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Welcome we are looking at the examples of how phase field models can be used to study micro 

structural evolution, we have looked at several cases in this lecture I want to go back to a 

problem that we looked at earlier for simplicity sake when we looked at the grain growth 

problem earlier we use the same Allen Cahn model with the same free energy and we looked at 

how a grain embedded inside another grain actually shrinks. 

 

Now in most of the grain growth problems that is not the kind of microstructure that one 

encounters in the case of grain growth if you go take a look at a typical grain growth problem for 

example so, you will see lots of grains right, so if you if you look at the micro structure you will 

see lots of grains and so in our way of doing phase field modeling we need to describe this 

microstructure, now what does these grains represent? Each grain represents the orientation of 

the unit cell in that region with respect to some reference frame. 

 

So you can take that reference frame to be the laboratory coordinate frame for example, so I have 

a reference frame and in this reference frame so i have a unit cells right, now this unit cell is 



rotated in three dimensions so it requires some Euler angles or something like that to describe its 

orientation there are many different ways in which you can describe the orientation and suppose 

this is oriented this way right, so that is one of the grains and maybe so let us call that as 

orientation one. 

 

Maybe there is another one which is oriented this way okay, so that is orientation to maybe 

another one which is oriented this way okay, so let us call it as orientation three so, like this if 

you have n different grain orientations you have to denote each one by a different number. So 

this is a micro structure in which we have about 12 different grain orientations now the order 

parameter that we use to describe this has to be then it can be thought of in two ways, one way is 

to think of ηi where i goes from 1 to 12 okay.  

 

Now how do we define these order parameters in the i’th grain suppose if I am looking at the 

sixth the grain then η6 = 1 the other ηi not equal to 6 are all zero okay, so similarly now η7 will 

have in this region ηi7will be one the all the other η which is not equal to 7will be 0 and the 

interface between 6 and 7 is a region where η7 will go from 1 to 0 and η6 will go from 0 to 1, so 

this region is what is given by this so, in the bulk the corresponding order parameter will be unity 

rest of the order parameters will be 0 in the boundary depending on what the boundaries. 

 

Suppose if it is a triple junction between 10, 7 and 6 so all η10, η7, η6 are going to have non zero 

values at this point between10 and 7 only η10 and η7 will be non zero the rest all will be zero. So 

the region where these order parameters take a value between 0 & 1 are the interface regions 

where they take value of unity is basically that particular orientation where they become 0 is a 

region where some other orientation exists. So we can think of these order parameters as 

representing the orientation of the crystallites with respect to some external frame of reference 

and that is how we describe. 
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We can also think of vector order parameters I can think of a vector η which has 12 components 

0 0 1 0 0 0etcetera 12 zeros if it has that would then corresponds to orientation η =3 okay, so we 

can consider this ηi as the order parameter which describes a microstructure as usual wherever 

there are gradients in ηi will be the reason where there is a grain boundary. Now we have to write 

a free energy that describes such a polycrystalline or grain microstructure. 

 

We know that at the end for example out of all these 12 any one of the grains can actually eat up 

all the others and become a single orientation, all the 12 have the same energy in the single 

crystalline state because with respect to some external frame of reference we are describing them 

as η1, η2, η3 etcetera, it can so happen that η3 will survive or η8 will survive or η12 will survive or 

η11  will survive which ever crystals that  survive, finally if you go to a single crystalline state all 

of them should have the same energy. 

 

It should not matter with respect to some arbitrary frame of reference how I am describing its 

orientation should not determine it's free energy, which means we need a free energy such that 

all the there should minima corresponding to each η okay, so we need minima for each ηi and the 



free energy this is the bulk free energy density right, the bulk free energy density that is f0 that 

you define should be the same for all we ηi. 

 

So this is what will make sure that at the end suppose you end up with only one single grain it 

will have the same energy it does not matter which i survives, so we need to write this bulk free 

energy density so this becomes the first problem, so that there is the particular bulk free energy 

density which is given by Fan and Chen okay, this model was written sometime in 1996 or1997 

so nearly about 20 years ago. 

