
Statistical Thermodynamics for Engineers
Professor Saptarshi Basu

Indian Institute of Science, Bangalore
Lecture 58

Insights into radiative spectral transitions

(Refer Slide Time: 0:16)

Welcome to lecture number 47. So, we already saw that how the probability for a weak

electromagnetic radiation can be written says. But this formula, as we say it is very deceptive

because it assumes monochromatic, monochromatic irradiation. And short interaction states

over times. So, these two requirements are obviously inconsistent with one another because

of Heisenberg’s uncertainty principle; delta E into delta t has to be greater than equal to h bar

or delta frequency into delta t has to be greater than equal to 1 over 2 pi. This must be always

satisfied. This is by Heisenberg’s uncertainty principle.
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So, if a monochromatic radiation is really applied to a system, for a time delta t, the system

sees the radiation of width. So, if a monochromatic chromatic radiation is applied to the

system for a time delta t, then the system, sees the radiation of width, to the V, which is equal

to 1 over 2 by delta in the frequency space. So, at nanosecond pulse of radiation, as an

intrinsic width of about 1 60 megahertz in the frequency space. So, before we actually use

this equation of the probability probabilistic equation, if we use this situation, let us, put this

as 1 so that it is easier for us to do.
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So, before, before equation 1 can be used, be used, the effects of finite frequency spread of

the radiation must be included. So, if we consider the radiation applied to the system to be

broadband rather than monochromatic, so let us assume that we have a broadband and

radiation. And this broadband radiation has a radiation density, radiation density, which is a

rho epsilon naught E square by 2.

So, the total transition probability therefore, will be given us P 01 equal to 2 mu 1 0 square by

epsilon h bar square omega sin square is basically integrated over all frequencies d omega,

which is therefore, P 10, is written as 2 mu 10 square epsilon naught h bar square omega 1 0.

Integral square omega omega 1 0 by 2 whole square d omega. This ultimately gives rise P 1 0

as mu 1 naught square, divide by epsilon h bar square rho v omega 0.

This is, this omega, rho omega is assumed to be slowly vary slowly varying near omega 1 0,

so that it can be removed, removed from integration. This is indeed the case because, sin

square, if you look at sin square, this particular term, term that is marked here, this particular

term is sharply picked and omega equal to omega 1 0.
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So, therefore the absorption rate per molecule is given by pi mu 1 0 square epsilon h bar

square omega. This is absorption, sharply peaked. In order to derive an expression for the

absorption coefficient in terms of the transition dipole moment, this equation, if we call this

equation 2, say, this equation, needs to be compared with all the other equation now, needs to

be compared with, remember the old equation that we had (())(7:33) system only 1, 0 rho V 0

N naught. So, recall so, that was the equation that we had per deal. So, as you can see, so the



absorption, in order to write the absorption coefficient, this equation is now compared with

this equation, with the assumption that N naught is almost equal to N or weak field. So,

dividing my N basically gives a transition probability per molecule.
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So, d N1 by N dt is equal to B 1 0 rho v 1 0 or d P1 0 divided by dt is equal to B 1 0 rho v,

this. Here there is a factor of 3 which is missing, in this particular equation, in equation 2,

because, this has been derived from isotropic radiation traveling in x, y, and z directions,

whereas equation 2 that you see over here has been derived using a plane wave, traveling in

the z direction only. Since only the z component of the isotropic radiation is effective in

inducing a transition.



So, also noting this and also noting that rho V is equal to 2 pi rho omega. V 1 0 therefore

becomes 1 over 6 epsilon h bar square mu 1 naught square, which is equal to 2 pi square 3

epsilon naught h square mu 1 naught square and A 1 to 0 is 16 pi square gamma cube, 3

epsilon naught h C cube mu 1 naught square. So, these two equations now are the key results

because they relate to observe microscopic transitions to the microscopic transition dipole

moment of an atom or a molecule.

So, we normally, if we substitute the numbers, A 1 0 will be actually equal to 3.136 into 10 to

the power minus 7 cube mu 1 naught square, this is in centimetre inverse and mu 1 naught is

indebye. Although, these equations are essentially correct, one factor that we have ignored

over here is the possibility of relaxation. So, these things relax. Collision or spontaneous

radiative lifetime of the upper state has been ignored so far. So, we have neglected collisions

and spontaneous continuous radiated lifetime of upper state per state.
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So, when these losses are considered, when the losses are considered, the molecular

absorption line shape, shape changes from Dirac delta function, is delta naught which is

basically infinite, infinitely sharp and infinitely narrow. So, this is the Dirac delta function to

a real molecular line shape so this converts to a real molecular line shape. So, this molecular

line shape is called, it is given as g, which can be either a Lorentzian or a Gaussian. This is of

uni, finite width and height.

As a result, the equations can be rewritten now. So, 2 pi square, 3 epsilon naught square, mu

1 naught g square cube is the first one, and then A 1 to 0 gamma 16 pi cube, gamma cube

divided by 3 epsilon naught, hC cube mu 1 naught square g minus mu 1. So, these were the

two expressions that you get in which, these are the actual absorption coefficients and the

initial coefficients.

So, so basically if you integrate it across all frequencies, you will get just the coefficient P. So,

so these are all have dimensions of minus 1 and this has the dimension of having second

inverse, sorry, not minus 1. So, also note that the, that the 2 levels 1 and 0 are assumed to be

non-degenerate. The usual cases are degenerate, atomic and molecular levels are a little bit

more complicated. So, the energy levels are considered to be degenerate.
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So, now that we have taken this detour, now we can understand when we wrote in our Beer’s

law, you recall your Beer's Law, we wrote that d N1 by dt was equal to sigma F N naught

minus N1, where sigma was equal to 2 pi mu 1 naught square divided by 3 C gamma g v

minus 1 0, which was in the, this had the dimension of meters square. This is the dimension

of meters square.

