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Lecture - 04
Linear and Angular Velocity of Rigid Body

Welcome to this NPTEL course on dynamics and control of mechanical systems. My name is
Ashitava Ghoshal, I am a professor in the department of mechanical engineering also in the
centre for product design and manufacturing and in the Robert Bosch centre for cyber physical
systems, Indian institute of science Bangalore. In the last week we had looked at position and
orientation of a rigid body and combined motion of a rigid body consisting of translation and
rotation. In this week we will look at the velocity and acceleration of rigid body in 3D space.
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There will be two lectures in this week. The first lecture will be on linear and angular velocity of
a rigid body and the second lecture would be the general motion of a rigid body and also
particles where we look at the velocity and accelerations of the rigid body and the particles on a
rigid body.
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@ Lecture |

o Linear and Angular Velacity of Rigid Body

So, the first lecture is on linear and angular velocity of a rigid body in 3D space.
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So, just to recamtulate in last week we had looked at a right-handed coordinate system. So,
basically any coordinate system will have an X axis a Y axis and a Z axis and an origin. The axes
have unit vectors X hat, Y hat and Z hat. A rigid body in 3D space is specified by six quantities

with respect to our reference coordinate system. So, they could be Cartesian coordinates X, y, z of

a point on the rigid body.



The orientation of the rigid body can be represented in several ways. It always has three
independent parameters and so we had looked at rotation matrices, angle axis form, Euler
parameters, Euler angles and so on. And we developed algorithms to convert from one
representation to the other and we finally looked at position. And orientation of a rigid body as a
4 by 4 transformation matrix where some part of this 4 by 4 matrix contained rotations of the

rigid body.

And one column last column contain the translation of the rigid body. So, I showed you that the
general rigid body motion in 3D space can be thought of as a rotation about and along a line in
3D space. In this week, we will look at rate of change of position and orientation with time.
(Refer Slide Time: 03:25)
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So, first let us look at the linear velocity of a rigid body. So, this figure here shows the rigid body
in 3D space this odd shape thing and I have shown you a coordinate system whichis X, Y, Z
and this is the origin of the coordinate system. There is also another coordinate system which is

attached to this rigid body and it is shown at two instance. So, this coordinate system is labelled

as 1.

So, this is at i (t + A t) so as you can see that the X Y and Z axis are translated in a parallel

manner. So, if this were the X-axis this is the X-axis both are parallel to each other likewise the



Y and the Z-axis. The origin of the i th coordinate system is currently here and it goes to some

other place. So, this is i and this is also Oi but at t + A t. So, as I said this is the rigid body at t

and this is the rigid body at t + A t.

So, the linear velocity of Ol, which is the point of interest basically the origin of the coordinate

system which is fixed to the rigid body it can be defined using very basic notions of calculus. So,
we see that the vector Oi att + At is subtract Oi at t then divided by A t and as the limit of A

t goes to 0 we get the velocity of this origin of the coordinate system. It can be also denoted as

d .. .
—r 00, this is very basic calculus.

So, the 0 here denotes the coordinate system which is the reference coordinate system where the
limit is taken. So, remember if you have two vectors and you are subtracting these two vectors
both of them have to be in the same coordinate system otherwise it does not make sense. So, this

vector Oi of t and Oi of t + At are with respect to the zero-coordinate system the reference

coordinate system.

So, the linear velocity vector can also be described in some other coordinate system. So, for
example if there was a j coordinate system some other coordinate system let us say j and I want
to describe this linear velocity vector in that j coordinate system. So, then what we can denote
that vector in this j( 0V) but with respect to j and what it means mathematically is that we

pre-multiply this linear velocity vector with a rotation matrix which is 0j[R] .

So, basically 0 with respect to the j coordinate system. And again, if you go back and remember
what we did with rotation matrices if you multiply these two basically, we transform it to another
coordinate system which in this case is the j coordinate system. So, any linear velocity vector of
a rigid body or a point on the rigid body can be associated with two different coordinate systems.

This is a very useful thing to recognize and also very basic.

And it is also very we will see later on that it does should not cause any confusion. So, the two
different coordinate systems are one in which the difference is taken or in which the derivative is

taken and the other one is the coordinate system in which this velocity vector is described.
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Let us continue and look at the angular velocity of a rigid body in 3D space. First thing to
remember is angular velocity cannot be described as a time derivative of three quantities let us
say three Euler angles. So, we can represent the orientation of a rigid body using three Euler

angles let us say 61, 62, 93. We cannot describe the angular velocity of this rigid body only in

terms of 61, 92, 63.

