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Lecture 28
Fitting experimental data to distributions
Welcome to dealing with materials data. In this course we are going to learn about Collection,
Analysis and Interpretation of data. We are looking at the second module, which is on descriptive
statistics using R and we have been looking at how to deal with distributions while presenting

experimental results.
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Summarising data as distributions

o GrainSizeDataSet2.csv: Contains grain sizes of two phases
o Clear that mean and standard deviation is not sufficient to describe the data
o We can fit distributions to the given data
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Specifically, we have been looking at some grain size distributions. This is a case where the steel
consists of two phases and the grain size data of both the phases is available in a csv file, and it is
very clear that if you just look at the mean and standard deviation, it is not sufficient to describe
the data. So, we need to find distributions that fit to the given data. So, that is what we want to try
in this session. Of course, we have not done probability distributions, and we are going to do that

as the next module. So, some of the ideas that we are going to use here, we are going to revisit



after we do the session on probability distributions. But at the moment, we will just use some

existing libraries and use this data and look at the fit and identify what fits the given data better.
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Using fitdistrplus

o We use the fitdistrplus library
o Idedntify the best distribution for fitting data
o Estimate the parameters of the distribution that fits data

o Very tutorial introduction: we will revisit and discuss some of the details after we go
through the probability distribution module

(
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So, we use fit distribution plus library, fitdistrplus. This is used to identify the best distribution for
fitting the data and it also estimates the parameters of the distribution that fits the data. What we
are going to give in this session is a very tutorial introduction. So, I am not going to explain many
things, it is just like a command you give the command and you see the results and you will know
what distribution it is, and you will give another command just to fit it for that distribution, but we

will revisit and discuss some of the details after we go through the probability distribution module.
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Skewness and Kurtosis

o Skewness: how long is the tail
o Positively skewed (tail is on the right) and negatively skewed (tail is on the left)
o Kurtosis: also information about the tail

o Kurtosis: about outliers; for example, compared to a normal distribution, how heavy is
the tail?
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In order to understand how this distribution works, of course it is important to know about
skewness and kurtosis and you might have already been taught about skewness and kurtosis.
Skewness tells how long is the tail and it is said to be positively skewed, if the data is having a
long tail on the right, and it is said to be negatively skewed, if the tail is on the left side of the data.
On the other hand, for a normal distribution the data has tails on both right and left side and in fact

if it is very nicely, normally distributed you will find that it is also symmetric about the mean.

On either side of the mean it will be having the same type of tail, but if the data is skewed,
positively or negatively, then you will see that it has a longer tail either on the right or on the left.
Kurtosis is also information about the tail and it specifically talks about the outliers and it gives
you information as compared to a normal distribution how heavy is the tail in the given data, so
that is what this gives. So, by looking at these two quantities, it is possible to find out what the best
fit from in terms of probability distribution for the data could be and that is what we are going to

do.
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Moments about the mean

ik = Z(X.- - u)*f(x) (1)

fik: k-th moment about the mean

f(x;): probability distribution

T mean, the first moment about the origin

o variance, second moment about the mean

skewness: third moment about the mean normalised by o
kurtosis: fourth moment about the mean normalised by o*
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e = Xilx; — ll)k f(x)

And to little bit better understand what these quantities are. We know about moments about the
mean. So, mu K is the k-th moment about the mean. It is defined as follows, so you take the data
value and you take the mean which is the first moment about the origin and you take the difference
to the power k and you multiply by the probability distribution. This is what we are going to discuss
in detail in the next session but for now, it is enough if you understand that f(xi), basically gives
you the probability that the random variable will take the value x; and we are assuming that from

that distribution is where we are getting these values. And so, this is basically a probability.

And mu is the first mean, first moment about the origin that is the mean and sigma squared is
variance. So, it is the second moment about the mean itself. So, xi minus mu whole squared f of xi
is basically sigma squared, so that is a variance. And skewness and kurtosis are basically third and
fourth moments about the mean. So, if you put cube and power 4 here, you get skewness and
kurtosis, but it is not just putting 3 and 4 here, you also divide the resultant quantity by either sigma
cube or sigma power 4. To get skewness you divide by sigma cube and you, to get kurtosis you

divide by sigma power 4. So, these two numbers that you generate.

