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Errors and their propagation

Welcome to dealing with materials data. We are looking at the Collection, Analysis and
Interpretation of data. Specifically, in this module we are looking at how to do descriptive data
analysis using R and one of the aspects that we need to address is errors and we saw how to present

data when we know what the errors are, and in this session we are going to learn how to do the

analysis and propagation of errors. How do we understand the error propagation?
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Errors in experiments

o Experiments: prone to errors and uncertainties
o Accidental error or mistake: not discussed here;

o Avoiding accidental error / mistakes: care should be taken in conducting experiments; if
mistakes happen, discard the data and re do the experiment; calibrate periodically; repeat
and and replicate

o Systematic error: wrong or no calibration, lack of care in measurement, impurities and
unknown reasons

o Unknown reasons: reproducibility of results in independent laboratories

o Random errors / uncertainties: Due to noise and precision of equipments; impossible to
avoid or to predict; repeated experiments and analysis of results can help quantify this
error.
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So, this is about errors and their propagation. The first question is, why are there are errors in
experiments? Typically, you will find that any experiment that you do is prone to errors and
uncertainties and the errors are of different types. First one is accidental error or a mistake and that

is not discussed in detail in this course at all, because they can be avoided.

To avoid accidental error or mistakes, one should do experiments carefully and if in spite of that
if mistakes happen one should discard the data and redo the experiment and if you know that there

is something that is not correct you should not take the data at all, and you should periodically



calibrate your equipment to make sure that the values that you are reading are actually the correct

values.

So, if the calibration does not give you right values, then you should again discard the data and
recalibrate and redo the experiment. And it is also very important to repeat and replicate the
experiments. Repetition means like we did in the case of copper conductivity for example, same
sample you will make the measurement 20 different times. So, this is repetition, but replication

means you will go through the entire process once more.

Suppose, you said 2.9 percent deformed sample, so you have deformed a sample and in that
sample, if you take 2 or 3 different pieces and did the experiment 20 times on each one of them,
this is repetition of the experiment. So, you have a sample which has gone undergone 3 percent
deformation and you take several samples and each time you do lots of measurements, so that you
are statistics is good and if you did the several such repetitions, then if you are experiment is
repeatable, and every time you are getting the same mean and similar standard deviation and so

on.

So, you know that your experiment is okay. But replication means you have to repeat the entire
process once more. Suppose, you had taken the sample, again you do a 3 percent deformation and
then you take several such samples, and then do several experiments. So, this is also very important

and repetition and the replication is one way of avoiding accidental errors or mistakes.

Than there could be systematic errors, this happens if your calibration is wrong or if you have not
done calibration, so you are measuring some quantity but it is systematically more or less
depending on how the calibration went, and it can also happen if you are not careful when you are
doing experiments and it can happen, for example, in material science it is very common because

there are impurities.

For example, the surface tension measurements have been improving over the period because
people are able to do, people are able to remove impurities and get more and more purer materials
and so the measurements have been improving. So, systematic errors can come because of the
constraints. So, you have some material and it has some impurities and there is no way you can

change it. Then there is an error associated with it. And the most dangerous form of systematic



error is some error because of some unknown reason, because it is unknown there is no way you

can correct for it.

But one way, that one can learn about such unknown reasons or correct for it is to reproduce the
results in a completely different laboratory, in a different group, for example, if they are also able
to reproduce the results, then you can assume that there might not be errors of this type even though
one cannot completely rule them out, but at least if the experiment is reproducible in different parts
and in different conditions in different labs, one can assume that systematic errors are also not
there. And the third type of error which is called random error or uncertainty is due to noise and

due to precision of equipment’s.

So, this error cannot be avoided and it is also not possible to predict it. Repeated experiments and
analysis will give some idea about these uncertainties. So, like we did for example, you take the
same sample and everything is same, you do 20 measurements you do not get the same number
every time. This is because of random noise or there is some problem with the precision of the
equipment, the equipment can only measure up to some precision. So, you are getting numbers

which are differing beyond that precision.
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Know your uncertainties and errors

o Joke about engineers: Measure with a vernier calliper, mark with chalk and cut with saw!!

o If you are planning to mark with chalk or cut with saw, measuring more accurate than a
ruler wastes money and effort!!

