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Welcome to this NPTEL lectures on Dynamics and Control of Mechanical Systems. My

name is Ashitava Ghosal, I am a professor in the Department of Mechanical Engineering in

the centre for product design and manufacturing and also in the Robert Bosch centre for

cyber physical systems, Indian Institute of Science, Bangalore. So, in this lecture we will look

at Stability, Controllability and Observability of Systems.
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In this module there will be three lectures, in the first lecture we will look at stability of

systems and mechanical systems in particular. In the second lecture we will look at

controllability and observability of most of the time linear time in variant systems. And in the

third lecture, I will show you lots of examples on stability, controllability and observability.
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So, let us start, the first lecture is on stability.

(Refer Slide Time: 01:26)

Quick introduction and recap, we have seen that the natural dynamics of dynamical

mechanical systems is determined by the equations of motion. So, we could derive the

equations of motion using Newton Euler-Lagrangian approaches. And then we could solve

the equations of motion and then we could see that for an external force the system

parameters given.

And the generalized co-ordinates would evolve in time according to the equations of𝑞(𝑡)

motion so, this is the natural dynamics of a mechanical system. And I have also showed you

at least for two examples that the natural dynamics could be changed by use of feedback



control. So, remember we had a mass in which force was acting so, it was , we𝐹 = 𝑚 𝑎

could integrate the equations of motion for a given and .𝐹  𝑚

And I showed you what as a function of time would look like, it is basically a parabolic𝑋 𝑡( ) 

curve. And I showed you that if you could measure the velocity or you could measure the

position and feed it back. And then change the force with which the mass is subjected to then,

we could change the nature of the output which was the velocity of the mass. So, I showed

you that the natural dynamics which in this case is as a parabola, could be altered by𝑋 𝑡( ) 

means of feedback control.

So, the goal of control is to obtain a desired performance of a dynamical system and in spite

of changes in the internal parameters and in spite of external disturbances. So, in the last

week, I showed you this example of a single link being driven by a DC motor and then if the

friction or if some parameters of the system changes. Then with feedback, the effect of these

changes in the internal parameters will not be seen in the output of the system.

Same thing I showed you that if there are external disturbances acting and if you could

choose the controller gains in some particular way the effect of the external disturbances

would not be seen in the output. And as a result of feedback both of these could be achieved.

We also saw that sensors are required to measure the output which in turn could be fed back.

So, feedback control can achieve the goal of control that is what I showed you.
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Let us continue, the equation of motion of a mechanical systems are typically non-linear. You

could write the equations of motion as so, this is the state space form of a𝑋̇ =  𝑓(𝑋,  𝑡)

typically second order differential equation which we get when we apply Newton's law or

when we apply Euler's equation or when we use the Lagrangian formulation. So, these

equations of motion could also be linearized about an equilibrium point.

And if you recall the equilibrium points are all X such that for all t. So, we 𝑓 𝑋,  𝑡( ) = 0 

would have to solve and we could get more than one equilibrium point depending𝑓 𝑋( ) = 0 

on the nature of that function . So, once we linearize about an equilibrium point, we will𝑓(𝑋)

get these two linearized state and output equations. So, we had , is𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑋 𝑛

dimensional, dimensional and is a matrix of constants which is matrix, is𝑢 𝑖𝑠 𝑚 [𝐹] 𝑛×𝑛 [𝐺]

a matrix of dimension so, this is the state equation.𝑛×𝑚

We also could have the output equation which is basically what is the output of the system

which is denoted by ? And that could be given by . And there could be only𝑦 𝐻[ ]𝑋 + [𝐽] 𝑢 𝑝

of the states or which we could measure so, could be dimension of Then I also𝑦 𝑝 𝑡𝑖𝑚𝑒𝑠 1.