So, third movement about the mean normalized by sigma cube, where sigma is the standard
deviation, We know it is the square root of variance. And, so this quantities, so skewness and

kurtosis is what we are going to use, to understand what is the probability distribution that



describes our data properly. Specifically, we are going to look at the grain size data and understand

how it is distributed.
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Skewness and kurtosis

Histogram of x
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Skewness and Kurtosis

o Skewness: how long is the tail
o Positively skewed (tail is on the right) and negatively skewed (tail is on the left)
o Kurtosis: also information about the tail

o Kurtosis: about outliers; for example, compared to a normal distribution, how heavy is
the tail?
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So, you can see that our grain size data for phase 1 and phase 2, has huge skewness and also
kurtosis. So, you can see that the distribution is of course one sided. So, it has a long tail to the left
and this also has a long tail to the left. So, in our definition we will say that this is negatively
skewed and also you can see the fatness or thickness of the tail. So, as compared to a normal

distribution, of course, these tails are much more fatter. So, this is the information but we are going



to get numbers for these two quantities and they are defined in terms of moments about the mean

and appropriately normalized.
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Fitting a distribution to given data

o Use fitdistrplus

o What is Logliklihood, AIC (Akaike's information criterion), BIC (Bayesian information
criterion)?

o Revisit this exercise after we learn about probability distributions and Bayesian inference

So that is what we are going to do, and for doing that we are going to use fit distribution plus
library. And while we analyse the data and come up with a fit for the given data. We also have to
evaluate how good is your fitting and for that there are measures. Specifically, you will see that R
gives you information about logliklihood, AIC which is Akaike’s Information Criterion and BIC

which is a Bayesian Information Criterion.

Of course, we will come back to understand these quantities better after we learn about probability
distributions and influence and things like that, but for now, you just have to pay attention and see
what are these quantities that R returns when you try to do the fitting. So, let us go and do the

fitting, as usual.

(Refer Slide Time: 07:55)



R is a collaborative project with many contributors.
Type ‘contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'deno()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R. - - o

> getwd()
[1] "/hone/guru/Desktop/DealinghithMaterialsData"
> Wbrary("fitdistrplus®)

1 Presenting data as distributions

Let us consider second data set on grain sizes. As our previous analysis showed, the data can not be
completely and meaningfully described using mean and standard deviation. So, it is better to describe it
using distributions, We will have an R module on probability distributions, In this session, however, we
will try and fit the grain size data empirically to some distribution. To do this, we will use the library
firdistrplus, Let us also load the data and seperate out the grain size data for phases | and 2

## Loading required package: NASS
11 Loading required package: survival
¥ Loading required package: mpsurv

#2 Loading required package: lsei

V. b
To know the posllasandidate distributions for our data, we will use the command descdist. This com-

CRobRRTOR

So, we will start with getting the data. So, let us start R and this is version 3.6.1 we need to know
the working directory, and so we are in the right directory. So, we need to, first invoke the library
and let us do that. So, we want to use the fitdstrplus. And then we want to read the data. So, the
csv file from data, grain size data set 2.csv is read and then we are going to find out the phase
identity 1 and 2 so we are going to save those row numbers in il and i2. So, if you pull out from
X all the i1 one ones that is for phase 1 let us call it X1 and for i2, it is all for phase 2. Let us call
it as X2.

(Refer Slide Time: 09:09)
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R is a collaborative project with many contributors

X 3664 obs. of 6 variables

Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications. Values

1 int [1:457) 12345678910 ...
Type 'demo()' for some demos, 'help()' for on-line help, or 12 int [1:3267] 458 459 460 461 462 463
'help.start()' for an HTML browser interface to help. X1 num [1:457) 24.3 24.3 24.3 24.3 24.3
Type 'q()' to quit R. X2 num [1:3207) 21.1 24.3 12 22.5 23.7 ..

