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Welcome to these NPTEL lectures on Dynamics and Control of Mechanical Systems. My

name is Ashitava Ghosal, I am a professor in the Department of Mechanical Engineering,

Centre for Product Design and Manufacturing and also in the Robert Bosch Centre for Cyber

Physical Systems at the Indian Institute of Science, Bangalore. Last week we looked at

classical approaches for Analysis of Control Systems.

Prior to that we had looked at state space formulation, modelling and analysis of control

systems. In this week we will look at Design of Controllers and in design of controllers we

look at three commonly used techniques - when you want to design a control system, to meet

certain objectives, to meet certain requirements.

(Refer Slide Time: 00:01:19)

So, in this week there will be three lectures, the first lecture is on PID control, the second

lecture would be what is called as root locus based controller design, and the third lecture will

be state space based design of control systems. The PID control is very commonly used in

industry, and we will first start with that.
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So, a quick introduction and recap. So, the goal of control is to ensure that a dynamical

system follows a desired trajectory. And, in particular, in spite of external disturbances and in

spite of internal parameter change. Sometimes, the control system is also used to stabilize an

unstable system, and also to improve the performance of a system, we have seen how these

things can be achieved by a control system for a simple case.
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So, let us quickly go back and see that simple case which we had looked earlier. So, we have

this DC motor which is rotating a link. The transfer function of the DC motor could be

written in as K/ (Js + F).

The voltage which is applied to the motor is denoted by Va (s), the output speed is Ω(s), and

we could achieve a controller or a control system with a simple proportional controller.

Which basically takes the error between what we want as the output speed and what is the

measured output speed. So, error is Ωd – Ω and then it is multiplied by this constant

proportional gain, and we get this voltage. So, this we had looked at and looked at in detail.

And then we showed that this kind of control system, a simple proportional controller, can be

used to track this desired Ωd, in spite of changes in the internal parameters which are

basically K and F because we are interested in s tending to 0, in the steady state, where this

inertia J does not play any role. And I had also showed you what happens when you have Td

= 0, start with Td = 0. This we had discussed in great detail earlier and the main result was

that the change in Ω which is the output which is given by δΩ’/ Ω’, basically this is the

percentage change in the output speed. It can be written in terms of a percentage change in

the internal parameters where K0 is the internal parameter which is K/F and Ω’ is the

unperturbed output speed. So, basically Ω’is K0 Kp / (1 + K0 Kp) into Ωd and if you recall we

had chosen K0 Kp as much greater than 1. So, this is approximately equal to Ωd.



So, the main take away from this expression is that any x% change in K0, which is K / F, will

result in (1 / 1 + K0 Kp) into x% change in the unperturbed output speed, which is roughly the

same as what we want, Ωd. And this is because we had 1 + K0 Kp , we choose Kp such that

1 + K0 Kp is much, much greater than 1. And, hence the change in output is greatly reduced

by the feedback at least as t tends to ∞ or at least in the steady state.

When we looked at the effect of the disturbance, so, we have this disturbance which is

coming in at the input. So, the controller output now, is u or voltage and then the input to the

plant is both the disturbance and the voltage. So, again when we looked at the effect of the

input disturbance as this disturbance Td as s tends to 0, I showed you that we can derive an

expression for the output speed which is Ω as some (K0 Kc / 1 + K0 Kc)Ωd. Kc is nothing but

this controller transfer function - we have intentionally chosen a different symbol. Because

now, we want to look at the controller transfer function when both a disturbance and internal

parameter changes are happening. So, going back Ω is (K0 Kc / 1 + K0 Kc) Ωd + (K0 / 1 + K0

Kc) (Td / K).

So, if I choose K0 Kc much greater than 1 or K0 Kcmuch greater than K0 / K, finally Kc much,

much greater than 1/ K, you can see that the effect of the disturbance Td is also reduced. So

that is the takeaway, that if I choose the controller gain Kc in a particular way, which is Kc

much, much greater than 1/ K, the effect of Td is reduced and of course, the effect of internal

parameter change, which is δ K0 where remember K0 is K/F, that is also reduced.

