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So, welcome to lecture number 28 of the Stat-Thermo course. So, in this particular

lecture, so previously we told you that what will be the effective degeneracy or diatomic,

for diatomic molecules. So, and we have also said what is spin splitting and, and doubling

and stuff like that. Usually, we say that the energy difference that is produced by gamma

coupling is usually much smaller than that produced by spin splitting.

So, in accordance to it, we now can generate these kind of tables which is basically the

electronic energy levels and degeneracies for oxygen here. Now, here, if you look at it

carefully, if you look at this particular diagram, you will see that each electronic state is

defined by a unique Morse potential. We already covered what is a Morse potential. So,

for each of this electronic energy state is represented by this unique Morse potential.

So, and also the rule is that for molecules, for molecules with a ground electronic state is

designated by X, the ground electronic state is represented by X, and each higher

electronic state with the same multiplicity, with the same multiplicity is labeled as A, B,

C et cetera A, B, C et cetera. Similarly, excited, excited electronic states with different

multiplicity are given by this nomenclature, small a, small a, small b et cetera.

So, you understand that ground state electronic states are, and each higher electronic state

with the same multiplicity is labeled as capital A, capital B, capital C whereas the excited

electronic states, excited electronic states are represent, with different multiplicity are

related as a, b, c. So, that is what you get. Now, if you look at this particular table now, if



you look at this particular table now, you will find that, you will find that, if you look at

this particular table, this is for oxygen.

So, you can see for example, let us take any one of the figure, so this T e that you see

over here, T e, T e is nothing but represents the gap, a gap between, between minima,

minima in Morse potential, in Morse potential describing, describing the ground

electronic state, a ground electronic state, ground electronic state and each excited,

excited electronic state.

So, it also, so if you look at this particular table now, you look at this particular table now

you will find that the effective degeneracies is also given here, with effective, and this is

T e. So, and this is the nomenclature that we have already established, that delta, sigma

and a, b, c, we already noted what those things are going to be. But there are a couple of

plus minus signs that we see which will come to it in a little bit.

So, now similarly for excited electronic states of different multiplicity, we, we know what

it is given by. Now, we can see certain subscripts g and u, so g slash u subscripts,

subscripts, subscripts are denote symmetry of the wave function, wave function even

slash odd upon reflection, upon reflection to the midpoint of the nuclei, midpoint of its

identical nuclei.

Finally, the superscript like minus and plus, they designate what we call the symmetry,

the symmetry of the wave function, of the wave function, wave function when reflected,

when reflected through an arbitrary plane to an arbitrary passing through both nuclei of a

diatomic molecule. So, you can now have a, have a very good idea of what it is. So, now

what to recap, each electronic state is represented by a separate Morse potential, which

we see over here.

Now if the electronic state has not the same multiplicity, it is designated as capital A,

capital B, capital C, these are every higher electronic states compared to the ground state.

Ground state is always represented as X. Similarly, each excited electronic states with

different multiplicity, different multiplicity is given the symbol small a, small b, small c.

And the total, and T e is basically the gap between the minimum in Morse potential

describing the ground electronic state and each excited electronic state.



So, that is given as T e. So, as we see that when it is a ground electronic state which is

given as X, T e is obviously equal to 0, and the effective degeneracy is 3. So, we can, we

know why is it, why it is going to be 3. Now, this is an excited state or which there is a T

e, and the effective degeneracy is given as 2. Similarly, this is an even higher excited

state because a, b, c are in order of increasing energy. That means b has got more energy

than a, and c has got more energy than b.

So, naturally you see that b has got a higher energy compared to a and that is given as the

degeneracy. Moving to now, you go to the another a different electronic state altogether,

higher electronic state with same multiplicity now. So, that is given as this. This is T e,

and so b is higher than a. So, it is given as 49793. These are the corresponding

degeneracies that you have.

So, X is always given as T e equal to 0. Because this is the minima of the Morse potential

to the minima of the corresponding gap between the two minimas, essentially. So, this is

what is your T e. So, this is the, this is the, this is written as T e. So, that is what the

intermolecular symbols looks like. Now, we can write down now the combined energy

the combined energy modes, energy modes for atoms and diatomic molecules, atoms and

diatomic molecules.
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So, typically, Schrodinger's wave equation gave us what electronic vibrational and

rotational. So, what did it give us? SS wave equation gave us, gave us a few things. One

is one is electronic, which we just described in details, one is a rotational, one is

vibrational. These are the different modes that we got, and these are the, these are the

different energy levels that we saw.

For atoms, our task was easy as electronic motion underlies the only internal energy

mode. So, for atoms, we could only say that the electronic motion, electronic motion,

electronic motion, electronic motion was only internal mode, internal energy mode. So,

typically energy level diagrams are constructed by setting energy of the ground electronic

state to 0.

So, if we consider, we, if we consider that the electronic energies for the hydrogen atom,

it was like this, minus R H by n squared, sorry, n squared, where R H is the Rydberg

constant and the zero of the energy is when n is equal to 1. This is the zero of energy.

And therefore the electronic energy was written as R H 1 minus 1 by n squared. So, this

was for atomic hydrogen. We all got this.
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Now, in contrast to monoatomic species, the internal energy of a diatomic molecule. So,

if we move on to internal energy of a diatomic can be obtained by summing, so what we

can do is that contributions, contributions from electronic, vibrational and rotational

energy modes, energy modes, so this time our assumptions were rigid rotor and we also

had the harmonic oscillator.

So, for the rigid rotor was, it was B e. This is the rotational and the vibrational, and this

was omega e. So, rotational and vibrational, rotational, this was vibrational parameters.

