of the data. On the other hand, for a normal distribution the data has tails on both right and left side and in fact if it is very nicely, normally distributed you will find that it is also symmetric about the mean.

On either side of the mean it will be having the same type of tail, but if the data is skewed, positively or negatively, then you will see that it has a longer tail either on the right or on the left. Kurtosis is also information about the tail and it specifically talks about the outliers and it gives you information as compared to a normal distribution how heavy is the tail in the given data, so that is what this gives. So, by looking at these two quantities, it is possible to find out what the best fit from in terms of probability distribution for the data could be and that is what we are going to do.

(Refer Slide Time: 03:48)

$$\mu_k = \sum_i (x_i - \mu)^k f(x_i)$$

And to little bit better understand what these quantities are. We know about moments about the mean. So, mu k is the k-th moment about the mean. It is defined as follows, so you take the data value and you take the mean which is the first moment about the origin and you take the difference to the power k and you multiply by the probability distribution. This is what we are going to discuss in detail in the next session but for now, it is enough if you understand that $f(x_i)$, basically gives you the probability that the random variable will take the value x_i and we are assuming that from that distribution is where we are getting these values. And so, this is basically a probability.

And mu is the first mean, first moment about the origin that is the mean and sigma squared is variance. So, it is the second moment about the mean itself. So, xi minus mu whole squared f of xi is basically sigma squared, so that is a variance. And skewness and kurtosis are basically third and fourth moments about the mean. So, if you put cube and power 4 here, you get skewness and kurtosis, but it is not just putting 3 and 4 here, you also divide the resultant quantity by either sigma cube or sigma power 4. To get skewness you divide by sigma cube and you, to get kurtosis you divide by sigma power 4. So, these two numbers that you generate.

So, third movement about the mean normalized by sigma cube, where sigma is the standard deviation, We know it is the square root of variance. And, so this quantities, so skewness and kurtosis is what we are going to use, to understand what is the probability distribution that

describes our data properly. Specifically, we are going to look at the grain size data and understand how it is distributed.

(Refer Slide Time: 05:56)

So, you can see that our grain size data for phase 1 and phase 2, has huge skewness and also kurtosis. So, you can see that the distribution is of course one sided. So, it has a long tail to the left and this also has a long tail to the left. So, in our definition we will say that this is negatively skewed and also you can see the fatness or thickness of the tail. So, as compared to a normal distribution, of course, these tails are much more fatter. So, this is the information but we are going

to get numbers for these two quantities and they are defined in terms of moments about the mean and appropriately normalized.

(Refer Slide Time: 06:50)

So that is what we are going to do, and for doing that we are going to use fit distribution plus library. And while we analyse the data and come up with a fit for the given data. We also have to evaluate how good is your fitting and for that there are measures. Specifically, you will see that R gives you information about logliklihood, AIC which is Akaike's Information Criterion and BIC which is a Bayesian Information Criterion.

Of course, we will come back to understand these quantities better after we learn about probability distributions and influence and things like that, but for now, you just have to pay attention and see what are these quantities that R returns when you try to do the fitting. So, let us go and do the fitting, as usual.

(Refer Slide Time: 07:55)

So, we will start with getting the data. So, let us start R and this is version 3.6.1 we need to know the working directory, and so we are in the right directory. So, we need to, first invoke the library and let us do that. So, we want to use the fitdstrplus. And then we want to read the data. So, the csv file from data, grain size data set 2.csv is read and then we are going to find out the phase identity 1 and 2 so we are going to save those row numbers in i1 and i2. So, if you pull out from X all the i1 one ones that is for phase 1 let us call it X1 and for i2, it is all for phase 2. Let us call it as X2.

(Refer Slide Time: 09:09)

So, we have done and we have already seen this data. So, there are 3664 observations and there are 6 variables there and of which about 457 is for phase 1 and remaining 3200 or for phase 2. So, we have done this. So, now let us use this, command. So, it gives you the, so what is the descdist, so let us look up.