So, we had seen that a high gain controller reduces the effect of the internal parameter change

and external disturbance. Why do we call high gain? Because the controller gain is much,

much greater than 1. So, 1 + K0 Kp is much, much greater than 1. So, a high gain controller

basically negates the effect of the external disturbance and the internal parameter change on

the output. At least in steady state and at least for the simple first order system.
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So, let us look at a generic first order system which is given by y(s) which is the output and

the transfer function between the output y(s) and the reference input is 1/ (τ s + 1). So, this is

like a very simple generic form of a first order system and τ is called the time constant.

Instead of 1 there could be some other constant but that does not matter so, we are really

interested in the nature of a generic first order system.

So, for a unit step input which is, r(s) = 1/ s, I can obtain y(s) is 1/ (τ s + 1) into 1/s, and then I

can use the method of partial fractions and rewrite it as 1/s – τ / (τ s + 1). This is a very

straightforward trick to factorize the denominator and write it as partial fractions. The inverse

Laplace transform of this y(s), will give me y(t) and we can see that this is 1, 1/ s gives you 1,

and τ / (τ s + 1) will give you e –t/ τ. And this is very similar to what we had seen earlier,

remember when we applied a voltage to the motor and this voltage was proportional to the

error -- Kp (Ωd – Ω), and if I had applied the step input, the output will reach this Ωd = 1 in

some time and this is an exponential plot. This expression of y(t) we have seen earlier in the

case of a DC motor driving a single link.

We can look at this plot and see what are some of the important points in this plot. So, for

example at t = τ, we will get y(t) is 1 – e –1 - this is 0.632. So, the output y(t) reaches 63.2% of

the input at t = τ. This τ is also sometimes called as a time constant. So, it is basically the time

required to reach 63.2% of a unit step input. At t = 3 τ or 4 τ or 5 τ, y(t) can be again

computed from this expression 1 – e –t/τ, and you can see that y will be approximately 0.95,

0.982 and 0.993. So, only when t tends to infinity, y(t) will tend to 1 and the error which is



r(t) – y(t) will go to 0. And you can see that in this plot for that case when we looked at the

speed of rotation of the link driven by a DC servo motor.

Typically, the output should be within 2% of the Ωd (t) which is 1. So, if it is within 2% so,

basically, we should have t sort of greater than or equal to 4 τ. Because you can see when t is

4τ, we get 0.982 which is within 2% of the desired quantity which is Ωd = 1. This is an

important observation; this is sometimes used in what is called a settling time later which we

will see soon.

So, one more useful piece of observation that if you look back at the transfer function

between the output Ω and Ωd,, from which this plot was obtained. We could see that it was

given by

K Kp /J and this is 1/ (s + F + K Kp )/ J. Please, go back and see your notes J is the inertia Kp

is of course the controller -- proportional controller Kp, K was a constant, F was also some

friction term which was also a constant. So, what we can see is for the DC servo motor

example, this τ is J / (F + K Kp ). This is 1/ (τ s + 1) so, if you divide take out (F + K Kp)/ J,

so, you will have τ as J / (F + K Kp). Hence, as Kp increases τ becomes smaller and if τ is

smaller it reaches this desired trajectory faster, quicker. So, τ smaller gives a faster response

and this is an important observation, and we can see that by changing this proportional gain

or this controller gain Kp, we can make the output reach the desired reference trajectory

faster.
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So, let us continue a little bit more with the first order system which is y(s) = 1/ (τ s + 1) into

r(s). Now, instead of r(s) being a step input, let us see what happens when you give a ramp

input? Ramp input is nothing but r(t) = t. So, it is a slope linear curve with 45 degree slope.

So, if you plot r(t) versus time it is a line passing through the origin at 45 degrees which is

r(t) is t and for t greater than or equal to 0, before that it is 0.

So, for unit ramp input r(s) is 1/ s2 - the Laplace transform of t is 1/ s2. And again, we can

find what is y(s) by method of partial fractions? We will get one term which is 1/ s2, there is a

term which is – τ/s plus another term which is τ2/ τ s + 1. And the inverse Laplace transform

of this will give y(t) which is –τ + t + τ e –t/τ. So, the error which is r(t) – y(t) is τ (1 - e –t/τ).

What can we see from this expression? What you can see is as t tends to infinity, so, this e –∞

will go to 0 and hence the error as t tends to infinity will become τ. So, again what you can

see is, since τ was J / (F + K Kp), if you increase Kp which will give smaller τ and hence a

lesser steady state error.

