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Welcome to lecture number 38 of the statistical thermodynamics course. So, in the last lecture,

what we did was that we found out that for example, internal energy is written as u by RT is

equal to T d ln Z tr plus T d ln Z rotation by dt this is a V plus T d ln Z vibrational by dt V plus T

ln Z electronic by dt.

The entropy on the other end specific entropy s by R equal is s by R translational plus s by R

rotational plus s by R vibrational plus s by R electronic. So, this is the specific entropy now, for

the translational mode so, in this case, translational mode sR tr is written as d ln Z tr dt V plus ln

Z tr by N plus 1 and then of course, you have the internal rate which is given as ln Z internal

divide by dt plus ln Z internal for each of the internal modes.



So, separation of energy modes also facilitate probability calculations associated with stat thermo,

for example, if you want to find out P, let us write it as P rotation, vibration, electronics which

means that the probability of being in a specific rotational, vibrational and electronic energy

level which would mean the number of particles in that rotation, vibration and electronic

configuration divided by the total number of particles which essentially translates.

Now g rotation, g vibration, g electronics divided by the corresponding partition functions

rotation and vibration electronic then of course there is an exponential term which is minus E

rotation plus E vibration plus E electronic divide by kT, where we know that the partition

functions are like this Zee internal is equal to Zee rotation Zee vibration Zee electronic and then

g internal which is the degeneracy is g rotation g vibration and g electronic.

So, this is this represents what this represents the probability of a particular probability of being

in a particular or a specific rotational vibrational and electronic energy level. Now if we want to

evaluate like this the probability say of being in specific rotational energy level regardless of

vibrational a and electronic energy levels we can say that P rot rotational equal to N rot by N

which is double summation the sum over all the vibrational levels is a sum together of all the

rotational levels.

Now, so g rot g vibration into electronic divided by Z rot Z vib Z el then of course, everything is

still within the summations. So, and this is minus E rot plus Evib plus electronic divided by kT.

So, you can see that we have summed over all the rotation and over all the electronic energy

levels because we are interested in a particular rotational energy level and we disregard we are

not really concerned about what are the corresponding vibrational and electronic energy levels.

So, this is g rot divided by Z rot exponential energy rot by kT. So, of course, Z vib with

summation over all vibrational energy levels kT and Z electronic Z electronic is summation over

all electronic energy levels all electronic energy levels exponential minus El kt. So, these are the

mainly the two for independent energy levels a Boltzmann distribution may be applied in the

same fashion to any single mode as well as to any group of such energy modes.

So, as well as to any groups of such energy modes for independent energy modes, Boltzmann

distribution may be applied be applied in same fashion in any single mode as well as to any

group of such energy modes. So, now, so, this stages are separate we know now, how to



calculate the probabilities, how to calculate the properties because properties is also depend on

your partition function actually more specifically on the logarithm natural logarithm of the

partition function. So, now, we come to the chapter where we say energy mode contributions in

classical mechanics so, now the stage is set that we consider, we consider the classical

contributions from various energy modes to the macroscopic internal energy and heat capacity.

So, our eventual goal is to compare the classic and appointed allocations from each of the

translational rotational and vibrational modes. So, let us consider classical contributions from

various energy modes to the macroscopic internal energy and the heat capacity. So, our goal as

we said is to calculate the allocations from each of the translational, rotational and vibrational

modes.

So, if we look at a very classical definition look at very classical definition of a system each

atom of a system say from a classical perspective, from classical perspective each atom, each

atom of a molecule can be recognized can be characterized by 3 position coordinates just like

XYZ. Now, if a molecule has n atoms the temporal notion of the entire molecule of a requires 3n

position coordinate mostly these are independent of each other.

So, the position of one add is not dependent directly on the other. So, 3n position coordinates. So,

we therefore, say that the molecule as a molecule has 3n degrees of freedom, the molecules has

3n degrees of freedom. Now, for a diatomic molecule, for a diatomic molecule, diatomic

molecule where there are 2, the number of atoms is 2 so, there would be like 6 degrees of

freedom, 6 degrees of freedom.
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So, how are the 6 degrees of freedom so, altogether 6 degrees of freedom we can first do this out

of the 6, 6 degrees of freedom 3 degrees of freedom x y z is concerned with the first 3 degrees of

freedom are used to describe translation of the molecules center of mass. Two degrees of

freedom have two DOFs are needed to describe its rotation about 2 orthogonal in all axes the y

comma z perpendicular to the inter nuclear axis.