This is unlike the position velocity relationship. So, if the position vector is X, y, z the linear

velocity is x, v, z. So, angular velocity will be obtained from the time derivative of a rotation

matrix. So, let us recall if you have a rotation matrix 0i[R] and if ipost multiply this rotation
matrix by the transpose of that same matrix, we get the identity matrix. So, this is same as saying

that the inverse is same as the transpose.

So, if you have A into A inverse two matrices, we will get identity. In our case the rotation

matrix inverse is same as the transpose so hence we get this. So, 1 coordinate system with respect

to some reference coordinate system 0 in rotation matrix 0i[R] and Oi[R] is its multiplication
will get the identity matrix. If we differentiate this relationship with respect to time so basically,

we have to use chain rule.



So, you can see that the first term is so [R]. [R]T and the second term will be [R]. [R]T and
the whole of transpose. So, the right-hand side is identity so you will the derivative of that is 0.
We can recall that the derivative of a matrix implies the derivative of all the components of the

matrix. So, if you remember R contains R11’ R12’ R22 and with nine elements nine R ij’s.

So, R means the time derivative of each one of those nine elements in the matrix. The above

equation here which is [R]. [R]T + [R]. [R]T = 0 can be rewritten in this form. So, basically

first term is the same but the second term is we are using the fact that A into B whole transpose

is A transpose. So, I am going to rewrite this [R]. [R]T again the whole transpose.

So, R transpose R of the transpose of that will give me R and then this is Oi[R]T and the

right-hand side is 0. So, now you can see that this total quantity which is [R]. [R]T is a skew

symmetric matrix. In linear algebra a skew symmetric matrix is one in which [4] + [A]T
is 0. In the first module, we had looked at what is the skew symmetric matrix where the diagonal

elements are 0 and the off-diagonal elements are arranged in a particular form.

And this is also another way of saying that this if you have a matrix A any matrix and then
[A] + [A]T is 0 then A is a skew symmetric matrix. So, we are going to denote this

[R]. [R] wusing this matrix . We will continue to keep 0 and i because this is the skew
symmetric matrix i with respect to 0 and this R here shows that we are starting from this kind of

relationship which is [R]. [R]T is identity.

Very soon we will see that we could also have started with [R]T. [R] which is identity then we
would have got some other matrix. So, I have a skew symmetric matrix which I will call 0i[Q]

and with the subscript R which is nothing but [R]. [R]T.
(Refer Slide Time: 12:32)
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So, let us continue. So, we now I am going to show you that the angular velocity of a rigid body

and this skew symmetric matrix are intimately related. So, the skew symmetric matrix 0i[(] R
can be written in this general form of any skew symmetric matrix which is the diagonal elements

are 0. So, this is that - z component, this is y component, this is - ooi, this is by skew symmetric

property, this should be + ooi and this is - w; and this is + ooi.

So, we will see later this s it has some significance, but it does not matter right now. So, we will
come to what is s little while from now on. So, the product of the skew symmetric matrix 0i[R]

into any vector as a has been mentioned earlier and one can verify this product is nothing but the

cross product of this vector which is omega Ooof X Op . So, we are going to use this notation.

So, 0 here means the reference coordinate system, i means this is the ith rigid body, s here will
stands for some space fixed angular velocity vector. Op means this is a position of a point with

respect to the zero coordinate system. So, important thing here is the skew symmetric matrix into

some p X, p Yy, p z if you expand it, we will get this which is exactly the same as this cross

product of two vectors, angular velocity vector and Op .



So, this quantity here is called the angular velocity of rigid body i with respect to the zero
coordinate system. So, the matrix skew symmetric matrix is also sometimes called as the angular

velocity matrix whereas this vector which is there are three components in the skew symmetric

matrix which is wi oo; ooz that is called as the angular velocity vector of 1 with respect to 0.

So, important thing to realize is that in contrast to the linear velocity vector the angular velocity

vector is not so straightforward. Linear velocity vector X, y, z is the position of a point on the

rigid body we just take the derivative of that position vector which is x, y, and z and that is the

linear velocity. In the case of angular velocity, we have to go through this skew symmetric matrix

which is nothing but [R]. [R]T. So, it is a little bit more complicated.
(Refer Slide Time: 15:42)
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So, let us continue and we find the angular velocity vector in terms of Euler angles. So, we recall
that the rotation matrix of a rigid body in terms of Euler angles can be given in variety of ways.

So, if you have X, Y, Z Euler angles and rotation about x is 6 » rotation about y is 0 5 rotation
about z is 93 then the rotation matrix 0i[R] can be written in terms of cos and sin of these three

angles.



So, we had discussed these Euler angles these are called X Y Z Euler angles because they are

rotations about X axis, Y axis and Z axis and we can see that you will get terms like cos 92 cos
93 sin 62 cos 91 Ccos 62 and so on. So, it is a reasonably complicated expressions of cos and sin of
0 o 0 ) and 6 . We had done this in the first week if you have forgotten please go back and

refresh.

