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The rotational and vibrational energy mode for a diatomicmolecule

Welcome to lecture number 21 on the statistical thermodynamics’ sources for engineers. We

are going to have companion tutorial sessions on spherical coordinates on the linear

Hermitian operators as well as on Eigen values and Eigen functions and we are also going to

have a brief idea about the ODEs, the different forms of ODEs because we are using some of

them. So, this will be mainly as a recap or recollection of the courses that you have taken

earlier. So, so far, we have as we know we have done an extensive piece of work in analyzing

the rotational energy mode and how is it represented by the Legendre’s polynomial.
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Now, let us consider a rigid 2 particle system. So, assuming that this is the 2 particle, this is r

and we are assuming that this r is fixed. So, this is rigid rotor, is undergoing rotation at omega.

So, this is a rigid rotor therefore, undergoing rotation omega. So, we are still in the rotational

analysis. So, K being the kinetic energy, is given as L square by 2I where L is I omega, so L

is angular momentum I. It is also given as mu r square where I is the moment of inertia and

the mu was the reduced mass. This part was well understood before.



(Refer Slide Time: 2:38)

So, a operator for the kinetic energy is basically h bar square by 2 mu v2 this, which is h

square by 2 mu 1 over r square d by dr r square d by dr plus 1 over r square sin theta d by d

theta by sin theta optional theta plus 1 over r square sin square theta square, that is the total

expression you recall.

(Refer Slide Time: 3:35)

So, for a rigid rotor, r is invariant. That means it is fixed. So, the k operator it will become, so,

there is no differential with respect to r. h square by 2 I, 1 over sin theta d by d theta plus 1

over square theta, R is invariant for most molecules. Molecules not showing any vibrational

motion. So, that is what it is.
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So, therefore, this operator L hat is equal to minus h bar square 1 over sin theta d by d theta

sin theta d by d theta plus 1 over sin squared theta d square... So, remember this was the I

omega, L was I omega. So, this is the operator or the quantum mechanical operator for L. So,

apply to the spherical harmonics, what were the spherical harmonics?

(Refer Slide Time: 6:05)

Let us just recall that the spherical harmonics these were the spherical harmonics.
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So, we apply a operator to the spherical harmonics. So, L hat square Y theta comma phi is

equal to minus h square 1 by sin theta d by d theta sin theta dy d theta plus 1 over sin square

theta d square y by d theta square is equal to alpha h square y.

(Refer Slide Time: 7:07)



So, in other words L square YJ m theta, phi is equal to J into J plus 1 h bar square Yjm. So,

multiply by R, equal to j into j plus 1 h bar square chi theta, phi alright. So, that is what it is.

So, this R is basically was the separation of variables that we did earlier variable. So, this was

what it was. So, therefore, L square bar equal to J into J plus 1 h bar square.

So, this is the angular momentum of a rigid diatomic molecule… and the energy of rotation

assuming it is a rigid rotor is J into J plus 1 by 2I h bar square. In wave number units, we

have number space, you can write it as FJ is E rotation divided by hc J into J plus 1 into BE

where J is equal to 0, 1, 2, and Be is h divided by 8 pi square 2c H pi square Ie Ie is equal to

mu re square, we will we will take a look at what it is.
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So, i e equal to mu r square, now this is the equilibrium, re is the equilibrium inter nuclear

distance re or molecule which is behaving as a rigid rotor. Now, m is equal to 0 plus minus 1

plus minus 2 up to j. So, the degeneracy or the G rotation is also called the rotational

degeneracy is given as 2J plus 1.

So, that means the above degeneracy received corresponds to 2J plus 1, different values of

angular momentum, angular momentum along the z axis, something like that. So, this is what

we have. So, let us see if there is anything that I missed. The Z quantity, it is basically the z

component to them. So, for z equal to 2, let us show it with a simple figure.
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So, this is the Z axis. So, LZ of two mh bar it is like this. So, this is basically L j into j plus 1

h bar. So, this is how, if this is actually equal to 2 then you can have, so, let us do basically



probably a problem to navigate some of this. So, this is how the quantization occurs along the

z axis. So, the z component of the angular, so, this is this if you look at figure 612 from the

book you will get a much fairer idea. So, it is like this L equal to root over say 6 h bar. So,

therefore, this was minus h this is minus 2 h, this is plus h, this is plus 2h. So, this is how the

degeneracy part actually happens.