> getwd()
(1] "/hone/guru/Desktop/DealingiithMaterialsData”
> library("fitdistrplus®)

> X <= read.csv("Data/GrainSizeDataSet2.csv")
> i1 < grep(1,X(,1])

> {2 < grep(2,X(,1])

> X1 < X[i1,6)

> X2 < X[12,6]

> library("fitdistrplus®)

X 3664 obs. of 6 variables

Loading required package: MASS
Values
i1 int [1:457) 12345678910 ...
Loading requl kage: lsei 2 int [1:3207) 458 459 460 461 462 463.
> X < read.csv("Data/GratnSizeDataSet2.csv") xQ num [1:457) 24.3 24.3 24.3 24.3 24.3.
> i1 < grep(1,X(,1]) X2 num (1:3207] 21.1 24.3 12 22.5 23.7

> 12 < grep(2,X([,1])

> X1 < X[11,6]

> X2 < X[i2,6)

> descdist(X1)

summary statistics

min: 20.8 max: 24.3
median: 24.3

mean: 24.10547

estimated sd: 0,4345766
estinated skewness: -3.103136
estimated kurtosis: 15.99033
> help(descdist)

CRobRRPO~RE

So, we have done and we have already seen this data. So, there are 3664 observations and there
are 6 variables there and of which about 457 is for phase 1 and remaining 3200 or for phase 2. So,
we have done this. So, now let us use this, command. So, it gives you the, so what is the descdist,

so let us look up.

So, itis description of empirical distribution of non-censored data. There is this difference between
censored data and non-censored data. Suppose for some reason to save time or because you are
not able to continue the experiment for longer times. If you arbitrarily stop the experiment at some
time or beyond some particular point, then that is called as censored data, what we have is not

censored data. So, this is descdist is for Description of Distribution, that is what description of



distribution is what it is, and it is for the empirical data and the data should be non-censored and,

in that case, you can use this.



(Refer Slide Time: 10:44)
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> X2 < X[12,6] Auae
> descdist(X1) X 3664 obs. of 6 variables

summary statistics Values

...... i1 int [1:457) 12345678910 ...
nin: 20.8 max: 24.3 ¥ int [1:3207] 458 459 460 461 462 463.
nedian: 24.3 X1 num [1:457) 24.3 24.3 24.3 24.3 24.3
mean: 24.10547 X2 num [1:3207) 21.1 24.3 12 22.5 23.7
estimated sd: 0.4345766 e e e ous

estinated skewness: -3,103136 Sl

estimated kurtosis: 15.99033 Culln and Frey graph

> help(descdist)

> descdist(X1)
sunmary statistics

-

nin: 20.8 max: 24.3
median: 24.3

mean: 24,10547
estimated sd: 0,4345706
estinated skewness: -3.103136 ! : N —
estimated kurtosis: 15.99033

CEobRRPO~R

And if you look at the data that we have for phase 1 the grain size distribution data, then it lists
several theoretical distributions. All of which we are going to learn in the next module normal
distribution, uniform distribution, exponential, logistic, beta, lognormal, gamma and it also tells

you that variable is close to gamma and lognormal.

So, if you have gamma and lognormal is the dotted point here, so the variable is close to these two
distributions. And so, where is our observation? Our observation lies in this band which is for beta
distribution. So, this graph it is called Cullen Frey graph and it is a graph of square of skewness
versus kurtosis. And so, for example, for normal the kurtosis is here at 3 and the square of skewness

is here, which is close to 0.

So, by taking these two values it knows that if some data falls somewhere here, then it must be
normally distributed and so on and so forth. So, because our data falls somewhere here in the beta
regime, we know that the data is, probably best described by the beta distribution and it gives you
the, this we have already seen that minimum value is 20.8 and maximum 24.3 in this case. The
median value is 24.3 because we saw lots of data points which were a 24.3 and the mean was 24.1
and the standard deviation was 0.4. So, it was 24.1 plus or minus 0.4 so it gives you the same data

and it now in addition has estimated the skewness and the kurtosis.
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estimated kurtosis: 15.99033 R

