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Lecture 25
Grain size in a two phase steel: Descriptive statistics

We are looking at the data set two which consists of grain size data from two different phases and

we are doing the rank based properties and their representation.
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> 12 <- grep(2,X[,1]) 3 T S i

> X1 <- X[{1,] X 3664 obs. of 6 variables

> X2 <- X[12,] X1 457 obs. of 6 variables

> ggplot(data=X1,aes(ASTM.grain.size))sstat_ecdf()+ X2 3207 obs. of 6 variables

+ stat_ecdf(data=X2,aes(ASTM.grain.size)) Values

> par(mfrows=c(2,1)) i1 int [1:457) 123456789 10 .,.,
> ggplot(data=X1,aes(ASTM.grain.size))+stat_ecdf()+ i2 int [1:3207] 458 459 460 461 462 463.
+ scale_y_continuous(trans=scales::probability_trans("nor L a—

n-)) - L v '

Warning message: Prase 1

Transformation introduced infinite values in continuous y-axis

> ggplot(data=X2, aes(ASTM.grain.size))sstat_ecdf()+

+ scale_y_continuous(trans=scales::probability_trans("nor
n"))
Warning message: Prase 2
Transtormatior \ntr HJI ed \nTinlte ‘.‘.1]'7". AN continuous V-axi5s

> hist(X[11,6],main="Phase 1") 5 : _—
> hist(X[12,6],main="Phase 2")

So, let us continue and what next what we want to do is to do a histogram plot of this data for both
the phases. So, this is phase 1. So, it should say phase 1 and we want to do a histogram plot of

phase two data from grains of phase two.

So, let us do that and then call it as. So, this is the same information we have seen it several times
now. So, both peak somewhere around 24 and both have a tail only to the left and this is a much

longer tail and a relatively probably fatter tail as compared to this.
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In both the cases, from the histogram, it is clear that the grain size distribution is a peak near 24 with a
long tail to the left; in the case of Phase 2, the tail extends to 12 as opposed to Phase 1in which it extends
only up to 21. But, neither is normal - that is, symmetric spread of the data on either side of the mean

3.3 Box-and-whisker plot i

1,x(,11)
(2,X0,1}))

So, this is what we have been noticing and so you can clearly see here in these pictures how it

looks like. So, you can do the box and whisker plot also.
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> X2 <- X[i2,] o} @ e S

> ggplot(data=X1,aes(ASTM.grain,size))+stat_ecdf()+ X 3664 obs. of 6 variables

+ stat_ecdf(datasX2,aes(ASTH.grain.size)) X1 457 obs. of 6 variables

> par(mfrow=c(2,1)) X2 3207 obs. of 6 variables

> ggplot(data=X1,aes(ASTM.gratn.size))+stat_ecdf()+ Values

+ scale_y_continuous(transsscales::probability_trans("nor i1 int [1:457) 12345678910 ...

n")) i2 int [1:3207] 458 459 460 461 462 463.

Harning message: W P P, - V—

Transformation introduced infinite values \n continuous y-axis ot e st Al o
Prase |

> ggplot(data=X2,aes(ASTM.grain.size))+stat_ecdf()+ 4

+ scale_y_continuous(transsscales::probability_trans("nor : § '

mn")) =

Harning message:

Transformation \ntroduced (nfinite values \n continuous y-axis
Phase 1

> hist(X[11,6],main="Phase 1")

> hist(X[12,6],main="Phase 2") = S ~ |

> boxplot(X[i1,6],main="Phase 1")

> boxplot(X[i1,6],main="Phase 1" ,horizontal = TRUE) ne A a0 2y ne o w0

>

) oy
+ stat_ecdf(data=X2,aes(ASTM.grain.size)) ST ——

> par(mfrow=c(2,1)) X 3664 obs. of 6 variables

> ggplot(datasX1l,aes(ASTM.gratn.size))+stat_ecdf()+ X1 457 obs. of 6 variables

+ scale_y_continuous(trans=scales::probability_trans("nor X2 3207 obs. of 6 variables

n")) Values

KWarning message: i1 int [1:457]) 12345678910 ...
Transformation introduced infinite values in continuous y-axis i2 int [1:3207] 458 459 460 461 462 463..

