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So, welcome to lecture number 25 of the Statistical Thermodynamics course. So, as we

told in the previous lecture that the electronic state, electronic state of an atom, of a

hydrogen atom, hydrogen atom is specified, specified by four quantum numbers. So, of

this let us see which quantum number does what, and which is also the principal quantum,

number quantum number, and determines the electronic energy, determines electronic

energy.

Now, orbital l is basically the orbital, angular orbital, angular quantum number

designated as l. So, it defines the orbital angular momentum. So, this particular number is

basically, this, it is totally for designating the orbital angular momentum. Now, then

comes m l which is called the orbital magnetic quantum number, magnetic quantum

number. That is, m l. It specifies basically, specifies the z component, the z component of

the orbital angular momentum.

Lastly, we have m s, which is the z component of the spin quantum number, of spin

angular momentum. So, this is called the spin magnetic number magnetic number,

magnetic quantum number. So, already you see that the quantum states are defined by l

and m l. Now, there are two possible values of the fourth quantum number. So, m s has

two possible values, plus and minus half.

So, the electronic degeneracy therefore, electronic degeneracy for the hydrogen atom, the

hydrogen atom becomes g electronic is equal to 2 n square. The n is the principal



quantum number. So, basically we already have seen that l and m s was the two quantum

numbers that was used to generate the degeneracy. Now, you add the fourth quantum

number which is has got two possible values, plus minus half. So, therefore n gets

multiplied by this factor 2 because of these two possibilities.

So, this is the four quantum numbers therefore. n, principle quantum number which

determines electronic energy, l is the orbital angular quantum number which designates

the orbital angular momentum, then m l is basically the orbital magnetic quantum number

which specifies, in essence, the z component of the orbital angular momentum. And m s

is the z component of the spin angular momentum also called the spin magnetic quantum

number.

So, these four quantum numbers, and m s has got two possible values. So, this actually

completes the total degeneracy, how to calculate the total degeneracy for the hydrogen

atom. So, there are four quantum numbers. And all four are basically required to

designate the electronic state. And of course, obviously the energy, energy is dependent

on the principle quantum number. So, this completes this, for the hydrogen atom.
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Now we move on to the electronic energy mode for multielectron species. So, electronic

energy mode or multielectron species. So, again for doing this, we write a steady state,

steady state Schrodinger wave equation, wave equation for a generic N electron atom

with nuclear charge Z. So, this is the, this is the equation that we are going to write, z at

the origin.

So, minus h bar square divided by 2 m e summation i equal to 1 to N del i squared minus

summation I equal to 1 to N, Z e squared divided by 4 pi epslion nought r i plus

summation I equal to 1 to N summation j greater than I e square divided by 4 pi epsilon

nought r i j. This entire thing is multiplied by psi. Now, the first term that you see over



here, first term accounts for the motion, accounts for the motion of N electrons. This is

the Term 1. The second term, this particular term, this term accounts for hydrogen like

interaction, interaction between proton and electron.

And last term, this i over here, this particular term you see over here, the last term, the

third term is for, to account for repulsive forces, forces, repulsive among the various

electrons making. So, these are the. So, this is the steady state Schrodinger wave equation

which has got a charge of Z at the center of the origin.

So, this is the total, this is how you write that total equation form. So, first one is to

account for the motion, second one is to account for the proton electron reaction, the

interactions, and the third is to basically to account for the repulsive forces. So, this entire

thing is multiplied by the wave function is equal to this. So, this is the Schrodinger’s

steady state wave equation, to begin with.
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So, it is kind of not always easy to find out solutions to this. So, there is a process called

Hartree-Fock procedure. So, what does this procedure actually do? So, Hartree-Fock

procedure, we use this procedure to basically find out accurate solutions, solutions for

many atoms, many. So, it is usually done like this.

So, the psi, the wave function, the total wave function is multiplied i equal to 1 to N, and

this is represented by some element, phi. So, overall wave function is a product of

independent wave functions. And especially this phi i, is given a summation of N i j sum

over j C i j exponential j r. So, this is a normalization constant, optimization constant.

These are, this and this, these two, these two are variational parameters.



These two are variational parameters used to obtain the final solution, solution. So, these

are also called, phi i r i are also called the trial wave functions. So, what the solution, so

this trial wave functions represent basically specific solutions to, specific solutions to the

Schrodinger’s wave equation, Schrodinger equation. Or independent electrons moving in

an effective potential.

Trial Solutions, these are specific solutions to the Schrodinger’s equation for independent

electrons moving in an effective potential, mind the word effective potential, this is

which is interactive in nature basically, interactive, created by nucleus, nucleus, by the

nuclei, by nuclei, actually, by nuclei and electrons. Nuclei and electrons

So, final solution is obtained by iteratively guessing the values of this above new

parameters and so on until we get some convergence. So, you, you, what you do is that

basically you guess values and then you see that whether it converges. So, many, so, it is

like an iterative kind of a solution, iterative solution. So, it works very well, works well

for Z less than equal to around 40.

Does not, does not work or Z greater than 40, that means heavier atoms, it does not work

at all. So, it works but similar calculations for larger atoms and for diatomic molecules, it

does not really work that way. So, therefore we can infer that Schrodinger wave equation,

wave equation, equation has operational limitations, operational limitations, operational

limitations.