showed you, what is the nature of the solution of the state equations in terms of a matrix and

exponential ?𝑒 𝐹[ ]𝑡

So, . And then this . So, this is like a convolution𝑋(𝑡) = 𝑒 𝐹[ ]𝑡𝑋 0( )
0

𝑡

∫  𝑡 𝑒 𝐹[ ]𝑡 –τ 𝐺[ ]𝑢(τ) 𝑑τ

and then in terms of a state transition matrix which is , I showed you that could beϕ(𝑡) 𝑋(𝑡)

written as into and again . So, is nothing but .ϕ(𝑡) 𝑋(0)
0

𝑡

∫ ϕ(𝑡 − τ) 𝐺[ ]𝑢(τ) 𝑑τ ϕ(𝑡) 𝑒 𝐹[ ]𝑡

So, this is the matrix and I showed you how to find this ? There are several methods𝑛×𝑛 𝑒 𝐹[ ]𝑡

which we discussed last week. So, let us assume we can find out this . So, what does thisϕ(𝑡)

tell you? It gives you the time evolution of the states of the system. So, if I give you𝑋(𝑡)

what is which is the input in some sense like a force or an external input? Then it tells𝑢(𝑡)

you the solution of this equation tells you how will change with time.𝑋(𝑡)
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So, the question is what are the possible nature of the trajectories ? So, this is the topic𝑋(𝑡)

under stability. So, we will look at the trajectories and that this is intimately related to𝑋(𝑡)

whether the system is stable or not. We can also look at under what conditions systems can be

controlled and an arbitrary desired trajectory obtained. So, remember one of the goal of

feedback is to achieve a desired trajectory.

I can change the natural dynamics of a system by means of feedback and by application of a

proportional or a controller gain and then we could show you that I could achieve the desired

trajectory. So, the natural question is can we do that all the time? And this is intimately

connected to this notion of controllability. The third important concept is under what

conditions the measured output y can be used for control of the system?

So, most of the time we will not be measuring all the states. So, if the number of states is n

we could be only measuring of them. So, under what conditions these measurements can𝑝 𝑝

be used to control the system? So, there are very few results for general nonlinear systems,

both for stability, controllability and observability. So, in this module and in fact most of this

course, the focus is on SISO system.

So, what is SISO? Again, we have discussed this earlier, single input, single output system

and also we will look at only time invariant linear systems. So, again what is time invariant

linear SISO system? We have and , u will be of𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢(𝑡) 𝑦 = 𝐻[ ]𝑋 + [𝐽] 𝑢(𝑡)

single dimension. So, u is similarly, y would be for SISO system.1 × 1 1 × 1



(Refer Slide Time: 09:59)

So, let us continue with this topic of stability of dynamical systems. So, we start with the

general nonlinear state equations which is we find the equilibrium points as I𝑋̇ =  𝑓(𝑋,  𝑡)

mentioned all such that is 0 for all . So, if this are state equations then𝑋
𝑒

𝑓 𝑋
𝑒
,  𝑡( ) = 0 𝑡 𝑛 𝑋

𝑒

is of dimension . And since this right-hand side could be an algebraic or a transcendental𝑛×1

equation, we can have many equilibrium points.

So, for autonomous or time invariant system, the equilibrium point can be taken to be 0𝑋
𝑒

for isolated equilibrium points. So, for example if were to be say let us say some number𝑋
𝑒

3, 5. I could always do a coordinate transformation and analyse the stability about 0, 0. This

is possible if you have what are called as isolated equilibrium points, roughly speaking what

is an isolated equilibrium point? It is a single element.

So, the equilibrium is not along a line or in a plane. So, for example if you have a ball which

is on a flat surface, the every point on this flat surface is roughly speaking like an equilibrium

point. So, we are not interested in those kinds of system, where the equilibrium point is like a

line or a surface. But if it is an isolated equilibrium point then we can transfer that

equilibrium point to the origin and we can look at the stability about the origin.

So, for linear systems if you have a equation which is so, F is now a constant𝑋̇(𝑡) =  𝐹[ ]𝑋 

matrix, there can be only one equilibrium point which is , a very simple proof. So, for𝑋 =  0



equilibrium point we have to set which implies . Now, we have to assume𝑋̇ =  0  𝐹[ ]𝑋 = 0

that we have chosen all the state variables are independent or is a full rank.𝐹[ ]

So, hence if you have a matrix equation and determinant of is 0. So then𝐹[ ]𝑋 = 0 𝐹[ ] ≠

is the only possible solution. So, for linear systems our equilibrium point is always𝑋 =  0

the origin of the state space.