e e

r— — . nane

> ggplot(data=X2,aes(ASTM.grain.size))sstat_ecdf()+

+ scale_y_continuous(trans=scales::probability_trans("nor Prase |
n"))
Warning message: L e e - * |
Transformation introduced infinite values in continuous y-axis Y T Y T T
ns s = ns n na ‘0

> hist(X[11,6],matn="Phase 1")

> hist(X[12,6],main="Phase 2") Phose 2
> boxplot(X[i1,6],main="Phase 1")

> boxplot(X[i1,6],matn="Phase 1" ,horizontal = TRUE) et ; ]
> boxplot(X[i1,6],main="Phase 1" ,horizontal = TRUE)

> boxplot(X[12,6],main="Phase 2" ,horizontal = TRUE) " " " " » a u

> |

o KN B-B jaf |

So, we just need to change and let us, let us make it horizontal, true | have to do this again and |
have to do it for phase two. You can clearly see that these data sets are really, really different from

what we have been seeing.



So, this point is generally the median value and you can see that in both cases, the data point that
occurs maximum number of times is actually the last value and then you have tail and here the tail

is much longer and here there are lots of outliers.

You know, this is like the box is supposed to be second and third quartile and beyond. This is
supposed to be fourth quarter. There are no data points that is because there is no tail on that side
at all and on this side you have one but lots of data points are lying outside of that and here you
know everything all these points are outside. So, the, the second and third quantiles, quantiles and

there is no fourth quantile everything is sort of collapsed here.
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From the box-plots, again, the asymmetry in the distribution is very clear.

4 Properties of sets of data

AeEobhBRMOo«R
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[1] 24.10547 " ———

> mean(X[i2,61) X 3664 obs. of 6 variables

[1] 23.36614 X1 457 obs. of 6 variables

> sd(XX[11,6]) X2 3207 obs. of 6 variables

Error in \s.data.frame(x) biject X" not found Values

> sd(X[11,6]) i1 int [1:457) 123456789 10 ...
[1] ©.4345706 i2 int [1:3207] 458 459 460 461 462 463.
> sd(x[12,6]) R

[1] 2.029911 et csal ol

> var{X[i1,6]) Prase |

[1] 6.1888516

> var(X[t2,6)) ) o o e ° |

[1] 4.120537

> median(X[11,6])

[1] 24.3

> median(X[12,6])

[1] 24.3

> quantile(x[i1,6]) R — )
0% 25% 5SO0X 75X 100%

20.8 24.3 24.3 24.3 24.3 R

:-l 1

So, this boxplot also gives you more information about how the data looks. So, now let us try to
get the properties of these data sets. So, let us get the mean of the two. So, mean is 24.1 and 23.4.
Now the standard deviation will tell you this values we have already seen, and so you can see that
for 1, it is 24.1 plus or minus point 4, and for 2 it is 23.4 plus or minus 2. So, it is not surprising

because most of the values are here and the average turns out to be here.

Of course, the standard deviation is much larger as expected because the spread is much higher.
So, it is 5 times the standard deviation and you variants will be correspondingly different because
the variance is just square of this standard deviation. So, it is 2 times 4 and it is 0.4, 0.16. So, this
is just square and so mean, and then you can get median values. We already know from the
boxplots and so in both cases the median value is 24.3 and that is what you see here both cases just
use your 24.3.

(Refer Slide Time: 05:35)
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> sd(XX[11,6]) *| & e s

Error in is.data.frame(x) : object 'XX' not found X 3664 obs. of 6 variables

> sd(X[11,6]) X1 457 obs. of 6 variables

[1] ©.4345706 X2 3207 obs. of 6 variables

> sd(X[12,6]) Values

[1] 2.829911 i1 int [1:457) 12345678910 ,.,

> var(X[i1,6]) i2 int [1:3207] 458 459 460 461 462 463..