» help(descdist) X 3664 obs. of 6 variables

> descdist(X1) Values

summary statistics i int [1:457) 12345678910 ..,
...... 12 int [1:3207] 458 459 460 461 462 463.
min: 20.8 max: 24.3 X1 num [1:457) 24.3 24.3 24.3 24.3 24.3
median: 24.3 X2 num [1:3207] 21.1 24.3 12 22.5 23.7

mean: 24,10547 - o

estimated sd: 0.4345706 T

estinated skewness: -3.103136 Culln aed Frey Graph

estimated kurtosis: 15.99033 =

> descdist(X2) ) ‘:

sunmary statistics

min: 11,9 max: 24.3

median: 24.3

mean: 23,36614 ’ -
estimated sd: 2.029911

estimated skewness: -2.906411

estinated kurtosis: 11.38933

CEobhRRPO*RE

So, let us do the same thing for the data for phase data for phase 2. Again, we see that this has a
much larger range, minimum is 11.9, maximum is 24.3, median is again 24.3. So, you can see that
the median is the same and the mean is also quite close. So, it is 23.4 and the standard deviation is

about 2. So, it is 23.4 plus or minus 2, and this is 24.1 plus or minus 0.4.

So, these two data points in terms of mean and standard deviation, if you look at they are almost
the same, but obviously the skewness is different or quite close it is not very different. So, it is
minus 3.1 and this is minus 2.9. So, this is not very different. And kurtosis is again, this is about
16 and this is about 11.4. So, there is some difference. So, obviously it is not the same as phase 1,
but it is also a beta distribution and it is slightly different from the previous one. So, we noticed
that our data again falls in the beta distribution regime and but it is different from the earlier one.



(Refer Slide Time: 14:12)

To know the possible candidate distributions for our data, we will use the command descdist, This com-
mand gives us the minimum, maximum, median, mean and standard deviation along with the skewness
and kurtosis; the skewness-kurtosis plot helps us identify the distribution that describes our empirical
data

[HE

estimated kurtosis: 11.38933 8 Secvcs

> par(nfrow=c(1,2)) X 3664 obs. of 6 variables

> descdist(k1) Values

sunmary statistics {1 {nt [1:457) 12345678910 ...
------ 12 int [1:3207] 458 459 466 461 462 463.
min: 20.8 max: 24.3 X1 num [1:457) 24.3 24.3 24.3 24.3 24.3.
median: 24.3 X2 num [1:3207) 21.1 24.3 12 22.5 23.7
mean: 24,10547 LTS —

estinated sd: 0.4345766 e

estimated skewness: -3.103136 Cutien and Frey graph

estinated kurtosis: 15.99033

> descdist(x2) b 4

sunmary statistics * : :

nn: 119 max: 24.3 |1 = i:

median: 24.3 | e

mean:  23,36614 LS | g b
estimated sd: 2.029911 1 ;i o
estimated skewness: -2.906411 ¢ e

estinated kurtosis: 11,38933

: o~ o
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So, we can also try to get them both in the same figure by doing this. That will make life easy for
us to compare. So, you can see that, so this goes to this point and, so these values are different. So,
this is 12 and this is 16. So, this is somewhere about 16 and this is somewhere about 11 point
something, and in terms of the square of skewness. So, this is somewhere about near 10 and this
is less than 9 but, in both cases it falls in this band, which is called beta distribution. So, let us go
back and try to fit the distribution. Now that we know that it is beta etc.
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To fit the data to beta distribution, let us use the command £itdist. We also normalise the data to be
== between 0 and 1 to fit to beta distribution:

2
1 o X1 /max(Xt)
< 12/axx(X2)
f1t.b! fitdiat(x, "beta", TRUE)
8¢ <aimplefrror in optim(par = vatart, fn = fnobj, fix.arg = fix.arg, oba = data, gr = gradient, dd

#¢ Error in fitdist(x, "beta", keopdata = TRUE): the function mle failed to estimate the parameters,
[} vith the error code 100

TRUE)

o D Gue You [ fien B Ovbeg B D b
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sumnary statistics o sy

...... i int [1:457) 12345678910 ...