We can now obtain [R]. [R] of this matrix. So, what is the rll? We have to again use chain

rule. So, cos 92 will be minus sin 92 into cos 93 + cos 62 into - sin 03. The first term should have
0 2 second term should have 0 5 So, the derivative of s 5 1S cosine 6 5 into O . So, remember when

you take the derivative you have to use chain rule and also you have to introduce 61, 62 and 63.

So, the X, Y, Z components of the angular velocity vector can be obtained from the skew

symmetric matrix and they look like this. So, the x component will have 6 .t 0 3 into sin 0 Y
component is given by 62 into cos 61 - 93 into sin 61 cos 92 and the z component is 92 sin 61 +

é3 Ccos 61 cos 62. So, I have skipped a few steps but this is very straightforward and routine.

You have to take element by element derivative. So, T T Tia and so on and use chain rule

and introduce © o 0 5 and 0 . We will be left with also sin 0 , COs 91 and so on. And then you

multiply by R transpose and then you will get a skew symmetric matrix and you take out those

terms which are the x component, y component and z component.

So, this is the way to obtain the angular velocity vector. If you are given the X, Y, Z Euler angles

X, Y, Z means if you are given 0 o 0 5 and 0 3 which are rotations about X, Y and Z either angles

axis.

(Refer Slide Time: 19:15)
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So, let us continue. If you want to find the angular velocity in terms of some other Euler angles.
Remember Euler angles could be about three distinct axis which I showed you last one was bit
about X, Y and Z. You can also have about two distinct axis which is let us say Z, Y and Z. And

again, let us assume that rotation about first Z is 91, rotation about Y is 92, rotation about the last

leeg.

Again, we can find the rotation matrix which is nothing but rotations about Z, Y and again Z
multiply in that order simplify and you will get a rotation matrix which looks like this. So, here

the term so r__is ¢, r__1isc_ s again c_ means cos 0_, s. means sin 0_ and so on. So, s_ means
3377 72 113 7172 1 172 2 3
sin 0 . So, we can find this rotation matrix this was done again last week. So, please go back and

refresh if you have forgotten.

Again, we can obtain this [R]. [R]T [R] again means exactly the same thing. So, for example

what is Taa it is minus sin 92 into 92 and we have to use chain rule for all others. So, as you can

see you will have many terms. So, €, €, €, 80 you have to use chain rule and you will get 91

2 2

then you will get 0 5 and you will have 0 3 and so on. And then you might post multiply by [R]T

this [R] matrix.



And again, we can extract the X, Y and Z components of the angular velocity vector. The X

component in this case is given by 63 into c,S,- 62 into S, and Y component is 93 into sin 91

into sin 92 + 92 into cos 61 and the Z component is 93 into cos 92 + 91. So, as you can see the X,

Y and Z components of the angular velocity vector is different.

And that is because the we are using a different way of representing orientation. So, previously it
was X, Y, Z Euler angles now we have Z, Y, Z Euler angles and naturally the rotation matrixes
were different. So, the angular velocity vector would also be different.

(Refer Slide Time: 22:07)
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So, let us continue. So, there are two kinds of angular velocity vectors one is called space fixed

and one is called body fixed. So, I showed you what is Oi[Q]R and this R was derived from

multiplying this rotation matrix to the right. So, this is like A into A transpose is identity or A
into A inverse is identity. This is called right multiplication and that is where this camtal R comes

from.

This denotes the angular velocity obtained by multiplying the rotation matrix to the right. And

the angular velocity vector which we obtained from [R]. [R]T is Ou)j . So, this s here stands

for space fixed angular velocity. So, this superscript s is from this right multiplication then the



. o T .
time derivative and then [R]. [R] and whatever the angular velocity vector we extract from

the skew symmetric matrix this is called space fixed angular velocity.

We will see later that there is a nice interpretation of space fixed as and what will come right
now. Another way to derive a skew symmetric matrix is to look at this pre-multiplication. So, |
have a rotation matrix I can pre-multiply by R transpose and again I will get identity. So, again if
I take the dot product sorry if I take the time derivative of this matrix into this matrix, I will get

another skew symmetric matrix. If you think about it, it is not very hard.

So, this is called as the left multiplication because we are pre-multiplying the rotation matrix to

the left. And the skew symmetric matrix that we will get from left multiplication and taking the

time derivative of this equation is called Oi[Q]L and that will be defined as Oi[R]T into OifR] .

So, as you can see this can be remembered as [R]T [R]. previous one was [R]. [R]T. Now this

is like product of two matrices but the order is reversed.