So, it is description of empirical distribution of non-censored data. There is this difference between censored data and non-censored data. Suppose for some reason to save time or because you are not able to continue the experiment for longer times. If you arbitrarily stop the experiment at some time or beyond some particular point, then that is called as censored data, what we have is not censored data. So, this is descdist is for Description of Distribution, that is what description of

distribution is what it is, and it is for the empirical data and the data should be non-censored and, in that case, you can use this.

(Refer Slide Time: 10:44)

And if you look at the data that we have for phase 1 the grain size distribution data, then it lists several theoretical distributions. All of which we are going to learn in the next module normal distribution, uniform distribution, exponential, logistic, beta, lognormal, gamma and it also tells you that variable is close to gamma and lognormal.

So, if you have gamma and lognormal is the dotted point here, so the variable is close to these two distributions. And so, where is our observation? Our observation lies in this band which is for beta distribution. So, this graph it is called Cullen Frey graph and it is a graph of square of skewness versus kurtosis. And so, for example, for normal the kurtosis is here at 3 and the square of skewness is here, which is close to 0.

So, by taking these two values it knows that if some data falls somewhere here, then it must be normally distributed and so on and so forth. So, because our data falls somewhere here in the beta regime, we know that the data is, probably best described by the beta distribution and it gives you the, this we have already seen that minimum value is 20.8 and maximum 24.3 in this case. The median value is 24.3 because we saw lots of data points which were a 24.3 and the mean was 24.1 and the standard deviation was 0.4. So, it was 24.1 plus or minus 0.4 so it gives you the same data and it now in addition has estimated the skewness and the kurtosis.

(Refer Slide Time: 12:55)

tivitier 🔮 Eldado *	Tao Non 13, 1628 #		++ #-	
e jati Çadı Yew Bota jessan Balil Çeting Portis Jinis yelp 			Date	
annan Annanat ann -	S Recorded Mate	ry Connections		
stimated kurtosis: 15.99033		A final framework -		
	×	3664 obs. of 6 varia	bles	
help(descdist)	Values			
descdist(X1)	il	int [1:457] 1 2 3 4	5 6 7 9 9 18	
unmary statistics				
	i2	int [1:3207] 458 459		
in: 20.8 max: 24.3	X1	num [1:457] 24.3 24.		
edian: 24.3	X2	num [1:3207] 21.1 24	.3 12 22.5 23.7 .	
ean: 24.10547		ages Marty Versur		
timated sd: 0.4345706	y - Phone 1	itust: 0 (5 here	
timated skewness: -3.103136		Cullen and Frey graph		
stimated kurtosis: 15.99033	- 1 -	• Canada and Taxa	ng dataona	
descdist(X2)	n - A	11	ernal olym gorantial	
ummary statistics	215	11	faits	
	· · · · · ·		parents and special statements	
n: 11.9 max: 24.3	§ • -			
edian: 24.3	3 * -			
ean: 23.36614		N.	to to	
stimated sd: 2.029911	÷ -			
stimated skewness: -2,906411	2	14	•	
stimated kurtosis: 11.38933	0			
1		square of skewness		
4	7)			

So, let us do the same thing for the data for phase data for phase 2. Again, we see that this has a much larger range, minimum is 11.9, maximum is 24.3, median is again 24.3. So, you can see that the median is the same and the mean is also quite close. So, it is 23.4 and the standard deviation is about 2. So, it is 23.4 plus or minus 2, and this is 24.1 plus or minus 0.4.

So, these two data points in terms of mean and standard deviation, if you look at they are almost the same, but obviously the skewness is different or quite close it is not very different. So, it is minus 3.1 and this is minus 2.9. So, this is not very different. And kurtosis is again, this is about 16 and this is about 11.4. So, there is some difference. So, obviously it is not the same as phase 1, but it is also a beta distribution and it is slightly different from the previous one. So, we noticed that our data again falls in the beta distribution regime and but it is different from the earlier one.