(Refer Slide Time: 12:42)

So, this in the stability of dynamical systems we have this very famous person called

Lyapunov. So and we even now follow Lyapunov stability so, Lyapunov in 1892 much more

than 100 years back, he wrote this paper, the general problem of stability of motion this is his

doctoral dissertation and then he wrote some papers also. So, this is available as an English

translation in stability of motion academic press 1966.

So, in 1892 he studied this notion or the problem of stability of dynamical systems. So, he

came up with the following so, if you have a non-linear equation which is and𝑋̇(𝑡) =  𝐹[ ]𝑋 

is the equilibrium point. We consider trajectories starting from near the𝑋 =  0 𝑋(𝑡) 𝑋(0)

equilibrium point 0, I will show you pictures in a few moments. The system is stable in the

sense of Lyapunov or according to Lyapunov if for every there exists a such that ifϵ δ

then .|𝑋 0( )| < δ |𝑋 𝑡( )| < ϵ

So, this is a very abstract definition but basically what Lyapunov is trying to say is? That we

have an equilibrium point which is in this case and I start near to the equilibrium point𝑋 0( )



and let the trajectories evolve in time. So, if it is starting near to this equilibrium point which

is basically that it is at most at a distance from the equilibrium point. And if the trajectoryδ

does not go outside, the region which is this then the system is stable.ϵ

So, what is and ? So, this is a very abstract definition so, we cannot really say what isδ ϵ ϵ

and .δ

(Refer Slide Time: 15:01)

But nevertheless, here are the pictorial ways of trying to say what is Lyapunov stability. So,

the leftmost picture here shows 0 is the equilibrium point and I start from a point which is

which is very close or in some region around this equilibrium point. And what is this𝑋(0)

region ? So, it is a ball or a sphere of radius around this equilibrium point 0 so, as the𝑆 (δ) δ

system evolves in time so, due to the action of or external forces.𝑢(𝑡)

So, this is the trajectory so, if this trajectory does not go outside another sphere which is𝑋(𝑡)

S then according to Lyapunov or in his formal definition of Lyapunov stability this is stable.ϵ

Another possibility is that we start from which is inside this ball of radius and then𝑋(0) δ

after some time eventually the trajectories go to the equilibrium point. So, see the difference

here it is and it is staying inside another ball.𝑋(0)

Whereas here it is starting from some point which is close to the equilibrium point and then it

comes back to equilibrium point as which time so, this according to Lyapunov is called

asymptotically stable. And the final case is that we start from some near the equilibrium𝑋(0)



point 0 then if the trajectories goes outside this then it is unstable. So, this is a nice and𝑆(ϵ)

formal way to look at Lyapunov stability.

So, the system is asymptotically stable if it is Lyapunov stable so, it must be stable firstly and

goes to 0 as . So, the trajectories come back to the equilibrium point 0.𝑋 𝑡( ) 𝑡→∞

(Refer Slide Time: 17:23)

So, that is just like a definition of what is stability and Lyapunov stability in particular? How

do you actually evaluate if a system is stable or not? So, Lyapunov gave this method which is

called as the Lyapunov's direct method or the second method. So, he said the following,

considerably non-linear system with equilibrium point . The𝑋̇(𝑡) = 𝑓(𝑋) 𝑋 =  0

non-linear system is said to be stable in the sense of Lyapunov at 0.

If there exists a positive definite continuous scalar function of the state variables denoted by

and the , is negative semi-definite. So, let us go over this once more so,𝑉 𝑋( ) 𝑉̇ 𝑋( ) 𝑉̇ 𝑋( ) 

Lyapunov is now giving us a way to test whether the system is stable, what he is telling is?

