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So, welcome to lecture number 45, the Statistical Thermodynamics course. Now, as you can

see that we wrote that from the two, two level energy system, we wrote that this was the

expression when you take into account the spontaneous submission, the stimulated emission

and the absorption. And we also have written the Planck’s formula. And because this is the

radiation density, so it looks like that if both of these two expressions, if they are valid, then it

can be valid in only one way.



(Refer Slide Time: 0:39)

That means your B1 0 should be equal to B1 to 0 let me and A1 to 0 8 pi h B1 0. So, this

essentially proves that the rate constants for absorption and innovated emission which are

basically two very different physical processes are identical. And it also shows one other

thing that the spontaneous emission coefficient, which is basically this guy, a spontaneous

emission coefficient, can be determined from the absorption coefficient.

So, what you would note this particular factor, this is very important. It is this the relation

between your spontaneous emission and your absorption. So, they are linked by this

particular factor, which is cube. So, this plays a very role between the two, very role in the

competition between the induced and the spontaneous emission processes. So, this is



important. And we can see that the, how this can be determined from the absorption

coefficient also. So, that is all very good.
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Now, let us look at absorption and emission of radiation. What are those? Absorption and

emission of radiation. So, the interaction of electromagnetic radiation with matter can be

described by a simple semi-classical model that we already know. So, this is obtained by the

time independent solution of Schrodinger wave equation. In the semi-classical treatment, the

energy levels of the molecules are obtained by the solution. So, let us write it, in the semi-

classical system, the energy levels of molecules are obtained, by the time independent

solution of Schrodinger wave equation.
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So, that means essentially this. So, where while the electromagnetic radiation is treated in a

classical fashion, while the electromagnetic radiation is treated classically. So, if we consider

a two-level system, two level system. So, let us look at a simple two-level system once again.

So, E1 minus E naught. So, this is a two-level system which is characterized by the two wave

functions, upper and the lower wave functions.

The electromagnetic radiation that fulfils the Bohr condition is this, it is precisely tuned to the

two energy levels. It is also given as, this is applied to the system to induce a transition from

the lower state to the upper state. So, the molecules consist of nuclei and electrons that

positions ri, possessive charges qi. So, we all know about this.
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So, if we have a Cartesian coordinate system, so the system will have, we can express that the

system will have a net dipole moment in the, if we write it in a cartesian coordinate system to

begin with, mu x summation xi qi. And there is mu y is written as yi qi. So, this is the dipole

moment. This is the dipole moment which is, so the system will, can have a net dipole

moment because it has got nuclei and electrons at different positions carrying charges qi. So,

qi are the charges and ri is basically nothing but the position of the nuclei at the, position of

electrons.

So, these electrons are basically are what are distributed in this particular way. So, it is like

this, y, z, x like that. So, there maybe q3, q1, there may something like q2 somewhere. These

are the kind of position vectors r1, r3, this is definitely your r2. So, they are located at

different place and then of course there is a mu z also which is summation of zi qi. So, this is

also given. Where, x, y, xi, yi, zi, other coordinates of particle i relative to the center of mass

of the molecule and these are the positions of the particles.

So, that interaction of radiation with material system is taken into account. We already know

about this by addition of a time dependent perturbation. So, this is we already know, we have

done it before. So, that is what we are going to do.
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So, minus mu dot E t, and E is electromagnetic field basically, so dot k dot r minus omega t,

So, if the oscillating electric field is in the z direction, and the system is at the origin,

oscillating say if the oscillating electric field is in z direction, which means that your E

naught is equal to 0 comma 0 oz, this and the system is at the origin and system is at origin



are equal to 0. And the wavelength is basically greater than the dimensions of the system to

avoid having different electric field strengths of different parts of the power.

So, the wavelength is greater than the dimensions of the system so to say. So, H hat prime is

equal to minus mu z E oz of omega t. In other words, this is like mu E cost omega t. So, the

transition probability is therefore obtained by solving the time dependent Schrodinger wave

equation.
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So, the transition probability, probability is obtained by solving the time dependent,

dependent Schrodinger equation which essentially translates to i h prime psi by d equal to H

hat plus H hat prime t psi. So, in the absence of, in the absence of this part, the absence of the

prime, the two time dependent solutions will be, in the absence of (())(11:10) is given as psi 0

t is equal to psi 0 E minus i E naught t by h bar, which is equal to i naught, e i omega naught t.

And then there is psi 1 t equal to psi 1 E1 t divided by h bar which is equal to psi 1 e minus i

omega 1 t, where your omega i is basically Ei h bar. So, this is the time dependent solution of

the time dependent wave function. Whereas, the other one was a time independent we can

write it with that time independent wave function.