And we know matrix A into B is never almost never the same as B into A. So, the skew

symmetric matrix that we will get this way which is [R] [R]. is with a b superscript. So, again
. . . . . . : b . b
we will have 0 in the diagonal terms we will have minus wz with the b superscript, ®_, minus o

and so on. So, we can again find a new skew symmetric matrix which will be different from the

previous one.

Because remember the previous one was [R]. [R]T now it is [R]T [R]. So, we want to

distinguish between these two angular velocity matrices which is one is Oi[Q]L and the previous

one was Oi[Q]R . So, Oi[Q]L is derived from the left multiplication [R]T. [R] which is identity

and the angular velocity vector which you obtain from the skew symmetric matrix from left

e L. ) b b b
multiplication they will be denoted as W, u)y, w .



Previous one there was a superscript of s now there is a superscript of b. Just to distinguish the
two ways which we derive the angular velocity vector.

(Refer Slide Time: 26:15)
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So, let us continue with the angular velocity vector. So, as I said we have an angular velocity
vector with the superscript b. This is called the body fixed angular velocity vector of i with
respect to 0. So, this came from the left multiplication and the skew symmetric matrix which was
obtained from R transpose R. So, let us take an example, if you look at the angular velocity

vector obtained from R transpose R and let us look at the Z, Y, Z Euler angles.

b - : s o : o
- +
Then the w_1s 91 5,C, 92 Sp @ component is 91 S, S, + 62 c, and the z component is 61.

cos 0 , é3. So, as you can see the space fixed angular velocity vector again for Z, Y, Z Euler

angles this was obtained from [R]. [R]T is identity. So, the x component of the space fixed is

) . s ) . )
- 1 + n hi +0.
63c152 62 S, u)y S 63 $,S, 62 c, a d w_this 63 c, 91

So, as you can see there are very different. So, you need to be careful to understand which
angular velocity vector you are talking about and we can go back and realize that one was
obtained from left multiplication and one was obtained from the right multiplication. It turns out
that these two skew symmetric matrices which is the left one and the right one are related like

two tensors.



So, basically if you have a matrix a tensor in one coordinate system and a tensor in the other
coordinate system. So, you can relate the right one as R into left into R transpose. So, this is
similar to many other tensors which you might have seen in undergraduate. So, for example the
stress tensor or for example the inertia matrix they transform according to these rules and the

angular velocity matrices also transform according to this rule of tensors.

. : . . b
And the angular velocity vector also can be written as Ooof is same as Oi[R]. Owi . So,

basically what is happening is that we have this angular velocity vector which with the b
superscript is related to the angular velocity vector with an s superscript by means of this rotation
matrix. So, this will come in handy later on. The rotation matrix for this example just for recam

tulation is shown here.

So, it has this c, here, c, s, here, $,S, here and so on. So, if I take this rotation matrix and put it
. b . . . . .
here. And then pre multiply Oool, with this rotation matrix I will get Ou)j . So, x component, y

and z of the space fixed angular velocity vector is related to the rotation matrix times the x, y, z
angular velocity vector of the body fixed.
(Refer Slide Time: 30:57)

ANGULAR VELOCITY OF RIGID v
g T -
Bopy (CONTD.) oL
h | ;’ tagid Benly
v j \ o Consider rigid body undergoing pure
¥ . rotation about a faced point
! \
rl _,II', @ Points "0;(t) and 0;(t + At) are
\\ i/ T coincident and only the elements of
y L - P the rotation matrix °[R] change with
AN
oy
‘:. ligid Body ot @ Point P located by 'p, and fixed in
r [ Af { I.}

Ashitava Ghosal {I15) Dynamics & Control of Mechanical Systems NPTEL, 2022



To get a little bit of more insight into these two different kinds of angular velocity vector, the
space fixed and the body fixed let us look at this figure. This figure shows a rigid body, this is a
rigid body at time t and this is the rigid body at time t + A t. We are only interested in the
rotation. So, what we will see or look at is this rotation with one point fixed. So, the origin of the
two coordinate systems X, Y, Z at 0 and X, Y, Z at some t and t + A t all of them are not

changing.

So, 0 is the reference coordinate system the rigid body at t is given by i at t and the rigid body at 1
at t + A tis given by another coordinate system. So, this is the case or this in mechanics we say it
is a rigid body undergoing pure rotation about a fixed point. So, one point in the rigid body is

fixed and it is not translating. So, the points Oi at t and Oi (t + A t) are coincident and only the

elements of the rotation matrix are change with time.

A point P can be located in the rigid body i by means of this vector. So, we will be using this
vector which is 1 with a superscript i and a vector p.