That consider this non-linear system . And we are trying to investigate the𝑋̇(𝑡) = 𝑓(𝑋) 

stability of this non-linear system at the equilibrium point or around the equilibrium point

.𝑋 =  0

So, according to Lyapunov, a system is stable this nonlinear system is stable if there exists a

positive definite continuous scalar function of the state variables . So, this is a scalar𝑉 𝑋( )

function, whose derivative is negative semi-definite at least. So, what is means positive𝑉 𝑋( )



definite. So, is positive definite if and only if for all and = 0 for𝑉 𝑋( ) 𝑉 𝑋( ) > 0 𝑋≠ 0 𝑉 𝑋( )

X = 0.

So, this is a very well-known kind of function from linear algebra. So, if I give you a function

which is always greater than 0 for all but is also equal to 0 for X = 0. And is𝑋 ≠ 0 𝑉̇ 𝑋( )

negative definite if and only if the derivative of which is for all .𝑉 𝑋( ) 𝑑𝑉(𝑋)
𝑑𝑡 <   0 𝑋 ≠  0

And for asymptotic stability, Lyapunov said that this should be even stronger it should𝑉̇ 𝑋( )

be negative definite, not semi definite means what?

for all . So, stability is semi-definite means that this derivative could be 0𝑉̇ 𝑋( ) <  0 𝑋≠ 0 <  

but for asymptotic stability .𝑉̇ 𝑋( ) <  0

(Refer Slide Time: 20:30)

So, let us take an example of Lyapunov stability and also of what we can use as a positive

definite ? So, this is an example of a pendulum so, we have this origin 0, 0 and this is a𝑉 𝑋( )

pendulum of length and a mass , there is a gravity acting this way. And we are going to𝑙 𝑚

measure the rotation of this line or this rod massless rod by theta from the vertical. And the 0

PE is here with the lowest point of this pendulum.

So, we can use so, what is here? , some state variable which𝑉 𝑋( ) =  𝑋
1
2 +  𝑋

2
2 𝑋

1
𝑋

1
= θ θ 

is this and . So is the distance of from any point from the origin of the𝑋
2

= θ̇ 𝑋
1
2 +  𝑋

2
2 𝑋



state space. So, for the planar pendulum, the kinetic plus potential energy can be written as

. So, so, is .1
2 𝑚𝑙𝑋

2
2 𝑋

2
= θ̇ ,  𝑚𝑔𝑙( 1 – 𝑐𝑜𝑠 θ

1
) θ 𝑋

1

So, my state variables are and and the kinetic plus potential energy can be written in thisθ θ̇ 

form so, this we have seen earlier. So, it is nothing but this is the kinetic energy which is

and this is the potential energy which is like . So, for this Lyapunov1
2 𝑚𝑉2 𝑚𝑔ℎ 𝑉 𝑋( )

function, we can choose some where is symmetric and positive definite.𝑋𝑇[𝑃]𝑋 [𝑃]

In particular if were an matrix then is , we could have also choose[𝑃] [𝐼] 𝑉 𝑋( ) 𝑋
1
2 +  𝑋

2
2

chosen as . So, is this positive definite? No, it is positive semi-definite𝑉 𝑋( ) 𝑋
1
 +  𝑋

2( )2 

because although is always greater than 0 it is 0, when X = 0. So, this is example not𝑉 𝑋( ) ≠

of a positive definite because I could have written as 1, as –1 so then will𝑉 𝑋( ) 𝑋
1

𝑋
2

𝑉 𝑋( )

be 0.

So, 0, when X is identically equal to 0, and are 0. How about negative𝑉 𝑋( ) ≠ 𝑋
1

𝑋
2

definite? is – . So, this follows the definition that and = 0, when𝑉 𝑋( ) (𝑋
1
2 +  𝑋

2
2) 𝑉(𝑋) <  0

and are both 0. How about if is + ? We do not know. So, these are called𝑋
1

𝑋
2

𝑉 𝑋( ) 𝑋
1

𝑋
2

𝑋
2
2

indefinite functions. So, in this case of a pendulum this KE + PE is a positive definite .𝑉 𝑋( )