(Refer Slide Time: 14:12)

		See New 13, 1628 * while Orsaliptive statistics using 8	
Out- + * Present	X <- read.csv(*/Data/GrainSizeD 11 <- grep(1,X[,1]) 12 <- grep(2,X[,1]) X1 <- X[11,6] X2 <- X[12,6]	lataSet2.csv")	
	mand gives us the minimum, maximu	m, median, mean and stand	use the command descdist. This com- lard deviation along with the skewness stribution that describes our empirical
	par(mfrow=c(1,2)) ¹ descdist(X1)		
	## summary statistics ##		
	## min: 20.8 max: 24.3 ## median: 24.3 ## mean: 24.10547		
	## estimated sd: 0.4345706 ## estimated skewness: -3.103136 ## estimated kurtosis: 15.99033	1	
	descdist(X2)		
0		1	
🙉 🚍 🧔 🖻 🖻	🖻 🖸 📵 🙊 🚰		
Albert 🕈 Bains 4		Saa New YA, 1627 a BSLeefe	4 # Ext. 8.88
a a de la construcción de la constru	i Bring Sapah Sanga Jana Sala		1 Page Ann
Cantonia Terretrial : Julia : - Developar Resolved Medical Associations	199	C La Prese La Contra	an di seconda di secon
estimated kurtosis		• G terms transmet -	3664 obs. of 6 variables
<pre>> par(mfrow=c(1,2))</pre>)		5004 0031 01 0 Val Lables
<pre>> descdist(X1)</pre>		Valuer	
		Values	1
summary statistics		11	int [1:457] 1 2 3 4 5 6 7 8 9 10
		11 12	int [1:3207] 458 459 460 461 462 463
 min: 20.8 max:	24.3	11 12 X1	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3
min: 20.8 max: median: 24.3	24.3	i1 i2 X1 X2	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7
min: 20.8 max: median: 24.3 mean: 24.10547		i1 i2 X1 X2 Free Form Former	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7
min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4	345706	11 12 X1 X2 Proc. Proc. Proceedings	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7
min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness	345706 : -3.103136	11 12 X1 X2 Proc. Proc. Proceedings	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7
min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.42 estimated skewness estimated kurtosis	345706 : -3.103136	il i2 X1 X2 so Phan Annu s Phan Annu Ca	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis > descdist(X2)</pre>	345706 : -3.103136	ii ii X1 X2 max max many s s share to many c c	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7 r. Now Years num : 0 ¢/ % % % % % % % % % % % % % % % % % %
min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.42 estimated skewness estimated kurtosis	345706 : -3.103136	ii ii X1 X2 max non none p p and at Co	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7 r. Now Years num : 0 ¢/ % % % % % % % % % % % % % % % % % %
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis descdist(X2) summary statistics</pre>	345706 : -3.103136 : 15.99033	ii ii X1 X2 Plane for Annue Plane for Co	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7 r. Now Years num : 0 ¢/ % % % % % % % % % % % % % % % % % %
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated skewness estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max:</pre>	345706 : -3.103136 : 15.99033	11 12 X1 X2 Fine fine fine fine fine	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7 r. Now Years num : 0 ¢/ % % % % % % % % % % % % % % % % % %
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated schemess estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max: median: 24.3</pre>	345706 : -3.103136 : 15.99033	11 12 X1 X2 True new new new 14 14 14 14 14 14 14 14 14 14	int [1:3207] 458 459 460 461 462 463 nun [1:457] 24.3 24.3 24.3 24.3 24.3 nun [1:3207] 21.1 24.3 12 22.5 23.7 m mer vert int man of Frey graph • Carter in Merrier attement in Merrier Merrier attement
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated schemess estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max: median: 24.3 mean: 23.36614</pre>	345706 : -3.103136 : 15.99033 24.3	11 12 X1 X2 The first from from from from from from from from	int [1:3207] 458 459 460 461 462 463 num [1:457] 24.3 24.3 24.3 24.3 24.3 num [1:3207] 21.1 24.3 12 22.5 23.7 r. Now Years num : 0 ¢/ % % % % % % % % % % % % % % % % % %
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max: median: 24.3 mean: 23.36614 estimated sd: 2.00</pre>	345706 : -3.103136 : 15.99033 24.3 29911	11 12 X1 X2 Profession Annual Profession Annual	int [1:3207] 458 459 460 461 462 463 nun [1:457] 24.3 24.3 24.3 24.3 24.3 nun [1:3207] 21.1 24.3 12 22.5 23.7 Int Nov Year Allen and Frey graph Cultura and Frey graph Utilina and Frey graph Utilina and Frey graph
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max: median: 24.3 mean: 23.36614 estimated skewness</pre>	345706 : -3.103136 : 15.99033 24.3 29911 : -2.906411	11 12 X1 X2 Proc No. Anno Proc	int [1:3207] 458 459 460 461 462 463 nun [1:457] 24.3 24.3 24.3 24.3 24.3. nun [1:3207] 21.1 24.3 12 22.5 23.7
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis > descdist(X2) summary statistics min: 11.9 max: median: 24.3 mean: 23.36614 estimated sd: 2.00</pre>	345706 : -3.103136 : 15.99033 24.3 29911 : -2.906411	11 12 X1 X2 Profession Annual Profession Annual	int [1:3207] 458 459 460 461 462 463 nun [1:457] 24.3 24.3 24.3 24.3 24.3. nun [1:3207] 21.1 24.3 12 22.5 23.7
<pre>min: 20.8 max: median: 24.3 mean: 24.10547 estimated sd: 0.4 estimated skewness estimated kurtosis > descdist(X2) sunmary statistics min: 11.9 max: median: 24.3 mean: 23.36614 estimated skewness</pre>	345706 : -3.103136 : 15.99033 24.3 29911 : -2.906411	11 12 X1 X2 Proc No. Anno Proc	int [1:3207] 458 459 460 461 462 463 nun [1:457] 24.3 24.3 24.3 24.3 24.3 nun [1:3207] 21.1 24.3 12 22.5 23.7 in more vere int mor