So, the wave function of a perturbed two-level system is given by a linear combination of

complete set of functions psi naught t and psi 1 t. Correct. So, psi t is therefore given as a



naught. So, this is a linear combination. So, and this is basically the time independent part. So,

e minus i e naught t by h bar plus is a1 t given us. Again, this is the time pre-independent part

minus i E1 t by h bar. So, in short, it can be written as a naught, just dropping the t now, psi

naught e minus i omega naught t plus a1 psi 1 e minus i omega 1 into t.

So, this is the complete wave function. So, these are the time dependent coefficients. a naught

a1, these are called the time dependent coefficients. So, substitution of this particular solution

into the time dependent Schrodinger wave equation. So, you can substitute this now to i h bar

time, this is the complete time dependent solution.
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If you substitute this solution into that, this leads to the equation i h bar a naught, this is once

again the time independent portion. Remember that is why I am the writing it in a1 bar. Dot

means it is a differential with respect to time equal to H bar a naught i e minus i omega

naught t. plus H bar a1 psi 1 e minus i omega 1.

So, a naught dot is equal to d a naught by dt, a1 dot is equal to d a1 by dt. So, that is the

whole set that we have written. And so now what we are going to do, multiplication by, or by

integration over all space. Let us do multiplication by, once again this is I will write it in

italics, the conjugate or this is also the conjugate we followed by integration over all space,

then gives basically two coupled needles, two coupled differential equations.

So, what are those differential equations, i h sorry, a naught dot equal to a naught plus a1 psi

naught psi 1 then e t psi omega 1 0 into t. So, we will see what those bracketed terms actually

means. Let me write down this first and then of course h bar a1 dot is equal to a naught psi 1

H i bar psi naught e i omega 1 0 into t plus a1 psi 1 H hat i. So, these are the two coupled

differential solutions.
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Now, obviously we are going to ask what those, those bracketed terms actually mean. So, this

is the Dirac notation, Dirac bracket notation; notation which tells you that this is f1 A hat, this

is operator and f3, this is what we are trying to say. This is basically integral f1. This is the

conjugate A f3 d tau, where tau is basically in the box the entire space.

So, no approximation has been made other than that there are two states, psi 1 and psi naught.

So, the equations, these two equations that we see over here, they completely have come out.

They have completely come out equivalent to the original Schrodinger equation, except now

that we have taken a time perturbed solution and a time non-perturbed solution.

Now if, if H hat prime is taken as minus mu E cos omega t, the electric dipole approximation,

then the time dependent perturbations H prime has all parity that it is the odd function of the

spatial coordinates. In other words, H hat prime is a odd function. Since mu is equal to minus

ez. So, the products psi 1, the mode of psi 1 square or psi naught square are even functions.

So, the integrates are basically odd functions are also odd functions. So, as we know that all

atomic and molecular states that have definite parities, even on odd with respect to the

inversion of the space fixed coordinate system.



(Refer Slide Time: 20:48)

One can write, one can write, is equal to 0. So, therefore, using this the equations can be

reduced to, the equations reduce to i h bar a naught dot minus a1 M 01 E i omega 1 0 t cos

omega t. And then of course, i h prime a1 dot minus a naught M 01 E e exponential i omega 1

naught t cos omega t, where the integral M 01 as we know already is the same as the other

one. It is like psi 1, mu psi naught. It is called the transition dipole moment. This we already

have learned transition dipole. And it is the most critical factor in we already know in

determining the selection rules and everything, it is a vector quantity. And, it is M 10 is a

vector quantity.
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So, it is convenient to define omega R as M 10 into E by h bar. This is also known as the Rabi

frequency, after II Rabi. We also know that most omega t is equal to e i omega t plus e i

minus exponential form. So, therefore, the two equations for the rate constants of the a naught

dot and a1 dot is then written as a naught dot is i a1 omega R e minus i omega 1 0 minus

omega into t plus e exponential it is omega 1 0 plus of mega t and this is divided by 2.

Similarly, a1 dot written as i a naught omega R e i omega 1 0 minus omega t plus e i omega 1

0 plus omega into t.

So, we close the bracket and then you divide it by 2. So, the physical meaning for the Rabi

frequency will be, would be clear. So, these are the two, a1 and a2 or d a1 by dt and d a

naught by dt. So, at this stage, only approximation that we can make is omega 1 0 is almost

the same as omega since, the system with both frequency omega 1 0 is nearly or is resonant

or nearly resonant with the optical angular frequency of 2 pi.

So, we basically what we are trying to say is E1 minus E naught by h bar, which is equal to

omega 1 naught is resonant or nearly resonant with the optical angular frequency omega

equal to 2 pi r. So, the terms therefore, the terms which is represented as e i omega 1 0 minus

omega into t or E minus i omega 1 0 minus omega into t, they represent slowly varying

functions of time compared to the rapidly oscillating non-resonant ones.
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So, this represents the slow, slowly varying functions of time when compared to rapidly

oscillating non-resonant terms e i omega 1 0 plus omega t and e minus i omega 1 0 plus

omega into t. So, we will see in the next lecture that how this approximation and where does

it lead to. So, we will cover this as the next class. Thank you.