[1] ©.1888516 [ —

> var(Xx[i2,6)) -0

[1] 4.120537 Prase 1

> median(X[11,6])

[1] 24.3 o °® o » ° |

> median(X[12,6]) . - - - )

[1] 24.3

> quantile(X[i1,6])
0% 25% SOexX 75% 100% Praes2

20.8 24.3 24.3 24.3 24.3

> quantile(X[i2,6]) T I
0% 25% SO0X 7S 100% . Za

11.9 23.7 24.3 24.3 24.3 2] " " " » n M

S KN B-B f=f L.

So, quantiles again the information is already there from the boxplot splitting them in terms of

numbers and you can see that the spread is here from 11 to 24.3 and here it is, and you can see 50
percent, 75 percent hundred percent everything falls in this 24.3 and so, also here and there is some
slight distribution here. | mean in fact here 25 percent onwards everything here only, the first
quantiles is slightly different value here only from the 50 percent. So, that is the third, fourth
quantile they are all on the same value.
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abline (hemean (X1(,6))+ad(X[,6]),col"3)
ubline (b*nean(X1[,6])-sd(X[,6]),col=3)
abline (henean(X1(,6]))+2e8d(X[,6]) ,col=d)
abline (bemean(X1(,6)) -2¢nd(X[,6]) . col=4)
x2(.6))

g8 [1] 23.38614
an (X2(,6]))
ez (1) 4.3
1(x2(,6
e [1] 029911
ar(X2[,6]) |
s8 [1]) 4.120537
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x . .

0% 25% 5O% 75% 100% | e s
20.8 24.3 24.3 24.3 24.3 X 3664 obs. of 6 variables
> quantile(X[12,6]) X1 457 obs. of 6 variables

0% 25% 5S8% 75% 106% X2 3207 obs. of 6 variables
11.9 23.7 24.3 24.3 24.3 Values
plot(x1[,6]) i1 int [1:457) 123456789 10,
abline(h=nean(X1[,6]),col=1) i2 int [1:3207] 458 459 460 461 462 463.
ablv’.ne(h:ned'\an(xil,6]).col=2) P P Pt e V- -
abline(h=nean(X1[,6))+sd(X[,6]),col=3) St Saabl A preme
abline(h=mean(X1[,6])-sd(X[,6]),col=3)
abline(h=nean(X1[,6])+2*sd(X[,6]),col=4)
abline(h=mean(X1[,6))-2*sd(X[,6])),col=d) x ‘. e
par(mfrow=c(1,2)) {
plot(X1[,6])
abline(h=mean(X1[,6]),col=1) .
abline(h=median(X1[,6]),col=2) s |
abline(h=nean(X1[,6])+sd(X[,6]),col=3) =1
abline(h=nean(X1[,6])-sd(X[,6]),col=3) }
abline(h=mean(X1[,6])+2*sd(X[,6]),col=4)

no

|
|
!

no

abline(h=nean(X1[,6])-2*5d(X[,6]),col=4) . W m W
] e

\ Z20 00t A 28 A Bk 280\ A A 0 JS Jk 20\ AL &

So, this is what we have seen also and as we did earlier of course, let us plot everything in one go.

These plots are useful, so, I am going to change this a little bit, instead of.

(Refer Slide Time: 07:04)



abline (hemedian(X2[,6]) ,colw2)
abline (hwooan(X2{,8])7ed (X[,6]), col=3)
abline (hvsean(X2],6]) -sd (X1 ,6]) .c0l«d)
abline (h*mean(X2(,6]) -20pd(X[,6]) ,colnd)
abline (hemean(X2{ 8]) -3eud(X[,6]), col=5)
abline (bmean(X2{, 6] ) -4epd(X[,6]),c0i=6)
bl ine (hesean (X2{,6]) ~-Beud(X[,6]) ,c01sT)
abline (hemean(X2(,6)) «6epd(X[,6]) ,colrB)

Ple 180 Codv Yow Pain jesess Bl Qutey St Teei el

. = . o - ~

Comeeee  Ve— - S Sevvenment  tumasy  (emmsetw -
Error in lot(X2[, 6]) : could not find function "lot’ S S S 2