mn: 208 max: 24.3 i2 int [1:3207) 458 459 460 d61 462 463..
median: 24.3 X num [1:457] 11111 ..,

mean: 24,10547 b8! num [1:457] 24.3 24.3 24.3 24.3 24.3.
estimated sd: 0.4345706 X2 num [1:3207) 21.1 24.3 12 22.5 23.7 ..
estinated skewness: -3.103136 y num [1:3207] 0.868 1 0.494 0.926 0.9..
estimated kurtosis: 15.99033 . - -

> descdist(X2) 9L Y-
sunmary statistics Cuten 304 Frvy graph

nin: 119 max: 24.3 N ’: T ET] WM

median: 24.3 ¥ i j:

mean: 23,3664 =1 . .

estinated sd:  2.029911 | *1 = B

estinated skewness: -2.906411 S =y

estimated kurtosis: 11.38933 L | 8| u

> par(nfrowc(1,1)) * | o

> % <« X1/max(X1) £4 . LR

>y < X2/max(X2) ¢ 1 ¢ 4w ¢ o1 4 e




To fit the data to beta distribution, let us use the command fitdist. We also normalise the data to be

between 0 and 1 to fit to beta distribution:

£10.b1 < fitdiatin, "beta” xoepdato~THUE) N

#¢ Error in fitdiat(x, "beta", keepdata » TRUE): the function mle failed to estimate the parameters,
LU} vith the error code 100

TRUE

REoABANOeR
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> descdist(X2) *{ @ st
sunmary statistics i int [1:457) 12345678910 ...
...... 2 int [1:3207] 458 459 460 461 462 463.
min: 119 max: 24.3 X num [1:457] 11111 ...
median: 24.3 “ num [1:457] 24.3 24.3 24.3 24.3 24.3.
mean: 23.36614 X2 num [1:3207] 21.1 24.3 12 22.5 23.7
estinated sd: 2.029911 y num [1:3207] 0.868 1 0,494 0.926 0.9,
estimated skewness: -2,906411 . -
estinated kurtosis: 11.38933 i
> par(mfrow=c(1,1)) Cutien and Frey graph
> X < X1/max(X1) —
>y < X2/max(X2) 8 .4
> fit.bl < fitdist(x,"beta" keepdata=TRUE) N3 ¢ :
<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix. > —I=- :
arg, obs = data,  gr = gradient, ddistnan = ddistnane, hess | * | = {
ian = TRUE, method = meth, lower = lower, upper = upper, . :
++)i function cannot be evaluated at initial parameters> LS| $ n
r in fitdist(x, "beta", keepdata JE) & * x
fun timate the parameters, s S N e
30 .
| - e o o

O N0 pal L |

So, can be fit, for fitting to fit 2 beta you will learn that the value has to be between 0 and 1, so
that is what we are going to do, you are going to normalize the values to be between 0 and 1. So,
X is nothing but the X1 values divided by the maximum and why is nothing but x2 divided by its
maximum. So, we have to normalize values and let us use this, let us try to fit it to beta. So, we
say that fit to the distribution take the data x and fit to the distribution and fit it to beta and we are
going to use the data and the fit will be saved as fit.b1. If we try, then we get the information that
function MLE failed. What is MLE, MLE is Maximum Likelihood Estimation and if it failed then

we can try to use other methods to fit. Let us use this MME, Moment Matching Estimation.
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sunmary statistics

min: 11,9 max: 24.3

median: 24.3

mean: 23,36614

estinated sd: 2.029911

estinated skewness: -2.966411

estimated kurtosis: 11.38933

> par(mfromec(1,1))

> X < X1/max(X1)

>y < X2/max(X2)

> fit.bl < fitdist(x,"beta" keepdatasTRUE)

<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix,

arg, obs = data, gr = gradient, ddistnam = ddistname, hess

{an = TRUE, method = meth, lower = lower, upper = upper,
...): function cannot be evaluated at initial parameters>

Error {n fitdist(x, "beta”, keepdata TRUE)

the function

with the error code 16
> help("fitdist")

>

+| A

[ a—

i int [1:457) 12345678910 ...
{2 int [1:3207] 458 459 466 461 462 463.
X num [1:457) 11111 ...

b3 num [1:457] 24.3 24.3 24.3 24.3 24.3.
X2 num [1:3207) 21.1 24.3 12 22.5 23.7
y num [1:3207] 0.868 1 0.494 0.926 0.9.