 

So Fan and Chen give a free energy bulk free energy density f0 η1 and η2 etcetera up to ηp, so if 

you have P orientations then their bulk free energy density looks like this –α so it is a sum over i 

–α ηi
2
/2 + β ηi

4
/4 some runs from i equal to 1 to P and this alone is not sufficient you also need 

cross terms that is because we want to make sure that any one of the η, takes a value of 1 or -1 

then the rest of them should be 0 for the minima, if we if you just leave with this then all these 

order parameters taking a value of 1will also be a minima, so we don't want that okay.  

 

So we have this γ summation i = 1 to p; j not equal to i to p , ηi
2
 ηj2,so this is a bulk free energy 

density for appropriate choice of α, β and γ, we make sure that there are  2p minima and they are 

at ηi = +/-I, ηj not equal I = 0 okay, now we are going to restrict our η to be only on the positive 

side from 0 to 1 for example so that then we are going to get for a system with p order 

parameters P minima  that is how we are going to achieve this okay. 
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So these are 2 P minima are right for example if I take η1 whether it is plus 1 or minus 1 rest of 

them 0 is a minima η2 either plus 1or minus 1 with rest 0 is a minima and so on so that is how we 

get 2p minima and this is achieved for this function provided so there is a condition on the α, β 

and γ, provided that γ > β/2 so that is the constraint okay. Now the total free energy density of 

course once you have the required minima with the required property you can write the free 

energy density, because that is nothing but this f0 which is a function of η1, η2 etcetera up to ηp + 

summation i κi ׀Δ ηi 
2
* dv.  

 

So this is the free energy density so we have achieved the first aim namely to describe the 

thermodynamics of the system using the order parameters we have chosen and their gradients but 

this is a very very simple-minded model, because we are assuming that these η’s represent of the 

order parameter it is not necessary that if you have two orientations the grain boundary energy 

between them and if you have two other orientations the grain boundary energy that you would 

have in that case need to be the same. 
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In other words this κi that we are assuming for the gradient coefficient actually might depend on 

what is so, so it here we have assumed that it just depends on the gradient for the particular order 

parameter it need not necessarily be so if suppose you have a grain boundary which is given like 

this let us say this is η8 and so this is η11 for example, and so κ the might actually depend on eight 

and nine as compared to this suppose this is η8 and this is η say 2 this κ  8, 2 need not be the same 

that is because if you go to a textbook like Porter register link you will see that the grain 

boundaries can be classified into many different types okay, one of them for classification for 

example describes grain boundaries as small angle grain boundaries and high angle grain 

boundaries okay. 

 

But actually a grain boundary has five macroscopic degrees of freedom and there could be 

special orientations in which the grain boundary region will have perfect matching across planes 

so it will have very low energy those are known as CSL or coincidence site lattices at the 

boundary and so on and so forth so, if you actually look at the grain boundary energy for low 

angle boundaries it varies with the miss orientation as it is defined linearly and for higher angles 

there could be special places where it dips otherwise ,it just keeps as a constant . 



So typical grain boundary energy as a function of the miss orientation θ is some function which 

looks like that okay, now this also should be consistent with the crystalline symmetry and all that 

so, we are going to make a very very simple-minded grain boundary a grain growth model in 

which we are going to assume that this coefficient depends only on the Δ ηi and in fact we are 

going to further assume that this κ is independent of five for any orientation, we are going to use 

the same κ. 

 

Now that means that we are looking at something like a soap bubble captions not really a grain 

growth scenario okay so add the towards the end of this lecture we will discuss what kind of 

modifications need to be done for but for now we are going to assume that all κi are going to be 

the same and as usual we are going to use non dimensional values and, we are going to use unity 

for all κi. 
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So we have described the microstructure in terms of order parameters and dev gradients, we have 

written a free energy in terms of the order parameters and their gradient sand so we can actually 

write the evolution equation so for each η we need to write an evolution equation and the 

evolution equation is something like this δηi/δt = -Li the growth rate of the different boundaries 



could be different again this might depend on the other order parameter across which this grain 

boundary is formed again, we are going to assume a very simple minded all L irrespective I is 

the same and it has a value of 1,that I am going to assume δf0/δηi because this equation is for –

κiΔ
2
ηi so it's -2 κiΔ

2
ηi so, this is what the equation is so i is equal to 1,2 etcetera to p. 