So, e (∞) = τ means even at t tends to ∞, even in steady state there will be a small error. And

that is that is τ and I can reduce this τ by increasing Kp. So, the last type of input which we

can think of for r(s) is what is called as a unit impulse. In that case r(s) is 1. So, if you have a

first order system subjected to a unit impulse, so then we can easily find what is y(s) which is

1/ (τ s + 1). And from inverse Laplace transform you can find y(t) is (1/ τ) e –t/τ. So, as t tends

to infinity, y(t) goes to 0. So, the response to an impulse input for a first order system is



steady state error is 0. The response or the steady state error for a unit ramp input is τ and for

the step input again as t tends to infinity the error is 0.
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Let us continue and look at the second order system and again we had seen this earlier. In the

second order system example, we said that we were interested in the rotation of the link,

rotation of the motor shaft. So, in that case we had a second order differential equation so, it

was something like J + F is some K Va. And the transfer function for the second orderθ
 

¨ θ
 

˙

system was K/ s (Js + F).

The input is some voltage, and the output is and again we have this proportional controllerθ

and then we measure (s), and then we subtract it from the desired d and we will get someθ θ

error which is d – , and the output of the controller is Kp into this error or Kp ( d – ). So,θ θ θ θ

the closed loop transfer function between output theta and this reference trajectory d can beθ

written as K Kp/ [s (Js + F) + K Kp ]. And we can do a little bit of simplification and we can

write this as (K Kp/J) / [s2 + (F /J) s + (K Kp/J)]. And we had shown that this can be rewritten

in terms of natural frequency and damping. So, (s)/ d (s) is some ωn
2, ωn

2 is (K Kp/J),θ θ

divided by (s2 + 2 x ωn s + ωn
2 ), where x is the damping and ωn is the natural frequency.

Just by comparing these two, you can see that the damping is nothing but F / 2 Ö(J K Kp ).

So, as discussed earlier and again you can see it here, the second order system can be



completely determined by this ωn which is natural frequency and the x. So, this is a canonical

form of describing a second order system in terms of some natural frequency and damping.

There are three possible kinds of behaviour of a second order system, and we had looked at

this earlier, please go back and see your earlier lectures. There is one which is 0 < x < 1. So,

the x is between 0 and 1, these are called under-damped system, so, the damping coefficient

is between 0 and 1. You can also have x = 1, these are critically damped systems and then you

can have x > 1, these are over-damped systems.

(Refer Slide Time: 00:20:01)

So, let us look at the case, sort of interesting case when x lies between 0 and 1 or the

under-damped system. The transfer function closed loop transfer function can be written as θ

/ d is ωn
2, now, the denominator polynomial can have two roots and in general it can beθ

written as (s + x ωn + j ωd ) and (s + x ωn – j ωd ), and we had discussed this earlier. And I am

just repeating the figure once more, ωd is called as the damped natural frequency. Like ωn is

the natural frequency x is damping and ωd , if you remember is ωn Ö(1 – x2). And for a step

input so, if I give d as 1/s. So, this is d, the inverse of this is (t) is 1, the output (t) canθ θ θ θ

be solved for again by using partial fractions and inverse Laplace transform. And we will get

something like 1 – e – x ω
n
t (cos ωd t + x /Ö(1 – x2) sin ωd t). So, this is this curve, and you

can see that this is going up above (t) = 1. And then it will oscillate and then slowlyθ

converge to this (t) = 1 and as we discussed this curve lies between two exponentials. So,θ



these two exponentials are asymptote to this (t). And these exponentials are 1 + e – x ω
n
t /θ

Ö(1 – x2) and

1 – e – x ω
n
t / Ö(1 – x2).