So, you can see that + >0 and is equal to 0, when which is is1
2 𝑚𝑙𝑋

2
2 𝑚𝑔𝑙 (1 – 𝑐𝑜𝑠 𝑋

1
) 𝑋

1
θ

1

0 and and is 0.𝑋
2

θ̇ 
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So, let us continue with this Lyapunov stability. So, Lyapnov's direct method is a sufficient

condition not necessary and sufficient. Remember in many theorems in math so, for example,

if you want to find the maxim optimization if you are interested in optimization we say a

function is maximum when the first derivative is 0 and it is sufficient condition is when the

second derivative is 0.<

So, typically we do theorems and we find conditions which are both if and only if Lyapunov's

direct method is only a sufficient condition. So, what does it mean? By saying it is a

sufficient condition and not a necessary condition. So, what it means is? For a chosen

positive definite , does not imply it is unstable. So, 0 implies it is stable𝑉 𝑋( ) 𝑉̇ 𝑋( ) 𝑉̇ 𝑋( ) <

but greater than 0 does not imply system is unstable.𝑉̇ 𝑋( )

What it means is that for a chosen if 0 then what it means is? You need to try𝑉 𝑋( ) 𝑉̇ 𝑋( ) >

other positive definite . There could be infinite number of positive definite functions𝑉 𝑋( )

, the one which you choose for which 0 is not a good choice. You need to go𝑉 𝑋( ) 𝑉̇ 𝑋( ) >

and try some other ones, I cannot conclude that 0 and is not 0, implies that𝑉 𝑋( ) > 𝑉̇ 𝑋( ) <

the system is unstable.

However, on the other side of the story if you are able to find a single positive definite 𝑉 𝑋( )

and is 0 that is enough to prove stability, somebody gave you some function and𝑉̇ 𝑋( ) <  



you are very lucky. So, out of this infinite number of functions, you suddenly managed to

obtain a single which was positive definite and the derivative is 0.𝑉 𝑋( ) 𝑉̇ 𝑋( ) <  

I do not need to try anything more that is enough to prove that the system is stable. In other

words Lyapunov's direct method cannot be used to prove or show instability. It is a sufficient

condition that greater than 0 and 0, implies stability. Lyapunov was motivated𝑉 𝑋( ) 𝑉̇ 𝑋( ) <

by the energy of a system. So, if you have a spring mass damper system, we know that the

energy of this system is always positive and 0, when it is not in motion.

So, this is a very standard spring mass damper system. So, if it is in motion, the kinetic plus

potential energy is always greater than 0 and it is 0 when it is not in motion. So, as the energy

decreases with time due to damping, the system will go to it is equilibrium point . So,𝑋 =  0

I have a spring mass damper system, I perturb it from it is equilibrium point in this case

So, due to damping the oscillations will slowly die down.𝑋 =  0.

And then you can see that it will go to it is equilibrium point. So, he was motivated by this

idea that if I can find a function which is similar to energy in a spring mass damper system.

And then if the rate of change of energy with time is decreasing all the time then the system

must be stable.
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Let us continue some more examples. So, let us say we have a state equation which is

( , = – – ) so, these are some randomly chosen𝑋
1

˙ =  𝑋
2
– 𝑋

1
𝑋

1
2 +  𝑋

2
2) 𝑋

2
˙ 𝑋

1
𝑋

2
( 𝑋

1 
2 +  𝑋

2
2



arbitrarily chosen examples. So, what is the equilibrium point? It is 0, 0. So, if you substitute

and , you have two equations in and non-linear equations, however𝑋
1

˙ =  0 𝑋
2

˙ =  0 𝑋
1

𝑋
2

the solutions are only 0, 0.