 

So there are P equations and coupled equations because this term has all the η’s in it is what is to 

be solved, so let us call this as g(i) and we are going to solve using periodic boundary conditions 

so δηi/δt = -Li g tilt i and -2k
2
 this minus and this minus is going to be plus and so, Liκi so with 

and from the δ
2
 we are going to get a –k

 2 
so, this remains as - ηiΔ and let us take this at time T 

plus delta T this being a non linear term I want to take it at time T this is gi at time T and so here 

we are going to say ηi tilt t + Δt- ηi t/ Δt = -Ligi tilt t-2 Liκik
2
 ηi tilt t+ Δt, so we are going to take 

this here and we are going to write ηi d tilt t + Δt is going to be ηi tilt t –Li Δt gi tilt t/1+2 Liκik
2
 

Δt right so, this is the evolution equation. 
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So we need to write an evolution equation for each one of the order parameters and then that 

code  will then do the grain growth so to show how this works in the numerical implementation 

scenario i am going to assume that there are six different orientations and because, I  am using 



periodic boundary condition i also have to make sure that my initial profile is having this 

periodicity so, to make things easier so i am going to actually start with an initial profile which is 

something like this so i am going to take a domain we are going to do it in 2d and I am going to 

randomly pick these points and I am going to give a value between 1 and 6 so this could be it is 

like a six-sided die the time costing so, if it turns out to be 3 I’ll call this as 3. 

 

And next random so that turns out to be 5 i will call this as fine and the next grid point i will go 

and I will roll this die and then if I get to I will call this as 2 and so on so, I am going to take the 

initial domain to be given randomly any of these order parameters and that is the microstructure 

that i am going to evolve and see how this grain growth scenario works out okay, for doing this i 

have written the code as you will see that like the model that we have assumed the code is also 

very, very simple minded and there is lots of brute force used in solving this okay, so it is not 

very elegantly written but it is written in a very transparent manner okay. 

 

So it is very easy to see what is happening in the code so that you can understand how the code 

works and we will discuss some of the issues that one might come across in solving a problem 

like this, now there is should also be a way to look at these micro structures that we are 

developing, of course if there are six orientations then I can look at okay orientation one where 

or where it is there so in someplace it will be nonzero it will be unity rest of the places that will 

be zero. 

 

So that is grain one and then I need to go look at where η2 is nonzero that will be the second 

grain and the rest of the region where it is 0 will be the other grain and so on so there is an easier 

way to actually look at the grain boundary which is what I used in the code and that depends on 

this idea right so we said that let us look at this grain structure suppose if I have a grain like. 
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This and a grain like this I said that η 1 will be = 1 η2 will be 0 in this region and in this region 

η2 will be 1 η1 will be 0 and in the boundary region is where this boundary is where both η1 is 

not equal to 0η to not equal to 0 so what I am going to do is that I am going to define a function 

called the boundary function and this function is basically ηi ηj it is double summation i and 

another summation over j not equal to i now as you can see in the bulk all the other η are 0 so 

that is always going to give 0 and in this also. 

 

For example in this region η2 will be 0 in this region η1 will be 0 so when you multiply ηj that 

quantity is going to give you 0 here but in this region where both are non zero it is going to give 

a non-zero value so if we plot this function then we will see that it becomes 0 in many places 

those are actually the grains and wherever it is non zero then those are the grain boundaries so 

this is a easier way to visualize the boundary structure of course it does not tell again the case for 

example that we are considering there are six different grains. 