So, there is a joke about engineers, which says that you measure with a verniercalliper, mark with
a chalk and cut with a saw. So, if you are planning to mark with the chalk or cut with a saw, you

should not be measuring using a verniercalliper, I know just ruler will do. In other words when



you are doing experiments you should know the different errors that you are going to encounter
and so if it is not meaningful for you to measure something very very accurately because you later
know that something else is going to mark that accuracy or it is not going to give you to that
accuracy, then you can save yourself lots of time effort money by doing things only up to the

required accuracy and precision.
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Propagation of errors

o Errors in one quantity propagate through calculations to other quantities!

o Consider the skin depth formula that we discussed earlier:
o 24
N
o Let us say that the o in our case has an uncertaintly of about 5 units; that is, let us say
that we calculated 0 assuming o = 100 whereas actual o lies anywhere in the range 97.5
to 102.5. What can you say about the uncertainty in 67

;
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So, this is very very important and the next thing about errors is that let us say that you have some
random errors or uncertainty in one of the quantities, but these errors actually propagate through
your calculations to other quantities. The skin depth formula that we discussed earlier | mentioned
at the end of that session. That, the formula is delta is 664 by square root of f mu r sigma. We can

assume that f and mu are known and they do not have any error and I have just some given number.

Which might not be true, but at least for the moment, let us assume that they are given f is 60 kilo
Hertz and mu r is 0.99994. If so, then any error that is there in sigma or uncertainty that is there in
sigma measurement will actually also affect the delta measurement. Let us say for argument sake,
that sigma is 100, is what we took, but it has an error bar. The error bar is plus or minus 2.5. Let
us say that it can lie anywhere between 97.5 and 102.5. What is the uncertainty that you will get
in delta because you have uncertainty in the value of sigma? Is a question that one can ask, and

with this being a very simple case it can also be answered very easily?
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Error propagation

o Let us simplify the expression a bit; d ~ 271777
V”
@ Since the value of o reported is 100, the §(100) = 0.27 or 0.3 mm.

o We can use the extreme values and find out the spread in 0: these values turn out to be
0.2745303 and 0.2677508; in other words, 0.3 mm; thus, the error, within the accuracy to
which we calculate 4 is negligible.

e
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So, let us simplify the expression a little bit. So, use the values of f and mu r, and you get an

expression which is 2.71. So, how do we get that, let us do that.
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Platform: x86_64-pc-linux-gnu (64-bit) Ll

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R {s a collaborative project with many contributors,
Type ‘contributors()’ for more information and
‘citation()" on how to cite R or R packages in publications.

Type 'deno()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type ‘q()' to quit R.

> 664/(5qrt(60000°0,99994))
[1] 2.71085
> 664/(sqrt(60000*9,999994))
[1] 2. 119717
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R can also be used as a calculator. So, we want to get 664 divided by square root of 60000 and
0.99994. So, you get the 2.71085 and that is what is given here. So, 2.710777 and that is the value
that is given here.
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Error propagation

o Let us simplify the expression a bit: 6 ~ 2720777
v

o Since the value of o reported is 100, the 4(100) = 0.27 or 0.3 mm.

o We can use the extreme values and find out the spread in 0: these values turn out to be
0.2745303 and 0.2677508; in other words, 0.3 mm; thus, the error, within the accuracy to
which we calculate 4 is negligible.
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So that is divided by root sigma, is the expression for delta. Now the value of sigma is reported as
100. So, if you calculate delta for 100 you get 0.27 or it is 0.3 millimetre. Now you can use the
other extreme values that you have. Let us say that you have values like 97.5 and 102.5, you can
again substitute these values in this expression and you find that value turns out to be 0.2745 and
0.2677. In other words, they also happen to be 0.3 millimetres, we are not going to measure beyond
this accuracy let us say then all the 3 values happen to be 0.3. So, the error within the accuracy to

which we calculate delta becomes negligible.

However, if we are calculating delta to some fourth or fifth decimal place, let us say we were
measuring in microns for example, then these different values will actually have errors and so
using this very straight forward method | mean, we have a range of we just substitute for the min
and the max the extreme values, and so we know what are the extreme values that delta itself can
take. So, we know the error is in this range, the value lies in this range so you can know the what

the error is.
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Uncertainty using formula

8

05 =|—| Ao (1)
do
2.710777
03 72(;)75— o (2)

This values is 0.006767 or 0.007. Note that this is consistent with our earlier calculations
(—0.2677508-0.2745303— = 0.006780).