The physical interpretation, we also say this is the effective area that the molecule presents to

a flux of photons of flux or stream of photons of flux X. So, it is now therefore, therefore

very convenient, very convenient so to say if we now cast this sigma, in this particular form,

A square g gamma (())(15:55) 8 pi lambda square g 8 pi tau sp. So, which relates to the cross

section of the cross section to the radiator.



So, this is basically linking the cross section which is basically what is sigma to radiative

lifetime tau sp is equal to 1 over A 0 of a transition, or for a 2 level system. The subscript sp

refers to spontaneous emission. So, this is spontaneous emission, this is an inverse of the

lifetime. So, this can be related to real multi-level systems, by doing other methodologies. So,

now let us look at that if a flux.
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So, let us look at if a flux, F is incident on the left of the element thickness dx. This was the

thickness dx, if you recall. This was the thickness dx, that is what we did earlier. The

thickness dx on the left, with a smaller element of thickness dx, with a cross-sectional area of

1 meter square. Then the change in flux caused by passing through the element is given as dF

equal to minus sigma F N naught minus N1 dx. Integrating over the absorption part, this

becomes if F naught f, df by minus N1 0 to L dx.

Or ln F by F naught is equal to ln I naught is equal to minus sigma N naught minus N1 l dot

Or in other words, it can be written as I, I is equal to I dot exponential minus sigma N naught

minus N1 l, which is, which is called the Beer's law. Actually, it is written in a slightly

different form ins several textbooks.

So, your sigma of course is reported in centimetre square. N is in molecules per CC

centimetre cube and l is in centimetre, rather than the corresponding SI units. So, if we

consider alpha is equal to sigma N naught minus N1, therefore, I will be written as I naught,

it need to be part of minus alpha l. So, this will be the expression. So, this sets the stage now

that we have seen this is what we Beer Lambert’s law is.
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Now, on a spectrum of a real molecule, we need to know the line shape functions. We need to

know the line shape functions. So, Beer Lambert law, as you can see it serves different

purpose. It allows you to calculate the concentration. So, long as you know what this guy is

all about. And you know the length. So, as you can see it is dependent on the length. So, more

the length, more is the sensitivity of this particular parameter. So, it is easy to measure

experimenting.

So, but in real life we still need to know the real spectrum of a molecule. So, the line shape

functions basically falls into 1 or 2 of the general categories. One is homogeneous and the

other one is inhomogeneous. Well, that did not require much of a guessing. The homogenous

line shape of occurs when all molecules have identical line shape functions.

For example, if an atomic or molecule absorber in the gas station is subjected to high pressure,

then all molecules in the system are found to have an identical pressure brought on line shape

for a particular transition. Pressure broadening of a transition is therefore, same to be

homogeneous broadening, if this is one example is therefore pressure broadening. We will see

more of these a little later.

On the other hand, if the molecule is dissolve in a liquid and then the disorder inherent

infrastructure of the liquid provides different environments. So, the absorption spectrum is

made up of different spectrum, different molecular environments. So, this is therefore called

in homogenously broadened.
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So, let us look at natural lifetime broadening. So, what is natural lifetime broadening?

Consider once again a 2-level system, with an intrinsic lifetime of about tau sp. This is E1,

this is E naught. So, this is the 1 0, it is 1 over tau sp describes the state of the 2-level system

in the absence of electromagnetic. So, let us once you do that, the wave function that

describes the state of the system, is given as psi t equal to a naught, this is also, we have done

it before. Again, do it here, bring it here.

So, this is now given as, writing it in terms of the time independent portion of the wave

function. Which one, these are simply constants. Should the system be excited into a super

positioned state, the dipole moment of the system is therefore, given by this is once again the

high dependent portion, this is equal to 1, 0 a0 star a1 omega naught t plus a naught a1 star e i,

So, it is the real part 2, 1, 0 a0, a1 star M t.

So, this is your omega t, assuming space fixed moments both ban. So, the dipole moment of

the system oscillates at the Bohr angular frequency. The dipole moment of the system

oscillates at Bohr angular frequency, 1 naught as M t equal to 2 a naught a1 mu 1 naught cos

omega 1. So, these are chosen to be real numbers.
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Now, if the population in the excited state decreases slowly in time relative to the reciprocal

due spontaneous emission, then the amplitude of the oscillation will also decrease. This

corresponds to a slow decrease in a1 at a rate of gamma by 2, where gamma a 1 over the

relaxation time for the spontaneous emission, which is nothing but a.

So, in other words, we can write the oscillating dipole moment now is M t equal to M naught

minus gamma t by 2 omega 1 0 into t, where this is nothing but 1 over tau sp is equal to A 1 0.

This corresponds to a slow decrease in A1 at a rate pi by 2. So, this is what the dipole

moment now looks like. So, it just kind of tries to, it is an envelope along which, it kind of

goes down.

So, it is like this, this slowly coming down. So, this is basically envelope, which is e minus

gamma t by 2. This is M, and this is time. This is how the dipole moment actually comes

down. So, in the next class we will see how this dipole, what are the different line shape that

are possible, like the Lorenzen and the Gaussian that we already mentioned and how they

depend on this dipole moment, transition dipole moment. Thank you.