So, in addition to this, if you now recall, recall the patients that we already did, and let me

just write it down here for the sake of convenience. So, if you recall that, if you recall that

F J was given as J into J plus 1 into B e, where J is equal to 0, 1, 2, da, da, da, and B e, if

you recall, was written as h by 8 pi squared c I e.
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So, that was what we wrote. And then of course, other equation that we are going to use

over here is v, vibration divided by h c given as G plus half into w e, v equal to 0, 1, 2, da,

d, da,. So, therefore once we know these two expressions of F J and G v, therefore we can

write the internal energy as T e plus v plus half w e plus J into J plus 1 into B e. So, all

these are in centimeter inverts.

So, if we look at that associated energy level diagram, this is how it should look like. So,

you have, let me try to draw it the best I could. So, the difference between this and this is

given as T e. So, this is your X, this is you’re a. So, this is equal to 0. Now, let us use a

different marker. So, what you see that v is are basically the vibrational, vibrational levels.

T e is the difference between the two minimas that we are talking about.

This is A, one level higher, and this is V equal to zero, this is not at the end because of

the zero point energy. So, this is, this is, this is zero point. Now, you go to the other level

here, another thing here is something like that. So, now we do that. So, this is once again

v equal to 0. So, these are again the vibrational levels, the vibrational levels. And these

that you see, these are the rotational levels, these are the rotational levels.

So, you know that what are the what are the different levels. So, the vibrational level

actually occurs above the bottom of each well. So, what we see over here that T e

identifies, it is a very sizable energy gap, energy gap, sizable energy gap between the

bottoms, bottoms of potential wells. So, the electronic energy is portrayed by the Morse



potential. The ground vibrational, vibrational level v equal to 0, is actually a little

elevated, occurs above the bottom of the well, occurs above due to zero point energy.

So, each electronic state we already said is represented by a Morse potential. So, and, so

the spectral lines can all be asserted by using these energy gaps that are shown in this

particular diagram. So, this is the diagram, sample diagram, sample energy level diagram

that we have. And each electronic state as we said, is represented by each, electronic state

is portrayed by a, by the corresponding Morse potential that we already said earlier.

So, such, we can see that there are all possible energy gaps from here to here, here to here,

within the rotational band, one rotational band to one vibrational, all these. So, there are

many, you can see that the spectral lines, if we look at it, spectral lines, lines can occur,

can occur on all the rise corresponding to all energy gaps. But fortunately, that is not the

rule. There are certain selection rules to actually rules which makes life a bit easier. There

are selection rules now which makes the life a little bit easier so to say.

So, just to have, have a clear Insight now. So, now that we know all these things, we

know what is spin splitting what is doubling and all those things, we now know what are

the different energy, electronic energy levels, the corresponding degeneracies, everything

we know, especially for diatomic and now we also have a combined energy, how we can

write those combined energies. So, all these things are there.
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Now armed with this, we should now start looking at the selection rules, the selection

rules for atoms and molecules, the selection rules for atoms and molecules. That is

something that we need to know. So, selection rules, what are selection rules? Selection

rules, rules are basically, basically restrictions, restrictions that govern, that govern the

possible, the possible or allowed transitions, transitions between, between rotational

vibrational and electronic, electronic states.

So, for each energy mode, such rules are typically in terms of the permitted change,

changes in the characteristic quantum numbers. So, what these rules are, rules are in

terms of permitted changes, permitted changes in the in the characteristic, characteristic

quantum numbers, quantum numbers defining, defining internal energy states. So, these

rules are in terms of the permitted changes in the characteristic quantum numbers

defining internal energy states.

So, in general, we observe the spectral intensity of an allowable, allowed transition is

much greater than that for a disallowed or forbidden transition. So, we are going to use

terms like what is forbidden transition what is allowed transition. So, for electronic mode,

the term symbols distinguishing atoms and molecules generally provide the basic

nomenclature that is required for the construction of the selection rules.

In this case, allowed transitions normally involve jump of a single electron from one

orbital to the other. While selection rules, these are experimental, there are, there has



been also significant confirmation, theoretical confirmation by what we call the

application of the Perturbation Theory. So, Perturbation Theory is something that you

apply to the Schrodinger wave equation.

And then we can see that once there is a perturbation, what are, for a generic, if we apply

it for a generic two level system, and therefore we define based on that what are the

transition probabilities associated with such transitions. But the idea of selection rules is

that what characteristics quantum number changes are permitted. And this can be done,

and what is called forbidden transition, what is called allowed transition.

And spectroscopically, you can do a lot of these things, but non- spectroscopically, if you

want to do it a theoretical analysis of this thing, therefore you apply what we call a

Perturbation Theory on the time dependent Schrodinger’s wave equation. So, just recall,

so this was the time-dependent Schrodinger's wave equation.

So, this was the time-dependent. So, you apply a perturbation on this, perturbation on this,

apply a perturbation on the time-dependent Schrodinger’s wave equation and determine

the transition probabilities. So, what it is going to be used for? To determine, to

determine the transition probabilities, transition probabilities.

So, that is what we are going to do over in the next lecture that we are going to define the

transition probabilities associated with, so these are transition probabilities associated

with rotational, vibrational and electronic, electronic modes. And this comes, all comes

from the Schrodinger's wave equation, time-dependent Schrodinger’s wave equation that

we have.

And this is done for a generic, we are going to do it for a generic 2-level system level

system. We have a generic 2-level system and we are going to, using that, we are going to

use and find out what will be the corresponding transitional probabilities. So, in the next

class we are going to go through this particular motion and see that what are the, how we

can perturb the Schrodinger’s wave equation and what solutions we are going to get out

of it. So, till next class. Thank you