 

So it will it will give you something like this but it will not tell what is this grain what is this 

grain what is this grain what is this grain okay so that is not going to happen that is because this 

information does not worry about what is the grain it just lights up only the grain boundary so we 



can see the grain boundary structure which means whatever is away from these boundaries are 

basically the grains. So to look at actually what this grain is then we have to start plotting η1 η2 

η3 and see when this region becomes 1 rest of them become 0 so that will correspond to that 

particular grain okay so this is just a trick to visualize the grain boundary structure that I am 

going to use so as usual we go to the code so let me show you the code. 
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It is called grain growth function.oct after fan Chen who wrote this model so as usual we first say 

clear all the variables the figures everything and more off because I want to plot the 

microstructure as it is evolving and P is six because I have assumed that there are going to be six 

different orientations and so Kappa 1:6 I am assuming they are all 1 and L1:6 I am going to 

assume all of them to be one alpha is 1 beta is one gamma is one C gamma should be greater 

than half beta is one so half beta 0.5. 

 

So gamma should be greater than that I have taken gamma to be one so this will have the 

required number of minimum and so I am going to do this on a 64 x 64 system again for 

simplicity shake I'm not distinguishing between x and y direction everything along x and y 

directions to be the same dx is the same as dy Nx is the same as NY and the first thing so this is a 



new command probably that you have not seen till now so I am going to define a random number 

generator called unidrnd stands for discreet and uni stands for uniforms so it is going to generate 

a uniform discrete random number between 1 and 6. 

 

That is what six stands for on a N by N matrix okay so which means so I have N by N points and 

for each point I have generated a random number that random number is going to be 1 or 2 or 3 

or 4 or 5 or 6 okay now I have defined the six order parameters η1 η2 E η 3 etcetera to be 0 to 

start with then I go look at the Ø at a particular point if it is equal to 1 then I make eta1 to be 1 at 

that point that rest remains 0, if it is 2 then eta2 is 1 the rest are 0 and so on and so forth. 

 

So this is basically the initial structure that I showed you this is how I generate the initial 

structure and the advantage with this initial structure is now I do not have to really worry about 

periodic boundary condition automatically as it evolves the system will make sure that there is 

periodic boundary condition, because the Fourier transform automatically implicitly assumes 

periodic boundary condition, okay. 

 

Now this is the boundary function I said, so I define be to be 0 at all points initially and then I 

define so eta1 multiplied by 2,3,4,5,6 plus eta2 multiplying 3,4,5,6 right and then eta3 

multiplying 4,5,6 then eta2 multiplied  5 and 6 and eta 5 multiplying eta 6 this is because when I 

am multiplying a eta2 for example I do not have to put eta1 because eta1 eta2 is already here 

okay, so boundary is defined as summation, double summation i and j not equal to i, okay so our 

j greater than i, in this case because we are going in order so you can do it like that so that is the 

B. 

 

So now I plot the b and I save view2 so that I am looking down on this and pause(0) means it 

will pass for 0 seconds at that point and then it will plot the next one because we want to see a 

movie of how this evolution is happening, okay. 
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So of course halfN I have to define to define periodic boundary conditions halfN is N/2 and I 

have to define the grid spacing in the reciprocal space which is 2pi/N and I have to define the 

deltat and now so I am going to make this a little bit simpler so for n=1:10 m=1:2 let us say 

okay, so we are going to so the first and the second both our time loops but this time loop is there 

because after every two time steps which is after every time unit because dt is 0.5 so two time 

steps will make it two in 2*0.5 so one time unit I want to look at how the microstructure looks 

like okay. 

 

So for i,j and k running from 1 to N I now have to generate this gi, gi δ(0)/δeta so what is that 

quantity we know what the free energy expression is a free energy expression is. 
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f0 is nothing but Σi-αηi
2
/2+βηi

4
/4+double Σ with γi 1 to P this is also 1 to P and j not equal to I to 

P ηi
2 

ηj
2
 soδf0/δηi which is called gi is to be now defined as you know 2 times αηi 2 and 2 will 

get cancelled so i will get -αηi and then 4 times βηi
3
  4 and 4 will get cancelled +βηi

3
 and then in 

this because iI is the only one j is not equal to i so that I do not have to worry so it will become 

+2γηiηj
2
 whereas there is a summation over j not equal to i to P on ηj

2
 so this is the gi, so that is 

what is implemented in this code, so we will take a break at this point and then we will go back 

and see how this implementation and the evolution implementation is done in the code, thank 

you.  
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