- - -

Fit of univariate distributions to non-censored data

Descristian

CEobBRAPO~R

How do we know these methods, of course you can use help, fitdist for example, you will get this

information. So, it says fit of univariate distributions to non-censored data, by maximum likelihood

or moment matching or quantile matching or Maximizing Goodness of fit Estimation, MGE. So,

let us try the MME. So, for that you have to say method equal to this. So that fit works and you

can get information about that fit.

(Refer Slide Time: 17:08)
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> par(mfrow=c(1,1))
> X < X1/max(X1)

> y < X2/max(X2)

> fit.bl < fitdist(x,"beta" keepdata=TRUE)

<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix.
arg, obs = data, gr = gradient, ddistnan = ddistname, hess
ian = TRUE, method = meth, lower = lower, upper = upper,

.«.): function cannot be evaluated at initial parameters>

Error {n fitdist(x, "beta

, keepdata = TRUE)

> help("fitdist")
> fit.bl < fitdist(x,"beta" keepdata=TRUE method="mme")
> summary(fit.b1)
Fitting of the distribution ' beta ' by matching moments
Parameters :
estimate
shapel 23.6934656
shape2 0.1912047
Loglikelihood: Inf AIC: -Inf BIC: -Inf
> |

CeobRRrO~R

O i =1
Data
fit.b1 List of 17
X 3664 obs. of 6 variables
Values
i1 int [1:457) 12345678910,
2 int [1:3207] 458 459 460 461 462 463..

- -

Fit of univariate distributions to non-censored data

Cescription

So, you can see that fitting of the distribution beta by matching moments, and these are the

parameters and it gives you this logliklihood AIC, BIC all to be infinity. So, this is what | said, we



want to understand what these quantities are, but we will come back to it after we do some more
modules and when we learn about inferences and things like that, we will come back and take a

look at it. So, you can do the fitting and then of course you can plot

(Refer Slide Time: 17:48)
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> X < X1/max(X1) of g

>y < X2/max(X2) Data

> fit,bl < fitdist(x,"beta" keepdatasTRUE) fit.b1 List of 17

<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix. X 3664 obs. of 6 variables

arg, obs = data, qgr = gradient, ddistnam = ddistname, hess Values

Lan = TRUE, method = meth,  lower = lower, upper = upper, 18 int [1:457) 12345678910 ...
..): function cannot be evaluated at initial parameters> 7 int [1:3207) 458 459 460 461 462 463.
Error in fitdist(x, "beta", keepda RUE) - - -

the function mle faile

with the error coc oo Gmpicel snd Suomdcal dons. Oapht

> help("fitdist") 2 [ 1] P
> fit.b1 < fitdist(x, "beta" keepdatasTRUE,method="mme") 1" ] ‘ o
> sumnary(fit.b1) —] bl oa
Fitting of the distribution ' beta ' by matching moments o
Parameters : =

estinate s ind Bwonten COFy ™
shapel 23.6934656 o | .1
shape2 0.1912047 ‘ I | l
Loglikelihood: Inf AIC: -Inf BIC: -Inf —aih } P :

> plot(fit.b1)

AEobhRRPO«R

o S (o Gt
with the error code 160 | At
> help("fitdist") Data
> fit.bl < fitdist(x, beta" keepdatasTRUE,methods"mme") fit.b1 List of 17
» summary(fit.b1) fit.b2 List of 17
Fitting of the distribution ' beta ' by matching moments X 3664 obs. of 6 variables
Parameters : Values
estinate 1 int [1:457) 12345678910 ...
shapel 23.6934656 - -
shape2 0.1912047 iy
Loglikelihood: Inf AIC: -Inf BIC: -Inf b apserboneon, i
> plot(fit.b1) x a : LR -‘___.'
> fit.b2 < fitdist(y, beta" keepdatasTRUE) | ;0]
<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix. p—— ——

arg, obs = data, gr = gradient, ddistnam = ddistname, hess
{an = TRUE, method = meth, lower = lower, upper = upper,
...): function cannot be evaluated at initial parameters> [T T— oy