So, if you choose as , what is ? It is the distance of the state variables𝑉 𝑋( ) 𝑋
1
2 +  𝑋

2
2 𝑋

1
2 +  𝑋

2
2

, from the origin which is the equilibrium point. So, this is clearly positive definite. So,𝑋
1

𝑋
2

is always greater than 0 and it is equal to 0, only when and are both equal to𝑋
1
2 +  𝑋

2
2 𝑋

1
𝑋

2

0. So, if you find the derivative then what will you get? You will get𝑉 𝑋( )

.2 𝑋
1
 𝑋

1
˙  +  2 𝑋

2
 𝑋

2
˙

And what is and ? They are given by the state equations. So, in the derivative we have𝑋
1

˙ 𝑋
2

˙

to substitute back the state equations which is is this and is this and do some𝑋
1

˙ 𝑋
2

˙

simplification. And you will end up with that so, this is clearly 𝑉̇ 𝑋( ) =  – 2 𝑋
1
2 +  𝑋

2
2( )2

negative always. So, hence this system is always stable according to Lyapunov.
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So, let us continue with the simple pendulum with damping. So, for this pendulum with the

mass and length and gravity acting this way, I can write the state equations as = ,𝑚 𝑙 𝑋
1

˙ 𝑋
2

𝑋
2

˙



is – – c . So, this term c is like damping. So, you call that is nothing but𝑔
𝑙 𝑠𝑖𝑛 𝑋

1
𝑋

2
𝑋

2
𝑋

1
θ

and is nothing but . So, this is like is and this is like .𝑋
2

θ̇ 𝑋
1

˙ 𝑋
2

θ̈ 

So that is – – c and we are going to assume that this c 0. So, if I want to find what𝑔
𝑙 𝑠𝑖𝑛 θ θ̇ >

is the equilibrium point for these state equations? So, basically I have to set is 0 and is𝑋
1

˙ 𝑋
2

˙

0. So, hence will always be 0 and then we will have sin = 0. So, remember is 0𝑋
2

𝑋
1

𝑋
2

which means this term will go away is a positive number. So, sin is 0. So, is𝑔
𝑙  𝑋

1
sin 𝑠𝑖𝑛 θ  

0 at two points.

So, when is 0 or when theta is . So, for this example of a simple pendulum withθ π 

damping, we have two equilibrium points , is (0, 0) and , 0). So, let us consider a𝑋
1

𝑋
2

(π 

function which is nothing but the kinetic plus potential energy of this system. So, what𝑉 𝑋( )

is the kinetic energy of the simple pendulum? We have seen this earlier, it is nothing but

+ .1
2 𝑚 𝑙𝑋

2
 ( )2

𝑚𝑔𝑙(1 – cos 𝑐𝑜𝑠 θ)  

In using state variables and , we can write it as so,𝑋
1

𝑋
2

1
2 𝑚 𝑙𝑋

2
 ( )2

+  𝑚𝑔𝑙(1 – cos 𝑐𝑜𝑠 𝑋
1
) 

this is the total energy of the system. And hence we know that this is always greater than 0

for X 0 and it is equal to 0, when and are 0. So, this is a perfectly nice candidate≠ 𝑋
1

𝑋
2

Lyapunov function . So, let us see whether what happens to ? Because what are we𝑉 𝑋( ) 𝑉̇ 𝑋( )

trying to do?

We are trying to find the whose time derivative is negative at least semi-definite.𝑉 𝑋( ) 𝑉̇ 𝑋( )

So, how do I find ? You take the derivative of this function. So, when you take the𝑉̇ 𝑋( )

derivative, you will get some 2 into and here you will have some sin into and so𝑋
2

𝑋
2

˙ 𝑋
1

𝑋
1

˙

on. And we go back and use the state equation and in the derivatives and again we do𝑋
1

˙ 𝑋
2

˙

some simplification.



And then eventually we will see that = – . So now, let us see what is the nature𝑉̇ 𝑋( ) 𝑚𝑙2 𝑐 𝑋
2

˙ 2

of the ? So, what you can see is this is clearly negative semi-definite, it is not negative𝑉̇ 𝑋( )

definite. Why is it not negative definite? Because it can be 0 for any , remember the𝑋
1

function is negative definite if it is 0 for all X 0 and it is equal to 0, when it is equal to 0.< ≠

So, in this case it is 0, when you have X = can have any value. So, this is negative semi≠ 𝑋
1

definite as can be 0 for non-zero . So, what does this mean? That the pendulum with𝑉̇ 𝑋( ) 𝑋
1

damping is stable, it is not asymptotically stable, it is just simply stable. How about the other

equilibrium point which is , 0)? It turns out that it is not possible to test for .(π 𝑋 =  (π,  0)

Again, from basic mechanics and physics, what is , 0)? The pendulum is up like this from(π

0, it is like this so, this angle is . So, we know that that configuration of the pendulum isπ

unstable. So, any small perturbation around this that equilibrium point, it will never stay in

that region , any region for that matter. So, it will constantly go outside it will go startϵ

swinging all the way around.