And cannot provide accurate electronic energies, and cannot provide accurate electronic

energies, energies for atoms and molecules or multielectron basically, multielectron

molecules. So, these are operational limitations. So, you principally depend on, depend

on molecular and atomic spectroscopy, atomic and molecular spectroscopy.

So, each electronic level is also characterized by an associated term symbol from which

we can, we can extract the electronic degeneracy which is required for the statistical

thermodynamics, statistical mechanical calculations. So, so each electronic, electronic

energy level, each electronic energy level, energy level is denoted by a term symbol, so

which is required for the stat-thermo calculations that we are going to perform later on.



So, we have to develop an appreciation for these term symbols, what they actually mean

and how they can be used et cetera et cetera. So, as we saw that how Hartree-Fock orbital

procedure can do a lot of stuff, it can give very accurate solutions not only for smaller

more compact atoms even for the multielectron kind of a system. Now, let us see that we

know now that there are four quantum numbers for the electrons of a multielectron atom.

So, the, so the quantum numbers, let us put it like that, quantum numbers for electrons, of

a multielectron, multielectron. So, the first one is n, n equal to, n equal to 1, 2, 3, da, da,

da. Then of course, it is l, l equal to 0, 1, 2, dot, dot, dot, n minus 1. Then there is m l,

which we know m l is equal to 0, plus minus 1 plus minus 2 dot, dot, dot. plus minus l.

Then that is m s which is equal to, m s equal to plus minus half.

So, these are the four sets of quantum numbers. So, all four sets of quantum numbers

must specify, all these should specify a quantum state. Furthermore, say only one electron

can occupy any given quantum state. This comes from Exclusion Principle. Therefore

each electron of a multielectron atom can be identified by a unique combination of these

four quantum numbers. So, there is only a unique combination of these four quantum

numbers that can identify an electron in a multielectron kind of a setting.

So, we introduce the so called configuration of an atom, we introduce the so called

configuration of an atom which is a convenient fashion, the number of electrons

occupying each shell and sub-shell. That means, so this actually says the electrons, the

number of electrons occupying each shell, shell is basically n, 1, 2, et cetera and then the

corresponding sub-shell which is basically equal to l equal to 0, 1, 2, dot, dot, dot, so, for

multielectron system, multielectron system.

The shell is specified by the numerical values. So, the shell is specified by the numerical

value, the numerical value of n, which is basically 1, 2, 3, et cetera. The sub-shell which

is orbital quantum number, is specified by s, p, d, f, s, p corresponding to l equal to 0, 1, 2,

3. So, given this nomenclature, so we have identified that the electron should be specified

by n and then the corresponding option in which they are residing.



So, this is given in the format n lk. So, n is the principal quantum number which tells you

the shell, l is the sub-shell or s, p, d, f, and k is nothing but the number of electrons per

sub-shell, number of electrons per sub-shell. So, that is the configuration that we have.

(Refer Slide Time: 23:50)

So, n represents the sub-shell number. As an example, if you take, take atomic sodium,

let us say atomic, atomic sodium for which the Z is equal to 11, the configuration for the

ground electronic state will be 1s2 2s2 2p6 3s. So, the number of electrons, but however

you see the number of electrons, electrons per sub-shell, sub-shell is limited by, limited

by ml and ms, which is 2 into 2 l plus 1.



So, for example when you are at s, s is equal to 0, so there are only two electrons that are

possible. When l is equal to 1, so that means the number becomes 3. 3 into 2, 6 electrons

are possible in that particular sub-shell so on and so forth. So, you understand when s

means l equal to 0, so that means if you put l equal to 0 here, so the number of ways this

can be counted is 2. So, that is why you have the number 2.

And you cannot have, because if you see, l varies up to n minus 1. So, at n is equal to 1, l

can only be 0, l can only be 0 when n is equal to 1. Correct. So, that is why we have 1 s 2,

because there is no p when, when n is equal to 2, l can be 0 and 1, respectively. That

means s and p. So, when it is s, when l equal to 0, this is 2, when l is equal to 1, this is

actually 3 into 2, 6.

Similarly, you can have 3 s but then we exhaust. So, it is like 2, 2, 6, 10 and 11. So, this is,

this is 1, actually. It is what it is. So, in this configuration, in this particular way, you can

basically do any kind of, any kind of elements. For example, let us take the example of

the Z is equal to say 18. This is Ar. So, what will be the configuration over here? So, first

you write 1s2, then 2s2 2p6, out of this, these are common, this is basically common for

all of these things.

And then of course you write 2p6 and then what? 2p6, and then what comes after that?

Then you have 3s2, n is the same. Now you have like s p d now. So, then it becomes 6

once again. So, this completes the configuration 18. So, you understand, you get a good

idea that how this variations is. It basically because of this right and because of this, and

because of this right. And of course, this is still the principle quantum number. So, even

for a multi-electron system, we can represent how the atomic configuration is.

So, this is how the atomic configuration is, atomic configuration can be written in this

succinct kind of a way for this. And then you can do it for n number of these things. So,

next class, we are going to do what we call spectroscopic term symbols, term symbols,

symbols for multielectron atoms, multielectron. Because these symbols are very

important. Some of these symbols you already know from your undergraduate. So, no

harm in actually seeing it one more time. Thank you.