And then there is a 1 degree of freedom still remaining which is used to describe vibration along

the inter nuclear axis. So, this is the this can be the fixed degrees of freedom first 3 x y z

describes a translation of the center of mass, 2 degrees of freedom or require these 2 degrees of

freedom considers rotation about the 2 orthogonal directions from the inter nuclear.

This is the inter nuclear axis, the 2 orthogonal directions represents the 2 degrees of freedom for

the rotation and then lastly vibration can happen along this inter nuclear axis therefore, it has got

1 degree of freedom. So, this has got a very robust link now, consistent with this description, we

recall that in quantum mechanics the translational mode leads to 3 quantum numbers.

The rotational mode leads to 2 quantum numbers and vibrational mode leads to 1 quantum

number. Leads to 1 quantum number so we can see each degree of freedom so, we can almost

say each degree of freedom is represented or can be associated is associated with a quantum

number, with a quantum number.

So, there is a very robust link between classical and quantum mechanics. So, there exists a robust

link between classical and quantum mechanics. So, there exists this very nice association I

should say between the two. Next let us look at something called the phase integral, now, to

assess the contribution from each classical energy mode to the internal energy U or specifically

cv we must develop classical representation of a partition function.

So, in pursuit of the goal we introduced this concept of phase space which provides the necessary

link between quantum and classical mechanics. So, this end we will so, first let us write down the

obvious phase space does two things it links, quantum and classical mechanics and use to assess

the contribution from each classic mode to internal energy u or specific heat cv.
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So, let us recall the 1 dimensional harmonic oscillator 1D harmonic oscillator harmonic

oscillators. Hamiltonian defining the total energy of a conservative system the Hamiltonian with

describes the total energy of a conservative system so, if we write that p comma r p square by 2

mu plus half k naught r square this is the Hamiltonian for the total energy of a conservative

system P and R are momentum and position respectively.

So, this equation that you see over here is an important result from classical mechanics mandates

that each degree of freedom each degree of freedom mandates a position and momentum

coordinate.



In fact the central importance of momentum and position in classical mechanics is manifested by

the phase space diagram. So, phase space diagram will be something like this. So, you have the

momentum and the position and you could represent a different value of the energy. If you look

at it like this this is P this is R and then you have it so, each is a like dr and there is a dp. See if

you look at this so (())(22:30).

So, each dp dr cell represents a different continuous value of energy. So, each cell can be

represented in a single classic value of the continuous energy. Therefore, we must assert the

number of quantum states within a cell in a number of quantum states within a single cell in the

phase space must be the classical analog to degeneracy.
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So, number of quantum states within a single cell within a cell in phase space must be classical

analog to degeneracy. So, the correspondence principle indicates that the classical solutions must

be replicated by quantum mechanics in the limit of continuous energies. So, the in the limit of

continuous energies that is delta E less than kT.

A classical solutions must be replicated by quantum mechanics, classical solutions are replicated

by quantum mechanics, replicated by quantum mechanics. For single DOF degree of freedom a

classical version of continuous the classical version of partition function comes. So, one is Z

summation j gj exponential minus Ej by kT this is almost equal to integral e by kT dg, in other

words is equal to exponential minus H p comma r by kT dg.

So, dg represents the degeneracy for 1 DOF in the energy range. So, E plus dE because the

classical energy can be always portrayed with the phase space, we assumed that the quantum

counterpart to the differential degeneracy of one momentum coordinate to the other can be

explained now can be expressed in our Cdpdr where c is a constant to ensure classical quantum

results agree at classical limit.

So, substituting this we can have Z equal to C there are two integrals e H p comma r by kT dpdr.

If so, this will be the (())(28:02) this will be the partition function in that limit the classical

counterpart with the differential degeneracy. So, this is what it is where the integration is carried

out over all phase space and this can be also written as c phi(())(28:32), this is called the phase

integral.



In the next class we will see that is how this, how this result can be subsequently used. How this

can be used to establish contributions from the different modes. So, we will see in the next class.

We will stop here, we will continue next lecture.