So, it is unstable and Lyapunov method is not valid for unstable system, you cannot prove

instability, you can only show it is stable. So, what have we done? We have shown this

pendulum with damping is stable at 0, 0 and we cannot say anything about the other

equilibrium point , 0).(π
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So, let us continue, let us consider a linear SISO system, linear single input single output

system. The linear system is given by the state equations which is , , is equal to some𝑋
1

˙ 𝑋
2

˙ 𝑋
3

˙

into X + 0 0 6 u. So, the is 0 1 0, 0 0 1, –6 –11 –6 and so, this is a straightforward[𝐹] [𝐹]

linear system, this is constant, this is also constant. So, the equilibrium point is when you said

the right-hand side is equal to 0 and also u = 0.

So, into X is 0 so which automatically implies that are all 0. So, let us[𝐹] 𝑋
1
,  𝑋

2
,  𝑋

3
 

consider a Lyapunov function + . So, this is the distance from the origin in state𝑋
1
2 +  𝑋

2
2 𝑋

3
2

space. So, this is clearly positive definite so, this is always greater than 0 but it is also𝑉 𝑋( )

equal to 0, when , and are all 0. So, what is ? We can take the derivative of this.𝑋
1

𝑋
2

𝑋
3

𝑉̇ 𝑋( )

This will be 2 + 2 + 2 . And then we substitute is same as , is same𝑋
1

𝑋
1

˙ 𝑋
2

𝑋
2

˙ 𝑋
3

𝑋
3

˙ 𝑋
1

˙ 𝑋
2

𝑋
2

˙  

as , is in that expression. And what you will get is? =𝑋
3

𝑋
3

˙ –6𝑋
1
 – 11𝑋

2
 –6𝑋

3
𝑉̇ 𝑉̇ 𝑋( )

So, can we say anything about this function ? No, it2𝑋
1
 𝑋

2
 – 12𝑋

1
 𝑋

3
 –20𝑋

2
 𝑋

3
 –12𝑋

3
2. 𝑉̇ 𝑋( )

could be positive.

It could be negative, depending on what is so, this is what is called as a indefinite𝑋
1
,  𝑋

2
,  𝑋

3
 

function. So, we cannot say whether is always positive or negative or even positive𝑉̇ 𝑋( )

definite or negative semi-definite.
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So, let us continue with that same example, we know that the Eigen values of F, are –1, –2

and –3, we have seen these examples earlier. So, once you have that the Eigen values are –1,

–2, –3 we can obtain the which is given by 1 –1 1, 1 –2 4, 1 –3 9. Where did we get this𝑃[ ] 

from? Remember, there was this Vandermonde matrix in which I can find P as 1 , 1λ
1,

λ
1
2

, 1 .λ
2,

λ
2
2 λ

3,
λ

3
2

So, is –1 so, this is –1, is 1. Similarly, if you see the third column it is 1 then –3 andλ
1

λ
1,

λ
1
2

then and you get 9. So and again recall that if you do now, , we can find–3( )2 𝑃[ ]−1 [𝐹] [𝑃]

the inverse of this matrix easily. We will get a diagonal and that is exactly what happens?[𝐹]

So, when you do and we transform it to a linear system with Z is equal to some𝑃[ ]−1 𝐹[ ] 𝑃[ ]

diagonal into is equal to diagonal to Z, we will get like this. 𝑍̇

So, remember , we make that linear transformation. So, on diagonalization we will𝑋 =  [𝑃]𝑍

have Z that is equal to some diagonal matrix with elements in the diagonal as – 1, – 2, – 3

into Z. So now, for this state equations I can choose as + + . So, again this is𝑉(𝑍) 𝑍
1
2 𝑍

2
2 𝑍

3
2

nothing but the distance from the origin but now not from the X set of variables but from the

Z set of variables.