Error {n fitdist(y, "beta”, keepdata = TRUE) 0 | .1
the function mle failed t e parameters, - % ] l
with the error code 106 ! |

BRSO b I % P <

DIFR
> fit.b2 < fitdist(y,"beta" keepdata=TRUE ,method="rme")

CRobRRPO~R

So, you can see that the data and the density plot is here, and the CDF plot is here. So, these are
the data and the red line that runs through is basically our fit and you can see the Q-Q plot. And so

that also seems to fit well and this is the P-P plot.

So, what are these Q-Q plots and P-P plots, we will learn when we look at the distributions and

learn about these quantities, but for now, this seems to fit well and so we can do the same exercise



for the second data Y beta, so we can again see that MLE has failed. So, we will again use method
to be MME and see if that works. Obviously, that works. So, you can look at what this fit is. So
again, you get to these logliklihood parameters and AIC, BIC parameters to be infinity. We will
come back and understand what it is, but for now we can try to plot and see.
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G et e ot (it

shape2 0.1912047 e

Loglikelihood: Inf AIC: -Inf BIC: -Inf Data

> plot(fit.b1) fit.b1 List of 17

> fit.b2 < fitdist(y,"beta" keepdata=TRUE) fit.b2 List of 17

<simpleError in optin(par = vstart, fn = fnobj, fix.arg = fix. X 3664 obs, of 6 variables

arg, obs = data, gr = gradient, ddistnan = ddistname, hess ' Values

ian = TRUE, method = meth, lower = lower, upper = upper, 1 int [1:457) 12345678910 ...
+o0)i function cannot be evaluated at initial parameters> me ne s e o

E fitdist t Jat TRUE 7

falled to estimate the paramete mprcal mns heowscal dess 0apkt

with the ¢ )
; {
> fit.b2 <- fitdist(y,"beta" keepdatasTRUE methods"mme") | el /
> summary(fit.b2) - e Pal, -~ &

Fitting of the distribution ' beta ‘ by matching moments

Parameters :
estimate Empreetind acerienl (504 ™
shapel 4,1321206 1 [.1
shape2 0.1651465 A I Y e | l
ikelihood: : - o | A 1°] '
Loglikelihood: Inf AIC: -Inf BIC: -Inf : . | RS

> plot(fit.b2)
AEoRRRPO«E

So again, you see that the empirical and theoretical densities, the empirical and theoretical

cumulative distribution functions and the Q-Q plot and P-P plot they are all okay and as compared

to the previous case the Q-Q plot is slightly off, but it is still okay. It is fitting most of the data.

And so that is what we are realizing. Now that we have done this exercise, we have been looking
at also the electrical conductivity data of ETP copper, and we noticed that, that data was fitting or
looking like normal distribution. Is it so, can we check if it is indeed the normal distribution? So,
for doing that let us do this. So, we are going to read the data that is ETP copper conductivity data
and we are going to say describe that distribution, that data.
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o ey
> fit.b2 < fitdist(y,"beta" keepdata=TRUE method="mme") o § S
> sumnary(fit.b2) fit.b2 List of 17
Fitting of the distribution ' beta ' by matching moments X 20 obs. of 1 varfable
Parameters : Values

estimate i1 int [1:457)12345678910..
shapel 4.1321206 {2 int [1:3207] 458 459 460 461 462 463
shape2 6.1651465 X num [1:20] 101 161 101 101 161 ...
Loglikelihood: Inf AIC: -Inf BIC: -Inf e e - o
> plot(fit.b2) e Siaia
> X <« read.csv("Data/ETPCuConductivity.csv") Cullen s Frey graph
> X <= XSConductivity
> descdist(x) i
summary statistics RN

min: 101.1 max: 161.5
median: 101.3

mean: 101,32 .
estinated sd: 0,1005249 - .
estimated skewness: -0.09671453
estimated kurtosis: 3,189185

REoBBRNBeE

And we find that our observation of course lies along this star, which is normal distribution. So,
this is what we have been noticing and that this is minimum is 101.1, maximum is 101.5, median
is 101.3 and mean is 101.32 and standard deviation was 0.1. So, these we have already seen and

the skewness, you can see is quite close to 0 and kurtosis is quite close to 3.