(Refer Slide Time: 32:49)
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So, again the same mcture. So, the location of this point p in the ith coordinate system is given by
this vector. The same vector can be written in the zero coordinate system or the reference fixed

coordinate system as Op is given by Oi[R] into ip. Again, it is very straightforward



transformation of this position vector into the zero coordinates frames. So, since P is fixed in i,

the derivative of this Op iis same as Op i and then we can write this as 0i[R] into ip.

So, I am using the chain rule so derivative of the right hand side should have one term which is

a

OifR] into ip + Oi[R] into ip % of ip but P is fixed in i. So, —

of ip will be 0 so hence we
get this expression. So, now we are going to do a little bit of linear algebra and also little bit of
manipulation. So, we know that the inverse is same as the transpose inverse of a rotation matrix

is same as the transpose.

So, what we can do is we multiply this right hand side so this is R into ip so that can be written

as R into Oi[R]T Op. Because remember ip will be same as Oi[R]T Op. So, transpose can be

same as thought of as inverse. So, now let us look at this term. So, if you take a look at this term

this is  [R]. [R]T. So, this is the skew symmetric matrix coming from the right multiplication

which is 0i[Q] R and we are left with Op.

So, the linear velocity of this point in the zero coordinate system can be written as Oooj Cross

Op. So, it is very similar to what we have learnt in undergraduate that the linear velocity of a
point which is rotating about this is like R cross omega or omega cross R. So, we have this
expression here for the linear velocity of this point which is rotating with one end fixed. So, if

you look at this expression once more.

So, other than the coordinate system I which is denoting that we are interested in the rigid body 1
everywhere we have 0 here, this is 0 here, this is 0 here. So, the coordinate system i does not
appear except in denoting the rigid body i that we are interested in the rigid body 1. So, this is
important that the linear velocity of a point which is of inner rigid body which is rotating with

one point fixed is like omega cross R and that omega is the space fixed angular velocity vector.

So, since 1 is not appearing anywhere in this expression except to denote that we are interested in

the rigid body i everything is with respect to 0, 0 and 0 here. So, the space fixed angular velocity



vector is said to be independent of the choice of the body coordinate system. So, let us go over
this a little bit. So, it does not really matter what is the body coordinate system because we are
doing omega cross R and this omega is the space fixed angular velocity vector.

(Refer Slide Time: 37:12)
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Let us continue. We again have this rigid body. There is a fixed or a reference coordinate system
it is there is a ith coordinate system attached to the rigid body at time t and then this coordinate
system goes at t + A t. This is the i at t + A t. So, now if you use the relationship between omega

R and camtal omega L which is remember it was transforming like a tensor. So, I can write the

linear velocity of this point with respect to the zero coordinate system as 0i[R], 0i[Q] L Oi[R]T,

Op.

Because remember this is the o’ space fixed angular velocity vector and the matrix associated
with the space fixed triangular velocity vector was R here but then I am writing R as
0i[R] Ol[Q]R 0i[R] . So, let us continue. Now this part here can be written as ip. So, remember

this is R inverse Op so this is a vector now transformed to the ith coordinate system. So, we have

one omega L here and rotation matrix and i, the point in the i coordinate system.



Now we can pre-multiply both sides of this and this with Oi[R]_1 . So, Oi[R]_1 into OV will be
left with Oi[Q]L into ip. So, R into R inverse is identity. So, if you do this, this quantity here if
you think a little bit is the linear velocity of the point p expressed in the ith coordinate system.
So, OL'[R]_1 into OVp is the same as 1 0 into OVp. So, this again 0 0 will cancel out and we will

be left with in.

And this is equal to the left angular velocity matrix into ip. So, remember this is a skew
symmetric matrix. So, this is nothing but the body fixed angular velocity vector cross ip. So, we
have this point p in the ith coordinate system with respect to the ith coordinate system. If you pre
multiply by the angular velocity vector b with the superscript b I will get the linear velocity of

the point p in described with respect to the ith coordinate system.

So, again if you think a little bit except for the fact that the 0 is showing you that we are
discussing a fixed reference coordinate system, it does not appear anywhere else. So, the body
fixed angular velocity vector is said to be independent of the choice of the fixed coordinate
system. This is reason why one is called body fixed because it does not matter what is the in

choice of the reference coordinate system or the zero-coordinate system in the case of space
fixed.

It does not depend on what is the choice of the coordinate system attached to the body. So, unless
specified we most of the time we will be using space fixed angular velocity vector. And just to

recollect the space fixed angular velocity vector is derived from [R]. [R]T.
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Let us go back and see how we can look at this angular velocity vector in terms of some other
representation of orientation. So, one of the representation of orientation was this Euler
parameters and if you recall the Euler parameters consisted of four parameters. They are

basically the axis above k which is kx ky kZ it is a unit vector and then there is this angle which

is the rotation about that axis. And the Euler parameters three of them were nothing but this k
vector into sin ¢ /2. So, this is a vector and the fourth parameter was the scalar which is €

which is cos ¢ /2 and there is a constraint. So, there are three parameters here €€, €, and there

) L. 2 2 2 2
1s a fourth one € and the constraint is € + €, + €, + €, = 1.