So, we can also try to get them both in the same figure by doing this. That will make life easy for us to compare. So, you can see that, so this goes to this point and, so these values are different. So, this is 12 and this is 16. So, this is somewhere about 16 and this is somewhere about 11 point something, and in terms of the square of skewness. So, this is somewhere about near 10 and this is less than 9 but, in both cases it falls in this band, which is called beta distribution. So, let us go back and try to fit the distribution. Now that we know that it is beta etc.

(Refer Slide Time: 15:19)

So, can be fit, for fitting to fit 2 beta you will learn that the value has to be between 0 and 1, so that is what we are going to do, you are going to normalize the values to be between 0 and 1. So, x is nothing but the X1 values divided by the maximum and why is nothing but x2 divided by its maximum. So, we have to normalize values and let us use this, let us try to fit it to beta. So, we say that fit to the distribution take the data x and fit to the distribution and fit it to beta and we are going to use the data and the fit will be saved as fit.b1. If we try, then we get the information that function MLE failed. What is MLE, MLE is Maximum Likelihood Estimation and if it failed then we can try to use other methods to fit. Let us use this MME, Moment Matching Estimation.

(Refer Slide Time: 16:26)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	+ • 5		
summary statistics (1) with the mean of the set of t	1 Percent		
<pre>> fit.b1 <- fitdist(x, "beta", keepdata=TRUE) > ssimpleError in optin(par = vstart, fn = fnobj, fix.arg = fix.</pre>	<pre>int [1:457] 1 2 3 4 5 6 7 8 9 10 int [1:3207] 458 459 460 461 462 463 num [1:457] 1 1 1 1 1 num [1:457] 24.3 24.3 24.3 24.3 24.3. num [1:3207] 21.1 24.3 12 22.5 23.7 num [1:3207] 0.868 1 0.494 0.926 0.9 www memory and the second se</pre>		
	<pre>Fig of reproduct distribution to an overview deta by national balance of the second seco</pre>		
# 13 athed for class "fits statistics,	if is actual for class "fituat" viscializer,)		

How do we know these methods, of course you can use help, fitdist for example, you will get this information. So, it says fit of univariate distributions to non-censored data, by maximum likelihood or moment matching or quantile matching or Maximizing Goodness of fit Estimation, MGE. So, let us try the MME. So, for that you have to say method equal to this. So that fit works and you can get information about that fit.