(s
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There is also another way of calculating the same quantity. Now the sigma of delta that is the
standard deviation in delta. So, there are 2 sigma’s, so one has to be careful. The left side is the
standard deviation, that is obtained by taking the partial derivative of delta with respect to the
conductivity sigma and multiplying by the uncertainty in the conductivity. So, if you take the, and
it is modulus. So, we are going to take only the positive value. So, if you take this 2.710777 divided
by square root of sigma, and you take the derivative then it is sigma to the power minus half on

which you are taking derivative.

So, you will get minus by minus half and sigma to the power 3 by 2 in the denominator, and so
that is the expression that is written here and you can see that this is the expression, and now you
know what is the sigma that you are using which is 100 and you know what is the delta sigma that
is 2.5 and the plus or minus 2.5, so you can put this values and you will get the error and that is
the same 0.007 is what we calculated even from the range earlier and you are getting the same

value here also.
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Uncertainty propagation using simulations

o Simulations: a more generic approach

@ Can be used even when functional relation between result and several other variables are
not known

o propogate library and how it works for our simple case!

(o
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There is one more way of doing uncertainty propagation, that is using simulations and using
simulations is a more generic approach. It can be used even when functional relations between the
result and several other variables are not known, and there is a library called propagate and so you
can use that to solve any of the complex problems of uncertainty propagation and we are going to
do a few examples of that later, but for now, | want to take the same simple case, you know, it is

a very very simple case.
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Platform: x86_64-pc-linux-gnu (64-bit) | A

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R {s a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demno()' for some demos, 'help()' for on-line help, or
'help.start()' for an HINL browser interface to help.
Type 'q()' to quit R.

> 664/(sqrt(60000%0,99994))
[1] 2.71085
> 664/ (sqrt(66600*0.999994))
(1] 2.110777

ary$“propagate

CEobhBRRPTO*@




"
T " 15. factor, 1s.ordered

#4 Loading required package; minpack, lm

11 Results from error propagation:

"

I Results from Nonte Carlo sisulation:

89 0.271408312 3527163 0,271669933 0.003224807
11 Velch-Satterthuaite degrees of freedom:

v (1) 1001663

# Coverage factor (k):

REoBBR®E

Can we just use propagate and find out how the error propagation happens, and that is what we
want to do now. So, let us go to R and let us do the, so first we have to get the library propagate.

So, the library is in place now we can get this command.

(Refer Slide Time: 13:01)
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So, what is this command, this is the error that propagation we are calculating and that is using the
expression 2.71 by square root of x and for doing error propagation, we have to give either the
mean and standard deviation or some data generated using a simulation, and this error propagation

itself is going to be done using Monte Carlo simulation, and we want to look at the resultant values.
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» 7 < data.frame("x"=x) Data
» error <- propagate(expression(2,710777/sart(x)),2) error List of 16
> sumnary(error) z 100 obs. of 1 variable
Results fron error propagation s
han.t | es.2 sd.1 $d.2 258 X nun [1:100) 96.3 101.3 106.3 9.4 10.
0.276617641 0.270676899 0.003269676 0.003276750 0.264266340
97.5%

0.277087458 1

Results from Monte Carlo simulation

Mean sd Median MAD 2.5%
0.270676667 6,003289076 0.276652713 0.002972072 0.264267969
97.5%
0,278241548
Helch-Satterthwatte degrees of freedon

[1] 1601314
Coverage factor (k):
[1] 1.959966
Expanded

6410559
grad
" (2 TAATIT A (A E 8 vA.A B\ lenrtly)A2)"

(1

(1] -6.001348499 | A
synbolic hessian matrix Data
[1) "+(2.740777 * (0.5 * (-0.5 * x*-1.5))/sqrt(x)"2 - 2,710777 verror List of 16
¥ (0.5 % xA-0.5) * (2 * (0.5 * x*-0.5 * sqrt(x)))/(sqrt(x)*2) oZ 100 obs. of 1 variable
)" Values
Evaluated hesstan matrix X num [1:100] 96.3 101,3 106.3 99.4 10..

(1] 2.615889¢-05
Covariance matrix

- -
X
x 5.87966

AELYYContrimELa: Propagation of uncertainty using higher-order Taylor expansion and
X Monte Carlo simulation

x1
Skewness [ EXCess N
0.3803128 / 1.094067
Shapiro-Wilk test for normality
0.67619516 => normal
Kolmogorov-Smirnov test for normality
0.07832309 => normal

> help("propagate”)