So, for ¢ equals T or € is 0. So, cos of m is 1 /2 because ¢ is m so this becomes 1 /2 cos of T

. 2. . . . .
/2 1s 0. So, but €, is given by this 1+ L rzzand . So, they were the diagonal terms in

the rotation matrix. So, what it means is even though ¢ is 1 so cos m /2 is 0 all the Euler

parameters are non-zero. So, there is no singularity in Euler as in Euler angles.

Singularity means that not it is not I cannot determine all the Euler parameters. In the case of

Euler angles if there was a singularity, we saw that we could only do 6 L plus minus 6 - So, two
of the angles cannot be determined uniquely. So, we chose theta one as something and 0 , was 0.

So, please go back and refresh the algorithm to determine Euler angles given some rotation

matrix.



So, for certain values of 92 we saw that it was singular. In the case of Euler parameters

singularity does not happen because not all the epsilon eyes become 0.
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So, let us see if we can derive the angular velocity in terms of the Euler parameters. So, it turns
out that for Euler parameters € €€, and €, the rotation matrix is given by this. Again, this was
. oL . L. 22 2 2
derived this is just to recapitulate. So, the r term is this €, €€, € and so on. So, these are

some terms which we obtained from what is k and ¢ and then k and ¢ was related to rl_j,s.

N T . . :
We can now obtain [R]. [R] this is the space fixed angular velocity vector and we can take the
derivative of each one of these terms epsilon. So, the derivative of first one will be 2 € 0 € 0and SO
on. We have to use the chain rule and if you take those derivatives and reorganize and you can

see that the space fixed angular velocity vector is given in this form. So, it is 2 into - € 0into €t

€ € € ETEE.
So, this comes from applying chain rule multiplying the taking the derivatives and reorganizing

so two will come out. This can further be written all this vector with three you know column



vector can be written as a matrix. So, this is a 3 by 4 matrix into 4 by 1 vector derivative of € €;

, €, and € . So, the space fixed angular velocity vector which is nice to see that it can be obtained

2

as €, €, €, in some matrix into the time derivative of those all four Euler parameters.

So, note this is not a square matrix. So, this is not a 4 by 4 into 4 by 1, this is a 3 by 4 into 4 by 1.
Why? Because the angular velocity vector is a 3 by 1 vector, it has three elements.

(Refer Slide Time: 46:52)
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We can also obtain the reverse. So, we can also show that the angular velocity vector if it is given

ooi(t) , I can obtain that time derivatives of € v €p €

;€ &g and epsilon and so on. So, this is a 4 by

1 vector of time derivative of the Euler parameters. It is given as 1/2[E (t)]T Ow (2) . So, these

two expressions tell you that if I give you that rate of change of the Euler parameters, I can find
the angular velocity. If you give me the angular velocity, I can find the rate of change of the
Euler parameters. So, there is no inverse going on because this E matrix is a 3 by 4 matrix. So, E
matrix from the previous slide is a 3 by 4 matrix so inverse is not possible. But we do not need to

obtain the inverse. In one case you have two E t, in other case itis a 1/2[E(t)] . So, it is a very
nice way of showing how the Euler parameters and their time derivatives are related to the

angular velocity vector.
(Refer Slide Time: 48:20)
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8
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So, let us continue and look at simple some numerical examples and these numbers are chosen
arbitrarily just to show that we can calculate numerically the linear velocity, the angular velocity

and also various other quantities. So, if the position vector in the a coordinate system as a
. L o 3 2 . .
function of time is chosen arbitrarily as 4t + 8 t -2t + 5 this is the x component, y component is

9" _t- 6, the z component is 7t° + 10.

4

o of this vector will give

So, the derivative of this will give you the linear velocity. So, this is
you the linear velocity of the point. And just by very simple calculus we can show that the linear

velocity is given by 12 t* + 16t - 2 and so on. So, this is 18t - 1 and this is 21 £ So, if you want
to evaluate the linear velocity at any time so let us say t = 2 you can just substitute t =2 and we

will get these numbers.