So, this is the general response of a second order system to a unit step input, and as discussed

earlier there are several interesting or important parameters in the second order system. One

is something called as the peak overshoot, how much the output (t) crosses (t) = 1? Thisθ θ

is given by Mp. Then the other useful thing is once it starts oscillating and dying down

because of damping. Once it goes into this band, which is an allowable band, and this is

either 0.05 or 0.02 -- this is called as the settling time. So, once it reaches inside this band it

never comes out. So, this is in some sense, you need to wait for this time ts, such that the

output is within some allowable limit of the whatever we want, the desired is (t) = 1.θ

And this ts, is given by 4/ x ωn for 0.02 band and 3/ x ωn for 0.05 band. Additionally, there are

these time at which we hit the peak which is called tp which is given by π/ ωd. The value of

this Mp, which is peak overshoot, can also be obtained in terms of x, and also, we can obtain

something called as a rise time, the first time it reaches this (t) = 1. And there are variousθ

definitions of rise time -- in this example I am showing you rise time for 0 to 100% and this is

given by (π – b)/ ωd, b is some angle which we had discussed earlier. So, b is, = sin -1 xθ

and + b will give you 90 degrees.θ
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If you have over-damped system, xi greater than 1 or critically damped system which is x = 1

then there is no oscillation. So, when you have critically damped it can cross once but

nevertheless it will settle down to d = 1. The equation of (t) = 1 – e – x ω
n
t (1 + ωn t). So,θ θ

you can see that there are no cos and sin terms -- there is no oscillations.

Likewise, if you have over damp system which is x > 1, then you have two roots which are

ωn (x ±Ö (x2 –1), and the output (t) is some e – s
1
t and some e – s

2
t. So, it is a sum of twoθ

exponentials again there are no oscillations, in the case of critically damped or in the case of

over-damped. This is more or less what the second order system can do in general. It can

oscillate and slowly die down to the desired quantity or it can go up as an exponential and

reach that desired quantity in some time.

(Refer Slide Time: 00:25:45)

In order to look at second order systems or for that matter any or systems, we need to look at

what is called as a transient response. The transient response is most of the time defined for a

unit step input and zero initial conditions. There are some common specifications, and these

are all derived from a second order system, and one of the reason why we look at second

order system is because we can easily derive the solution and also we can see exactly what is

happening in this case of second order system. We can physically see this peak overshoot,

settling time and we can easily visualize all these common specifications. As I said there

could be something called as the delay time and this is the time such that the output is 0.5.

Remember, we have a unit step input so, once it reaches half the input, that time is called

delay time.



You can also have rise time which is time required to reach 100% of the final value. If it is an

overdamped system rise time is sometimes defined as time to reach 90% of the final value.

So, for under damped tr is (π – b)/ ωd as I have shown you earlier. The peak overshoot, which

is the maximum overshoot, can be obtained by finding (t) when d (t)/ dt = 0. So,θ θ

remember it reaches the maximum and hence we can obtain the derivative of this as aθ

function of time equated to 0, and we can find the time such that this happens and then we

can put that time into the equation of (t) and find out the peak overshoot. So, the time whenθ

d (t)/ dt = 0 is given by π/ ωd, and we can also find out what is Mp from the substituting thisθ

tp into the equation of (t).θ

The settling time is the time to reach the output within a certain band. As I have discussed,

and I have shown you in the figure earlier. So, if it is ±2%, the value of theta within this ±2%

is also called settling time. We can also have ± 0.05. So, in one case it was 4/ x ωn and in one

case it was 3/ x ωn. So, if you have 0.02 you have to wait longer.

The important thing is in all of these second order system, there are only two parameters.

There is natural frequency and there is damping and all this delay time, rise time, settling

time, peak overshoot, everything can be obtained from the natural frequency and damping.
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If you have a higher order system, the closed loop transfer function can be obtained as y(s)

/r(s) which is KG / 1 + KG. So, you can see that the K is the controller G is the plant or the



transfer function of the plant is G(s). The closed loop between output y and reference input r

can be written in this form.

Often this G(s) is given in what is called as a pole-zero form. And we had looked at this

pole-zero form, when we looked at root locus. So, G(s) could be written as (s + z1) (s + z2) all

the way till (s + zm) and the denominator is (s + p1) (s + p2)… (s + pn). Remember, m <= n.

So, this z1, z2, zm are called the zeros and p1, p2, all the way to pn are called the poles of the

transfer function G(s) and this is the pole – zero form.

It is reasonably difficult to find the response of such a complicated system. Especially when

you have more than two poles, without using computer tools. So, there are some heuristics or

some thumb rules which we can use. So, if all the poles are in the left half plane, the system

is stable. So, this we had seen earlier when we looked at root locus. If a pole and a zero are

close to each other the effect on the transient response is small because in some sense they

cancel each other.