> l

REoMBANBeE

So, you can see that this analysis also, so it is much more complicated. So, we will come back
again and take a relook at this. So, the mean is again 0.27 and so Monte Carlo simulation also
gives you 0.27 and the uncertainty happens to be 0.0064 which is similar to 0.007 that we
calculated earlier. So, what is this propagate? And so you can use the help. You can see that this
is what we use for error propagation, you have to give the expression and it is clear what the

expression is and you also have to give some data and that is what we generated here.
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error List of 16
te.csv2 Z 100 obs. of 1 variable
Values
J X num [1:160] 96.3 161.3 106.3 99.4 10,

- - - -

> X < rnorn(

Propagation of uncertainty using higher-order Taylor expansion and
» L < data.frome("x"=x) Monte Carlo simulation

> error <- propagate(expression(2.710777/sqrt(x)),2)
> sumnary(error)

Nean.1 Mean,2 sd.1 5d.2 2.5%
0.270617641 0,270676899 0.003269676 0,003276750 0.264266340
97.5%
0.277087458

We used normal distribution 100 numbers with mean 100 and standard deviation 2.5 because that
was the parameters that we assume. Sigma had a standard deviation of 2.5 and mean of 100 is what

we assumed, and so you have to generate data of that type. So, this is explained here in the R
documentation.

(Refer Slide Time: 14:52)

guru@AngirasAgni:~$
guru@AngirasAgni:~$ R

BR version 3.6.1 (2019-07-65) -- “"Action of the T
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86 64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

Bk is a collaborative project with many contributors
WType 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications,

QType 'deno()' for sone denos, ‘help()’ for on-U
‘help.start()' for an HTML browser interface to
BBType 'q()' to quit R.

B> help("propagate




=16777216 consider a different value for tuning y

“ffmaxbytes”)==536876912 -- consider a different value for tuning yo
ur system ble

| 1.3 106.3 99.4 10
Attaching package: ‘ff'

The following objects are masked from ‘pac
clone, clone.default, clone,list
WThe following objects are masked from ‘pack:
write.csv, write.csv2

The following objects are masked from 'package:

1s.factor, 1s.ordered

e: minpack.lm

propagate package:propagate ! umentation

Propagation of uncertainty using higher-order Taylor expansion and
litonte Carlo simulation

Description: ble

A general function for the calculation of uncertainty propagation 1.3 106.3 99.4 10
by first-/second-order Taylor expansion and Monte Carlo simulation
including covariances, Input data can be any symbolic/num

able expression and data based on summaries (mean

mpled from distributions. Uncertainty propagation is

multivariate t-distribution with covariance structure. Propagation
confidence intervals are calculated from the expanded
uncertainties by means of the s of freedom obtained from

elchSatter’, or from the [\frac{alpha}{2}, 1-\frac{alpha}{2}
quantiles of the MC evaluations

Usgge:

propagate(expr, data, second.order = TRUE, do.sim = TRUE, cov = TRUE,



BUsage:

propagate(expr, data, second.order = TRUE, do.sim = TRUE, cov = TRUE,
df = NULL, nsim = 1000000, alpha = 0.05, ...)
ble
Arguments:
1.3 106.3 99.4 10
expr: an expression, such as ‘expression(x/y)’.

data: a dataframe or matrix containing either a) the means mu i,
standard deviations sigma 1 a qgrees of freedom nu i
(optionally) in the first, second and third (optionally) row,
or b) sampled data generated from any of R's ‘distributions’
or those implemented in this package ('rDistr’). If
‘nrow(data)’ > 3, sampled da assumed. The column names
must match the variable names.

second.order: logical, If 'TRUE', error propagation will be calculated
with first- and second-order Taylor expansion. See 'Details'.

fl do.sim: logical. Should Monte Carlo simulation be applied?

CERobRRFIOE

So, probably it is clearer if we use R. So, you can see that propagate requires the expression and it
also requires the data. It should be either a data frame or a matrix. It can contain the means and
standard deviations and degrees of freedom, and degrees of freedom is optional and, or you can
have a sampled data generated from any of R’s distributions and that is what we have done.

(Refer Slide Time: 16:08)
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Data

error List of 16

z 100 obs. of 1 variable

Values

X num [1:100] 96.3 101.3 106.3 99.4 10

T - -

f ge l Mor;(r (-11’;7 simulation
<+ rnorn(100,mean=100,5d=2.5)

» 7 <- data,frame("x"=x)

» error <- propagdte(expression(2.710777/sqrt(x)),2)

» sumnary(error)

Nean.1 Mean.2 sd.1 sd.2 2.5%

0.270617641 0,270676899 0.603269676 0.003270750 0.264266340
97.5%

0.277687458

Mean : sd Hedian NAD 2.5%
REoRRRTO«E

We have actually generated sample data from the R’s distributions and so this, this command that

we have here, is basically generates from the distribution rnorm. So, it generates 100 data points,

with this mean and with the standard deviation and it turns it into a data frame and the data frame



has to be named appropriately, it should be called the X, you know, this labelling is important that

is how it knows that this is the x.