The basic idea here is that if you give me the position vector as a function of time, I can find out
the linear velocity very easily just by taking derivatives of each of the components.
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Numerical example of space-fixed angular velocity TR,

From the ]Jl:’l'l'ilnl‘- shides we know that for Z-Y-2 .‘\Erill'l‘-[:'.Hl'tl Enler :1]|'_'|]1'.-.

ij';;twme- f; sinths = fll-_,:q'in i
w" = | tysinfly sinfly 4+ B cosdy
I[.J“"LJH H_r 1 ﬂ:

Let,

i =5 - d rads
fly = =10t rads
fly = T* + 9t — 1 rads

Therefore the space-fixed angular velocity at time t = 3 seconds is,

194.73497
wit=3)= 21,1580 | rads/s
Gi.ad18

Whereas if you want to find the angular velocity vector then we have to cannot take simply the

derivative of the components of 0 » 0 > ) . So, for example in the Z, Y, Z space fixed Euler
angles if I take the derivatives, I will get this, and the w’ is given by these functions of 0 5 €Os 0 )

sin 0 5 and so on. And if I choose 6 L as 5¢°-4 again chosen arbitrarily 0 , s - 10t any function of

time.

You have to substitute back all these things here at to find out what is the angular velocity vector.
So, at t = 3 we find out what is 91 then we find out what is 61. How do I find out 91 we have to

take the derivative of this so this will be 10t. And then substitute back all of this back here to get

the space fixed angular velocity at t equals3 given by this. So, the basic idea here is to show that

the angular velocity is a much more complex thing. It is not very simply the time derivative of
the position vector.
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Numerical example of body-fixed angular velocity WTIEL,
From the previous slides we know that for Z-Y-Z body-fixed Euler angles,
0, <in By cos By + B, sin by
wh fhy sin s sin fy + 05 cos B
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Let, g
ﬂ! 5% - 4 tm’:\
fly = <101 rads
fly = 714 + 91 = 1 rads
Therefore the body-fixed angular velocity at time ¢ = 3 sceonds is,
15,6650
Wit =3)= [ 270776 | rads/s = [R{{ = 3)]Tw(t = 3)
202.6275
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We can also find '’ with the superscript b for Z Y Z the angular velocity with superscript b is

given by - 91 sin 92 cos 63 92 sin 93 and so on. The z component is 91 cos 92 + 63 this has been
derived earlier. And then we can substitute again the same 61 as a function of time, 92 as a

function of time, 0 ,asa function of time and we can substitute back 6 o 0 » 0 3 here.

And © o 0 - 0 3 here and again for t = 3 we see that the angular velocity vector has completely

different components. So, I wanted to show you that if you choose the body fixed angular
velocity vector with the superscript b then it is very much different from the space fixed angular

velocity vector with the superscript s. And then you can also find the rotation matrix and if you

multiply [R]Toos you will get back this W,

In the previous slide I had showed you what is " and in the slide before that I showed you w’ is
R w’. So, if you go back and sub compute ® and o’ using these formulas and then do this
matrix multiplication before [R]Toos you will get . Just to tell you that numerically also it

. : . : b
matches with whatever we have derived the analytical expressions for ® and w .
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The same thing we can show with Euler parameters. So, if the k is given by 1, 2, 3 square root of

. . . . . ) 3 2
14 so basically it is a unit vector and this ¢ is some again randomly chosen -9t +5¢t -t.Ican
find out what is the Euler parameters so € ;€ €y The vector part is given by this expression and

€ is cosine of this so k and this is sin ¢ /2 and € 1scos ¢ /2.

€ I can take the time derivative of this and obtain this € is given by this. And from the previous

slide we know ' is some matrix 3 by 4 matrix of all the 4 Euler parameters into €€ €, € and

the angular velocity for this example this numerically chosen k and ¢ 1is given by 0.522, 1.040
and 1.566. So, this is a space fixed angular velocity vector for k and ¢ chosen randomly.
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So, the next question which is of interest is suppose you are given position. So, you are given
velocities both linear and angular velocities can we obtain the position and orientation of a rigid
body. So, clearly, we have to numerically integrate the velocities because integration of velocities
will give the position vector. Similarly, somehow integration of the angular velocity will give

you the orientation.

So, position is very straightforward, we have say V which is the linear velocity which is nothing
but x, ¥y, z. So, we can just integrate and with initial conditions, so position is very straight

forward. Orientation from angular velocity is slightly more complex. Why? Because we have
coupled non-linear differential equations which relate the angular velocity and the three Euler

angles.

So, as an example if you remember this for X, Y, Z Euler angles the angular velocity x

component is theta one dot into 63 into sin 92. The y component is 92 cos 91- 93 sin 61 cos 92

and the z component is 0 5 sin 0 ) 0 5 €08 0 | cos 0 . So, what is the problem? We are given the

left-hand side. So, I am given let us say some 1 radian per second here, 0.2 radians per second

here and let us say - 0.03 radians per second as the z component.