If a pole is far to the left of the imaginary axis, basically a large negative, real part, the effects

last for a very short time -- because it is like e–a t and if a is large e–a t will go to 0 very

quickly. In all these, transient response of higher order system, most of the time we look at

what is called as a dominant second order system. So, we find the two poles which are closest

to the imaginary axis. They can be real or complex conjugate and these two poles most of the

time can be used to sort of specify what is the transient response. Because the dominant

second order system, we can again find out what is peak, overshoot settling time, rise time all

the various things which we had discussed, and if all the other poles are much further to the

left, their effect will die down very quickly, and the transient response will be sort of

dominated by the two poles which are closest to the imaginary axis. And this dominant closed

loop poles, as I discussed or at least I have argued, they dominate the transient response, and

these are often used for initial analysis and design. If I know that these are the two poles, I

can quickly see what is Mp, ts, rise time, various things, and then I can analyse the system.

Then I can design the system, as I will show you in a short while, and then we can design a

controller. And then finally, what we can do is we can look at the entire system with all the

poles and zeros and we can use a computer tool to find the response of the system, both the

transient and steady state response of the system.



For the full complex higher order system, we need some simulation tools, and these

simulation tools are nowadays very readily available. For example, Matlab is a software tool

which is available to all the candidates in this NPTEL course and it is easily available,

otherwise, also. We can use Matlab or other software tools to find the transient response or

the steady state response of a higher order system which is given in this pole - zero form or

any other form. If it was given as a polynomial also Matlab can handle it.
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So now, let us come to the control part. So, as I said, we can have what is called as

proportional feedback. So, basically, the closed loop transfer function between the output θ

(s) and the desired input d or the reference trajectory d, can be written as ωn
2/ (s2 + 2 x ωn sθ θ

+ ωn
2). I am repeating this many times, because the second order system is very, very

fundamental and is the basis of understanding everything.

The natural frequency ωn and the damping x depends on the controller gain Kp. I had derived

this, and I am repeating it once more. So, ωn
2 is KKp / J and x is F / 2 Ö (J KKp). If I were to

change Kp which is the proportional gain or the proportional feedback gain, it automatically

changes both ωn and x. So, if I increase Kp, natural frequency will increase and automatically

x will sort of decrease - x will also, Kp, increases, so, x will decrease – correct? So, the

important point is changing Kp changes both natural frequency and damping. So, we could

change Kp, and so, suppose you have an under damped system -- x is between 0 and 1 -- I



could easily make it critically damped or over damped by choosing Kp. But I cannot choose

or determine ωn and x arbitrarily. If I want to change both Kp, in both of these expressions,

both natural frequency and x will change on it is own. But suppose I want to independently

change natural frequency and x, I cannot do only by changing Kp. I need two parameters and

this is the basis of proportional plus derivative controller. This is a very commonly used

controller which is called as a PD controller.
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So, let us look at what happens when you have a PD controller? So, when you have a PD

controller, the voltage which the plant is seeing is proportional to Kd (t). So, what is e? e is𝑒̇

( d – ). If you look at the transfer function of this, of this feedback controller, D(s) is Kd s.θ θ

So, if you have the transfer function, G(s) which is K/ s (Js + F), and if you have derivative

feedback, then (s) / d (s) is KKd and the denominator this s (Js + F) + sKKd. So, the closedθ θ

loop poles are now at s = 0 and s = – (KKd + F)/ J. So, the pole at s = 0 is independent of Kd,

you can see that. So, if I were to increase Kd, it increases damping. So, remember it is e–at and

it is like in some sense a pole on the real axis. Hence, if I were to increase, the increases

damping and the rate at which (t) approaches d (t) is changed. So, the derivative controllerθ θ

is different because now, in the numerator we have a KKd s. Remember in the proportional

controller, it was KKp - there was no s. Likewise in the denominator this was s (Js + F) and

this is KKd but now there is an s term also here. So, there is a closed loop pole at s = 0. In the



case of a proportional controller, the open loop poles were at s = 0 and –F/ J. But if you

change Kp, the poles would change. In this case, if you change Kd, the pole at s = 0 does not

change.
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We can also have something called as an integral feedback. An integral feedback is given by

the following equation - the voltage applied is equal to Ki . We have error which is (
0

τ

∫ 𝑒 τ( )𝑑 τ

d – ), so, we integrate this error from some 0 to some time period τ. So, the transferθ θ

function for integral feedback is Ki /s and if you look at the closed loop transfer function with

an integral feedback, again, (s)/ d (s) is now KKi / s and the denominator is s (Js + F) +θ θ

KKi /s. If you simplify this, you will get KKi but the denominator now has s2 (Js + F) + KKi .