(Refer Slide Time: 17:08)

So, you can see that fitting of the distribution beta by matching moments, and these are the parameters and it gives you this logliklihood AIC, BIC all to be infinity. So, this is what I said, we

want to understand what these quantities are, but we will come back to it after we do some more modules and when we learn about inferences and things like that, we will come back and take a look at it. So, you can do the fitting and then of course you can plot

(Refer Slide Time: 17:48)

So, you can see that the data and the density plot is here, and the CDF plot is here. So, these are the data and the red line that runs through is basically our fit and you can see the Q-Q plot. And so that also seems to fit well and this is the P-P plot.

So, what are these Q-Q plots and P-P plots, we will learn when we look at the distributions and learn about these quantities, but for now, this seems to fit well and so we can do the same exercise

for the second data Y beta, so we can again see that MLE has failed. So, we will again use method to be MME and see if that works. Obviously, that works. So, you can look at what this fit is. So again, you get to these logliklihood parameters and AIC, BIC parameters to be infinity. We will come back and understand what it is, but for now we can try to plot and see.

(Refer Slide Time: 19:02)

So again, you see that the empirical and theoretical densities, the empirical and theoretical cumulative distribution functions and the Q-Q plot and P-P plot they are all okay and as compared to the previous case the Q-Q plot is slightly off, but it is still okay. It is fitting most of the data.

And so that is what we are realizing. Now that we have done this exercise, we have been looking at also the electrical conductivity data of ETP copper, and we noticed that, that data was fitting or looking like normal distribution. Is it so, can we check if it is indeed the normal distribution? So, for doing that let us do this. So, we are going to read the data that is ETP copper conductivity data and we are going to say describe that distribution, that data.

(Refer Slide Time: 20:09)

And we find that our observation of course lies along this star, which is normal distribution. So, this is what we have been noticing and that this is minimum is 101.1, maximum is 101.5, median is 101.3 and mean is 101.32 and standard deviation was 0.1. So, these we have already seen and the skewness, you can see is quite close to 0 and kurtosis is quite close to 3.

So, this shows you that this is a very nice, normal distribution. Of course, we can check that indeed is so. How do we do that? So we try to fit this to normal distribution and here is the. So, we say that okay fit the distribution, take the X data and fit it to normal distribution and give the summary of the fit.

(Refer Slide Time: 21:10)

So, we again find that of course it fits and it used the maximum likelihood method and this is the mean and the standard error and the standard deviation. So, it is like 0.1 and this time you can see that the logliklihood the AIC, BIB etc. are not infinites. So, it is giving you some numbers and it also gives you what is known as correlation matrix. So, we will at some point look at what it is, of course, let us plot the normal fit we have made.

(Refer Slide Time: 21:55)

So, you can see that the experimental and the empirical and theoretical densities match and the cumulative distribution functions match and the Q-Q plot is a nice line, as also the P-P plot. So,

we can see that in this case everything is nicely following the normal distribution. So, to summarize so we have been looking at data and sometimes we find that the data can be better described by distributions.

(Refer Slide Time: 22:33)

For example, in the case of conductivity, this is repeated measurements, which give you values about some mean and the distribution is there because of random noise and that is why it is a normal distribution, but on the other hand every single measurement gives you a set of distribution for grain sizes and this obviously is not a normal distribution or a bell shaped curve. So, to describe this kind of distributions, you can use this library fitdistrplus and you can get information.

(Refer Slide Time: 23:09)

And generally, the methodology here is that by looking at where the skewness and kurtosis values lie, we decide what could be the best theoretical distribution that will fit the given empirical data. So, that is the exercise that we have done. And we will come back to some aspects of this fitting exercise after we go through the probability distribution. Thank you.