The goal is to find out 91, 92, 93 which are the X, Y, Z Euler angles. So, in order to find out 91,
0 2 0 3 given the left-hand side I have to integrate these three equations and as you can see these

three equations are coupled and non-linear. So, we need to go and use some MATLAB or some
other tool to integrate.
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Numerical example for obtaining position from lincar velocity

Giivien,

il
"Vt sint m/s
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The position ean be obtained by integrating the velogity,
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plot for the position "p is shown in the adjacent figure
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So, again let us take some simple numerical examples. So, the linear velocity is given as cos t sin

t and this - 2 into ¢ - 15t - 60 into 10 - 3 meters per second. So, this is the x component, this is y
component and this is the z component so again randomly chosen. So, how do I find the position
of the rigid body? If the linear velocity of the point is given you just integrate. And if you
integrate you can see integration of cos t is sin t + some constant, sin t is - cos t + some constant

and integration of this is given by this.

So, this X, Y,z are the integration constants. So, if I assume that its initial conditions are zero

then we can obtain the position vector given this velocity vector and this is shown in the adjacent
figure. So, I can integrate this, and I can plot the position x, y and z, x is the red line, y is the
green line, z is the blue line and with time I can plot these expressions. So, this is sin t you can

recognize now that x is sin t.



So, the red line looks like a sin t, the green line is - cos t so it looks like this whereas the z
component is some complicated or you know polynomial in t.
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So, let us continue. I want to find the angular velocity, I am given the angular velocity vector I

want to find the X, Y, Z Euler rotations. So, I want to find out 91, 92, 93 which are the rotations
about x, y and z. So, once I know 61, 62, 93 body fixed Euler rotations I can find the rotation
matrix x for 0 Y for 6 » Z for 6 3 multiply the matrices in that order and I can get back the

direction cosines in the rotation matrix.

So, as an example let us assume that the space fixed angular velocity vector is given as [1, 2, 3].
So, it is a vector x component is 1, y component is 2, z component is 3 again you know
arbitrarily chosen. And we need so the left-hand side is given we need to integrate these three
equations. And we have to assume some initial condition let us assume that the initial conditions

are all zero.

So, the TA has made a nice video of various ways to use different you know ways to in
MATLAB to integrate. So, there are routines which are available for integrating differential

equations and we can use those routines to solve this problem of integrating three nonlinear



equations three coupled non-linear equations and it looks like this. So, 61 as if you plot as a

function of time it looks like this.

It is constantly increasing this is in radians and this is in time. 62 goes like this 93 goes like this.
So, we know at any instant of time what is 91, 92 and 93 let us say at t = 2 we can find out these
and then we can find the rotation matrix corresponding to 0 ,- Letus say this is something like 4

radians, I can go back and so x rotation is 1 0 0, first column is 0 1 0 0, first row is 1 0 0 and then

cosel—sme1 smelcosel.

So, these are the simple rotations which we had discussed last week. So, I can find out the simple
rotation about X, simple rotation about Y, simple rotation about Z and then multiply the matrices
in the order which you do which is X, Y and Z and then you can find the equivalent rotation
matrix and the equivalent rotation matrix has all the direction cosines. So, basically it tells you

how the moved coordinate system with respect to the original reference coordinate system.

So, we know what the orientation of this rigid body with respect is to the zero coordinate system.
So, the model of the story is that for orientation we have to solve a set of coupled non-linear
differential equation. These are ordinary differential equations whereas in the case of position we
just integrate separately each one of them. The x component integration V x will give youx, V'y
will give you y, V z will give you z.
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o Angular velocity in terms of Euler angles and Euler parameters

o Estimation of position and crientation from measurements,
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So, in summary the position vector of a point on a rigid body is a vector in 3D space. The linear
velocity can be obtained by simply differentiating the position vector with respect to time. The

orientation of a rigid body is represented by a 3 by 3 rotation matrix R which contains all these
direction cosines TS From here we get two different forms of angular velocity vector. So, one

is a skew symmetric matrix which is obtained as [R]. [R]T.

This is the angular velocity vector from this skew symmetric matrix is called the space fixed
angular velocity vector. This is independent of the choice of the body coordinate system and

components along space fixed axis. We can also obtain a skew symmetric matrix which is

[R]T [R]. and the angular velocity vector obtained from this skew symmetric matrix is called

the body fixed angular velocity vector.

This is independent of the choice of the fixed coordinate system and components along body
fixed axis. The angular velocity vector from these two are related by a rotation matrix and we
can also obtain the angular velocity vector in terms of Euler angles and Euler parameters if it is
required. We can also estimate the position and orientation of a rigid body from the
measurements of the angular velocity vector add or the linear velocity so basically by

integration.