One of the major difference for an integral controller, as opposed to both a proportion or a

derivative controller, is that the denominator now is third order. So, we have some s3 term --

this is s2 Js so, you will get s3 J.

And what is the effect of this integral feedback? This output of the controller which is Va (t),

which is the voltage, which is going into the plant, is non-zero, even if e (t) is 0. How is that?

Because when you do integral so, basically you are taking the sum of the past few values of

this e (t). Integral is nothing but summation over the last few terms, or actually from 0 to τ,

all the terms you keep on summing. So, even if at any instant of time, e (t) is 0, if the e (t) in

the previous time instance were non-zero, this you will get some term, you will get some



voltage. So, integration depends on summation, is an approximation of summation and this V

voltage of which you are applying to the system, depends on the past values of e (t).

So, the steady state error due to friction and stiction will lead to some (t)= 0 and let us𝑒̇

assume that we have some friction at this bearing friction at the joints. Go back to that

remember the example of this link being rotated by a DC motor. So, we had some friction,

and this friction is reasonably large and this quantity Kp e (t), which is like the voltage, which

is dependent on the proportional controller which is Kp e (t), is not enough to overcome that

friction. Hence, at some stage the link will move but then there is some significant friction,

and it comes to a stop. So, (t) is 0, so, the derivative part does not contribute anything, and𝑒̇

this proportional part is not enough but the integral controller will still work because it keeps

on remembering what is the past error. It keeps on summing the past errors and then

eventually Ki , this integral term, will become large enough to overcome the
0

τ

∫ 𝑒 τ( )𝑑 τ

friction. This is the reason why integral term is used very often. The integral gain reduces or

eliminates the steady state error, because after a while this voltage which is the integration of

this will be enough to overcome the friction.

What is the disadvantage? The integral gain increases the order of the system to third order.

And we have seen that in third order you will have three poles and it is entirely possible at

least we have seen one example earlier that the branch of the root locus can go to the right

half plane for some values of gains, so, it can make a system unstable. A second order

system, on the other hand, is never unstable because the poles will stay to the left half plane it

will go to infinity along this vertical line. Whereas if you have a third order system then the

poles can go to the right half plane and hence can make the system unstable. This integral

control needs to be done very carefully. So, this integration gain Ki needs to be chosen small

and carefully. Additionally, this integration is approximated by sum, and we cannot keep on

summing all the way to the beginning of time at t = 0. So, most of the time we sum over the

last k terms so that is one way to make sure that it does not become unstable.
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The PID feedback is now given in this form. So, the voltage applied to the plant is

proportional to the error so, Kp e (t) + Kp (t) + Ki -- it is proportional to the𝑒̇
0

τ

∫ 𝑒 τ( )𝑑 τ

derivative of the error and also proportional to the integral of the error, that is where this PID

come from. `P’ means proportional, `I’ means integral and `D’ means derivative.

The transfer function of this can be written as Kp + Kd s + Ki /s, and this Kp, Kd and Ki are

called the PID gains. The closed loop transfer function can be written as (s)/ d (s) and thenθ θ

in the numerator we have K (Ki + Kp s + Kd s2), and in the denominator we have s2 (Js + F)

and then again, K (Ki + Kp s + Kd s2). So, you can see that the denominator is third order, and

the numerator is second order -- here is an s2, whereas in the denominator it is s3. And to

obtain desired performance we need to use computer tools.

It is not very straightforward to play around with these three gains, Kp, Kd and Ki. We have to

search, in some sense in three dimensions of Kp, Kd and Ki, and we can use computer tools --

again Matlab provides computer tools to choose these PID gains, so as to achieve a desired

output -- to desired both transient response, as well as steady state response.