So, this shows you that this is a very nice, normal distribution. Of course, we can check that indeed
is so. How do we do that? So we try to fit this to normal distribution and here is the. So, we say
that okay fit the distribution, take the X data and fit it to normal distribution and give the summary
of the fit.
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e P ]

...... L

min: 101.1 max: 101.5 fit.normal  List of 17

median: 101.3 X 20 obs. of 1 variable
mean: 101,32 Values
estimated sd: 0.1005249 i1 int [1:457) 12345678910 ...
estinated skewness: -0.09671453 {2 int [1:3207) 458 459 460 461 462 463
estinated kurtosis: 3.189185 X num (1:20] 161 101 161 161 101 ..
> fit.normal <- fitdist(x, norm" keepdata = TRUE) - - o
> summary(fit.normal) i
Fitting of the distribution ' norm ' by maxinum likelihood Culen e Frey Gragh
Parameters : e —
estimate Std. Error {4
mean 101.32000000 0.062190890 RN
sd 0.09797959 0,01548467 2 g

Loglikelihood: 18.08115 AIC: -32.1623 BIC: -30.17084 || °
Correlation matrix: ¥

nean sd
mean 1 0 . .
sd 0 1I A —

AEobBRPO«E

So, we again find that of course it fits and it used the maximum likelihood method and this is the
mean and the standard error and the standard deviation. So, it is like 0.1 and this time you can see
that the logliklihood the AIC, BIB etc. are not infinites. So, it is giving you some numbers and it
also gives you what is known as correlation matrix. So, we will at some point look at what it is, of

course, let us plot the normal fit we have made.

(Refer Slide Time: 21:55)
L .

o (A Guie Yww Pun fwee I Qvbeg e (W ey

o P e ]

min: 101.1 max: 1601.5 | Qs b
median: 101,3 fit.nornal  List of 17

mean: 101,32 X 20 obs. of 1 variable

estinated sd: 0,1005249 Values

estimated skewness: -0.09671453 i1 int [1:457) 12345678910 ...
estimated kurtosis: 3.189185 2 int [1:3207] 458 459 460 461 462 463.
» fit.normal <- fitdist(x,"norn" keepdata = TRUE) X num 1:20] 161 101 161 161 101 ..

> summary(fit.normal) - - You—

Fitting of the distribution ' norm ' by maximum ikelihood G “

Paraneters : o cmrbacamas o

estimate Std, Error = {¥]
nean 161.32000000 0.02190890 1< | L o
sd 0.09797959 0.01548467 -1
Loglikelihood: 18.08115 AIC: -32,1623 BIC: -30,17084
Correlation matrix:

nean sd Erpocsl ind et COFy ™
mean 10 o] m |.]
e 01 % | | 1 | | t

> plot(fit.normal)

CEobhRRPO®I

So, you can see that the experimental and the empirical and theoretical densities match and the

cumulative distribution functions match and the Q-Q plot is a nice line, as also the P-P plot. So,



we can see that in this case everything is nicely following the normal distribution. So, to summarize
so we have been looking at data and sometimes we find that the data can be better described by

distributions.
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For example, in the case of conductivity, this is repeated measurements, which give you values
about some mean and the distribution is there because of random noise and that is why it is a
normal distribution, but on the other hand every single measurement gives you a set of distribution
for grain sizes and this obviously is not a normal distribution or a bell shaped curve. So, to describe
this kind of distributions, you can use this library fitdistrplus and you can get information.
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And generally, the methodology here is that by looking at where the skewness and kurtosis values
lie, we decide what could be the best theoretical distribution that will fit the given empirical data.
So, that is the exercise that we have done. And we will come back to some aspects of this fitting

exercise after we go through the probability distribution. Thank you.