So in other words, instead of doing experiments because we know that this is the mean, this is a
standard deviation, on computer we are generating pseudo data, and using that data into this
formula we are finding what is the range in which the delta lies, and using those values we are
calculating how much is the error that we found in the delta. So, that is what it is done and the
result is given and result is given in greater detail. So, some of these things we will come back and

take a look at later.

(Refer Slide Time: 16:58)
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* (0.5 * xM0.5) * (2 * (0.5 * x*-0.5 * sqrt(x)))/(sqre(x)A2) * Amesree
a2)" Data
Evaluated hessian matrix: error List of 16
[1] 2.615889¢-05 7 100 obs. of 1 variable
Covariance matrix Values

X X num [1:160] 96.3 101.3 106.3 99.4 10..

X 5.87906
Relative contribution:

X

x1

0.3803128 / 1.094067

Shapiro-Wilk test for normality:
0.07619516 => normal
Kolmogorov-Smirnov test for normality
0.07832309 => normal

> help("propagate”)

> X 1p,neans1

CEobRRPO«R

Evaluated gradient matrix (sensitivity): ety
[1] -6.061356327 Data
Synbolic hesstan matrix error List of 16
[1) "(2.710777 * (0.5 * (0.5 * x*-1.5))/sqrt(x)2 - 2.710777 o1 1600 obs. of 1 variable
* (0.5 % xA-0.5) * (2 * (6.5 * x*-0.5 * sqrt(x)))/(sqrt(x)*2) Values
)W X num [1:1600] 101 102 162 104 103 ..
Evaluated hessian matrix
[1] 2.635429e-05 e
X Monte Carlo simulation
X 6.482067
Relative contribution
X

x1

Skewness [ Excess Kurtost
0.04646992 / -0.09643077
shapiro-Hilk test for normalit
0.9537292 => normal

Kolmogorov-Smirnov test for normality

0,6852314 => normal
>

REobhBAN@eE




So, of course you can also change. So, let us say that we change the rnorm to be 10, what do you
see? And you can change it to be 1000 and what do you see. So, as you increase the number of
data points, there is no change in these values it still remains 0.27 and the uncertainty still remains
at 0.007. So, you can see. So, this is a way of doing the analysis.

(Refer Slide Time: 17:51)
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Uncertainty propagation using simulations

o Simulations: a more generic approach

o Can be used even when functional relation between result and several other variables are
not known

o propogate library and how it works for our simple case!
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So, let us go back. So, simulations is a more generic approach and propagate library allows that
to, us to do that.

(Refer Slide Time: 18:01)
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Error propagation: beyond the simple case

o We considered a simple expression; calculated error in two ways: direct and using the
formula

o What happens if uncertainty is a result or two or more independent variables?

o What happens if uncertainty is a result of several variables which may not be
independent, that is, their uncertainties are not independent of each other?

@ What happens if we do not have a functional relation between the variables and result?

@ Discuss these scenarios in the rest of this module!

I/
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Now, beyond the simple case, we looked at a very very simple case. So, there is just an expression
that connects delta to sigma, and you can calculate error directly or using the formula which is
based on the partial derivative or you can even do some simple generation of data using a Monte
Carlo simulation, then you can find out how the error propagates. But what happens if uncertainty

is a result of 2 or more independent variables.

Let us say you have a function or you have a variable its value depends on some 3 different
variables and those variables have their own uncertainties and how does this calculated parameter,
its error depend on the errors on those independent quantities and sometimes let us say a particular
quantity f depends on x ,y and z, but the uncertainties in X, y and z might not be independent. They

might also be related to each other.

So, if there is an interdependence on the uncertainty of these quantities, how does it affect the
uncertainty on the quantity that we are trying to calculate. And sometimes you might not even
know the functional relationship between the quantity that you are trying to calculate and the
quantities on which it depends on even though you know, what is the error on those variables. So,
in those cases how do you deal with and understand error propagation or calculate the uncertainty

or do the uncertainty propagation analysis.

So, that is the part of the descriptive data analysis using R that we will do and that will complete
this module on descriptive data analysis using R. So, we will do that in the following parts. Thank

you.