A few heuristics if you were to increase Kp and Ki, it reduces steady state errors. As you saw

that the steady state error is less when Kp is increased, and it will be 0, if Ki is increased by

some amount. I am not going to go into the details, but Ki will ensure that the steady state



error is 0 for some lower order systems. However, increasing Ki decrease stability because

once you have `I’ feedback then it makes the system third order, and it decreases stability.

Increasing Kd improves stability because it makes the system more damped and hence there is

less oscillations. So, we need to play around with this Kp, Ki and Kd such that we get the

desired steady state error, as well as the desired stability.

Sometimes instead of using Kp, Kd and Ki, we can also write the controller transfer function

as Kp (1 + 1/ Ti s + Td s). So, instead of Kp, Kd and Ki, now we have only one Kp but then

there are these two time constants Ti and Td. So, these Ti and Td are sometimes called as the

integral and derivative time. So, both these things are more or less exactly the same, except it

is written in a different form. You can think of Kp / Ti as Ki and Kp Td as Kd. So, this is just

another way of describing the controller transfer function - both are exactly the same.

(Refer Slide Time: 00:48:16)

Now, let us look at an example, so, we go back to our usual familiar example which is G (s)

is 1/ s (s + 1). This is the example of a single link, or a single rigid body connected to a DC

servo motor, and we were trying to rotate that link. We want to achieve a desired of theθ

motor shaft, and the transfer function was 1/ s (s + 1). So, this is one because remember, K is

chosen as 1, friction term F is chosen as 1 and J is also chosen as 1. So, this is just to make

life simpler. We could easily have chosen J as some other number F instead of 1 could be

something else and so on and K also could have been something else. We want to try and see

what happens when you have a PID control? So, the output now is the controller is given by



Kp + Kd s/(1 + Tv s) + Ki /s. So, we will see why this Tv comes. This is because we will see

little later that we cannot have a term which is just simply K d into s.

In this example, we have chosen Kp as 2, Kd as 5, Tv as 0.01 and Ki as 0.5. So, if you just

picked Kp then that is proportional controller and this blue curve this light blue curve is the

effect of a proportional controller on this transfer function, 1/ s (s + 1). The PID control,

when you have both Kp and Kd is given by this orange line. So that you can see there are no

more oscillations and it is damped. The PID controller is this pink line so, you can see that

there is the damping is becoming less. So, there is some oscillations, but it is not too much. If

you use a high gain in Ki, so if Ki is very large, for example, Ki is 5, then you can see that the

oscillations are increasing. So, as I said, the proportional controller is making it damped. I

could control this oscillation by using the derivative gain and then if I increase Ki to some

larger number so, from 0.5 to 5, again these things are taken sort of arbitrarily, you can see

again the oscillations are increasing.
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We can also look at the root locus for some values of Kp and Kd. So, the transfer function

D(s)G(s) is now given by (5s2 + 2s + Ki) and divided by s2 (s + 1). The closed loop transfer

function is D(s)G(s)/ 1 + D(s) G(s) and you can see in the denominator, we have

s3 + 6s2 + 2s + Ki.



We can create this Routh table so, basically s3 is 1 and 2, s2 is 6 and Ki, and then we can find

the coefficient here which is (12 – Ki)/ 6 and for s0 it is Ki. So, what you can see is the system

is stable from 0 to 12. If Ki is more than 12, then the system becomes unstable. We can plot

the root locus for this, and you can see that there are these two poles, and the root locus will

go off to the right half plane if the gain crosses 12. And it crosses this j ω line at 1.4142 plus

and minus – 2 complex conjugate poles. And it is on the right half plane when the gain

crosses 12 and we can also try and plot this and see what is exactly happening.
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This is cooked up example, we have this G (s) which is 1/ s (s + 1). That controller transfer

function is Kp + Kd s/(1 + Tv s) and this is Ki /s. We have chosen Kp as 2, Kd as 5, Tv as 0.01

and Ki is 13. Remember if Ki is more than 12, it is unstable, and we can plot the step response

for such a system. You can see that it is almost very small and then it shoots up. The

important thing to realize is that this amplitude is like 1 into 1025. It is very, very large and

hence it is unstable. So, the output amplitude of the output goes off to basically infinity asθ

you go in time.
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So, as I said, we cannot really use s Kd. If you have a term or a transfer function which is s