> abline(h=nean(X2[,6]),col=1) oX 3664 obs. of 6 variables

> abline(h=nedian(X2[,6]),col=2) X1 457 obs. of 6 variables

> abline(h=mean(X2[,6])+sd(X[,6]),col=3) X2 3207 obs. of 6 variables

> abline(h=nean(X2[,6])-sd(X[,6]),col=3) Values

> abline(h=nean(X2[,6])-2*sd(X[,6]),col=4) 15 int [1:457) 12345678910 ...

> abline(h=mpean(X2[,6])-3*sd(X[,6]),col=5) i2 int [1:3207] 458 459 460 461 462 463.
> abline(h=mean(X2[,6])-4*sd(X[,6]),col=6) . e V— -
> abline(h=nean(X2[,6])-5*sd(X[,6]),col=7) S oo

> abline(h=mean(X2[,6])-6*sd(X[,6]),col=8)

> plot(x2[,6]) *

> abline(h=nean(X2[,6]),col=1) = i“. S -

> abline(h=median(X2[,6]),col=2) e "1

> abline(h=nrean(X2[,6])+sd(X[,6]),col=3) 84 v

> abline(h=nean(X2[,6])-sd(X[,6)),col=3) . 4 . =

> abline(h=nean(X2[,6])-2*sd(X[,6]),col=4) r ° 4] i g

> abline(h=nean(X2[,6])-3*sd(X[,6]),col=5) 2] | £ " A

> abline(h=nean(X2[,6]))-4*sd(X[,6]),col=6) .l 4 | it

> abline(h=mean(X2[,6])-5*sd(X[,6]),col=7) N R g B 2 1

> abline(h=nean(X2[,6])-6*sd(X[,6]),col=8) ¢ W we xe e o w0 1o o00¢ e

> ) o

So, let us do this, for the second data set also second dataset you can see 1 standard deviation 2, 3,

4,5, 6 etc on the 1 side because after the on the on the plus side there is nothing. So, let us do that.
So, there is some problem with the command.



So, you can see that, we mark the mean and we mark the median and we mark the 1,2 standard
deviation etc. But here we are, we have been marking 1, 2, 3, 4, 5, 6. So, up to 6 standard deviations
here to go before you actually take all the data into, into account. So, this is a really large spread

and that is what is shown in this figure also.

(Refer Slide Time: 08:12)
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So, you can see that, so, somewhere here this read is median, black is mean and about the black,

the first standard deviation is green, and second is blue. In this case, you do not even see the blue,
you see the blue, and then this light blue and purple and yellow and | do not know what this color
is.

But, so, there are several standard deviations from the mean on 1 side you have to go before you
encompass all the data points. So, we and this information we have also seen in the case of quantile.

So, to summarize, we have looked at grain size distribution, we have looked at 2 different cases 1

was very straightforward.

We just had the data for one phase, because it was a single phase material. In the other case, it was
a two phase material and we pulled out data and we separated it into phase 1 and phase 2 and we
carried out the same analysis, the there are three things that we did.one is just plotting, that is stem

and leaf or dot chart, scatterplot.



Second one is to prepare rank based properties that is by doing some analysis like cumulative
distribution, boxplot, histogram plot and things like that and the last one is to prepare summary
based reports like mean, median, standard deviation, variance, quantiles, etc and of course, we
tried to put the scatterplot along with the summary based reports to get a better handle on how the

data looks like.

And it is very clear from this data that if you are having something like grain size, it is better not
just to report mean and standard deviation, but also some information about the distribution and
probably the best way to represent the distribution is by giving the histogram plot and so, that is
also common histogram our cumulative distribution plot gives an idea about how the data looks

like in this case, how the grain size spread is in these cases.

So, we will continue with more of the analysis and this example and the previous example is to
show that sometimes in Materials Science and Engineering, you come across data sets, which are

to be represented as distribution not just in terms of simple numbers. So, thank you.