It is 2j plus 1 as you can see that there are 5 degeneracy level here, j is equal to 2. So, 2 plus 3

so, J is equal to 2 and this is how the quantization actually happens. So, I think this is a useful

way of doing that what the degenerate levels are. So, this is for a rigid rotor and found out

that what will be the corresponding degeneracy levels. Now, you are going to go and take a

look at the vibrational energy mode.
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Alright, the vibrational energy mode up next. So, we have still the r component when we

separate it by 2, so this is d by dr square dr by small r 2 mu R square by H bar square E

internal minus Vr minus j into j plus 1 into r is equal to 0. So, this is the internal energy, A of

all moving electrons in a molecule. Not a single r coordinate per se.
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So, separate the electronic and the nuclear motion, we can separate, separate the electronic

and nuclear motion using Born-Oppenheimer approximation. So, that means obviously, the

mass of the nucleus is much greater than the mass of the electrons. This we know. So, the

electrons are rapidly moving. So, electrons are rapidly moving and cover many orbits during

a single vibration and rotation of nucleus.

(Refer Slide Time: 17:52)

So, the internal therefore is written as electronic into ro-vibrational, rotational vibration. So,

this is rovibrational, rotation and vibration. So, this is the Hamiltonian for the electronic, this

is electronic is equal to energy electronic into the wave function and then of course, you have



the rovibrational multiplied by the row vibrational wave function, this is rovibrational rv. So,

and of course the internal energy is written as E electronic plus E ro vibration.

(Refer Slide Time: 18:34)

So, now, if we do this the radial portion of the Schrodinger’s wave equation that becomes d r

square plus 2 mu square h bar square, then I am writing whatever goes in the bracket E

rovibrational minus Vr is h bar square by 2 mu r square is 2 mu r square J into J plus 1 r equal

to 0, this part accounts for electronic motion. So, this part accounts for the electronic motion.

So, now further, E rovibrational is written as E rotational plus E rovibrational.
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So therefore, d by dr r square dr by dr plus 2 mu square h bar E vibrational minus Vr into R is

equal to 0, this basically includes electronic energy... So, since electronic r provides the inter

nuclear potential E rovibrational is E rotation plus E vibration. So, VR needs an expression,

at this point we need to have an expression for VR. So, VR which is basically nothing but

includes electronic potential needs an expression.
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Before we move any further, the most popular choice is called the morse potential. so, morse

potential is something like this, it is written as Vr is equal to De, we will come across what

De is, 1 minus e minus beta r minus re, re remember is the mean, the equilibrium eeta nuclear

distance A square. So, De and beta are basically 2 fitting parameters, re is the internuclear

distance, re is the inter nuclear distance at thermodynamic equilibrium.
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So, let us look at this. This is the r. So, this is re, this is basically your Da. So, you need a

fitting parameters actually or it is internuclear distance. So, the morse potential basically what

does morse potential actually mean? So, morse potential physically represents the chemical

bond. But it is hard to deal with. So, people adopt something which is a little bit easier to

handle. So, people adopt the harmonic oscillator potential. It is easier to handle so to say. So,

it is much easier to handle. So, VR is therefore written as half K naught r minus re square is

K is like a spring constant, force constant. So, this is like a force constant K naught which

comes from hooke’s law.

(Refer Slide Time: 25:07)

So, hooke’s law means K not, now given as mu 2 pi r square. So, this is actually related to the

oscillator frequency. So, the harmonic oscillator matches with the morse potential. So, this



harmonic oscillator matches with Morse potential, when r is closer to re. So, around the

equilibrium intramolecular distance, so, this is that.
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So, this is the morse potential, harmonic oscillator will somewhat like here. So, in this zone,

which is around re, it is going to be valid. So, re plus epsilon r is less than, something like

that. So, this is valid. So, what we can see is that if r is less than re, the force is repulsive.

When you go to this direction, force is repulsive; when r is greater than re you go in this

particular direction, force is attractive and as r goes to infinity then we reach the which is

called dissociation limit. That means, the bond is broken, dissociation limit, the bond is

basically broken. So, if your Vr is less than De, we have stable bond between 2 nuclei.

Do you understand the nuclei? So, here it is repulsive, here it is attractive. So, if you go

beyond a certain level right around here, it is lead to dissociation limit. So, normally when

your Vr or your potential energy is less than d, d remember is that value is actually much less

than d, we have a stable bond between 2 nuclei. So, when you supply excessive energy what

happens is that you carry the risk of dissociation.

And we are dealing with a harmonic oscillator which only agrees within a small space around

this equilibrium internuclear distance and that is represented by essentially a spring constant

type of thing. So, and this is required because we need an expression for the potential

function. So, in the next class we are going to see where this activity leads us, in the

subsequent chapters, in the subsequent classes we will see where does it lead us. Thank you.