Kd, this is not allowed because the system is not causal. So, remember in root locus we had

looked at, if you have the numerator polynomial order greater than the denominated

polynomial order, then the system is not physical, it is not causal. So, in order to avoid this

problem, we modify the PID controller. Which is basically Kp + Ki /s -- these two terms are

fine --now, instead of Kd s, we have Kd s/(1 + Tv s). So, this quantity s/ (1 + Tv s) is sometimes

called as a filter and Tv is a chosen time constant, and this is like a filter. In Matlab you can

choose some of the filter coefficients and then you can simulate the system for some different

values of Tv -- see in the example which I showed you earlier Tv was chosen as 0.01.

In nowadays, sophisticated controllers there is also a feed forward term which is added. So,

the voltage is proportional to the error it is proportional to the derivative of the error, it is

proportional to the integral of the error, so, it is Kp e (t) + Kp (t) + Ki . But in𝑒̇
0

τ

∫ 𝑒 τ( )𝑑 τ

robots and many other sophisticated, very accurate devices, we also have the desired

acceleration.

So, e (t) is ( d – ), d is the desired rotation of the link, . So, we need to measureθ θ θ 𝑒̇ = θ
𝑑
˙ − θ̇

. In robots and sophisticated instruments, we can plan the trajectory such that we also haveθ̇

the desired acceleration of the output -- so, it is is also available. So, in some controlθ̈
𝑑

systems we can use that information and we have another gain which is called as Ka . So,θ̈
𝑑



this Ka is often called as the feed forward gain. So, not only we have a proportional gain, a

derivative gain, an integral gain but also a feed forward gain. And in many control systems

this is used and it happens, that if you use a feed forward gain, it can track the trajectory

better.
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In summary, the output of a controller is proportional to the error plus the integral of the error

plus the derivative of the error. So, this is a PID controller. The proportional, integral and

derivative gains can be adjusted to achieve required, settling time, overshoot or even steady

state error. Remember, the integral term can be used to reduce or even eliminate steady state

error.

The proportional and derivative gain can be used to reduce or change the peak overshoot and

the settling time and other parameters which gives the transient response. Computer tools

exist to obtain and adjust the PID gains, but often experiments are required to fine tune the

gains. Remember all this design of controllers is for a linear system. Actual systems are never

linear.

So, we have a non-linear system with complicated terms, non-linearities and some backlash

and friction at the gears which are not constants. So, in those cases we have to do

experiments. Nevertheless, these PID gains are a good starting point and then we can tweak

the gains to achieve the desired performance of a actual system.



For most higher order systems, the controller gains are typically chosen for the dominant

second order system. Again, this is a starting point. We assume that the higher order system is

a dump is like a second order system. So, we pick the two dominant poles which are close to

the j ω axis, to the imaginary axis in the s plane, and we design a controller based on this

dominant second order system and then again, we can do extensive simulation and

experiments to make sure whatever we have done is correct. So, our initial computation is a

good choice to start with.

Although this whole theory is for linear time, invariant system, PID control is extensively

used for industrial applications. Because it is very well understood, people know exactly how

to change the gains. They have experience in setting the gains and although the system is

actually, a non-linear system, it is not a linear time invariant system, even then PID works. So

many, many devices in industry still use PID controllers.

Modern PID control is of course, implemented using microprocessors and digital electronics.

We have looked at the PID controllers in continuous time. We are using Laplace transforms

and we are using continuous time but actually, it is implemented using microprocessors and

digital electronics which brings it is own problems. It also brings, it is own advantages. And

we do not want to get into this in this course. If you are interested, please look at some

textbook on digital control.

Modern PID control, algorithms also use varying gains. So, remember we found Kp, Kd and

we are assuming, in this lecture, that Kp, Kd and Ki were fixed. They were constant - so, you

must have done some experimentation and then you found some numbers for Kp, Kd and Ki.

But in actual practice, in some modern PID control, also uses what are called as varying

gains. So, some portion of the operating region, we will use this set of gains in some other

operating region, we will use some other gains, and that is shown to work better.