This is another linear transformation which we have done. So now, The derivative of 𝑉(𝑍)˙

you can obtain which will be and can be written as =– 22 𝑍
1
 𝑍

1
˙ ,  2 𝑍

2
 𝑍

2
˙ ,  2 𝑍

3
 𝑍

3
 ˙ 𝑍

1
˙ – 𝑍

1
,  𝑍

2
˙

that 3 dot is – 3 , substitute back in this expression and you will get –𝑍
2

𝑍
3

𝑉̇ 𝑍( )

straight forward is –2 and so on.2𝑍
1
2 – 4𝑍

2
2 – 9𝑍

3
2, 𝑍

1
˙ 𝑍

1

So, what you can see is? This is strictly 0 always. So, this is a negative definite function.<

So, what have we done? We started with , we could not show stability. Because𝑋̇ =  𝑓(𝑋)

whatever the we chose was wasn't indefinite. But we did a transformation, a𝑉 𝑋( ) 𝑉̇ 𝑋( )

coordinate transformation basically and we obtain is some diagonal times matrix into Z. 𝑍̇

And then when we choose a candidate Lyapunov function which is + + , I showed𝑍
1
2 𝑍

2
2 𝑍

3
2

you that (Z) is 0. So, hence is equal to diagonal matrix into is asymptotically stable.𝑉̇ <  𝑍̇ 𝑍

So, it is basically nothing but the same system but all we did was a change of variables, a

linear transformation . So, what you the purpose of this example is?𝑋 = [ 𝑃] 𝑍

To show that even for a linear system it is not very obvious to show that a system is stable in

the sense of Lyapunov by choosing and then finding . Because in this example I𝑉 𝑋( ) 𝑉̇ 𝑋( )

knew that the Eigen values were –1 –2 –3 and I did this clever transformation .𝑋 = [ 𝑃] 𝑍

And then I have transformed it into is equal to something into , diagonal matrix into Z 𝑍̇ 𝑍

and I showed that this system is asymptotically stable.

So, it is not very easy to find a , even for a linear system and we will revisit the stability𝑉 𝑋( )

for linear systems later on next week when we look at root locus.
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So, the Lyapunov stability theorem of finding a which is positive definite and𝑉 𝑋( ) 𝑉̇ 𝑋( )

which is negative definite is sort of not so easy to apply. Because we have to keep on trying

for different . So, Lyapunov in 1892 went on further, he proposed the following or he𝑉 𝑋( )

showed the following. So, let us consider a non-linear system which is given by

.𝑋̇(𝑡) =  𝐹[ ]𝑋 

And we assume that this non-linear equations can be expanded as . So,𝑋̇ =  𝐹[ ]𝑋 + 𝑔 𝑋( )

contains all the higher order terms and he or we also assume that this divided𝑔 𝑋( ) 𝑔 𝑋( )
𝑋| |  

|𝑋|→0

by X. So, magnitude of , as X tends to 0 is 0. So, what it means is? This non-linear term𝑔 𝑋( )
𝑋| |  

goes to 0 faster than X.𝑔 𝑋( )

So, we start with this kind of non-linear system which can be expanded as a linear term [𝐹]

into X and nonlinear term and goes to 0 faster than X. So, Lyapunov went on to𝑔 𝑋( ) 𝑔 𝑋( )

show that such a system is stable if all roots of this have negative real parts and unstable[𝐹]

if at least one root has positive real part. So, what is meant by roots of a ? We know that[𝐹]

every matrix has a characteristic polynomial.

It is some determinant of . So, we can solve the characteristic polynomial andλ 𝐼[ ]– 𝐹[ ]| | = 0

if all the roots of the characteristic polynomial have negative real parts then the system is

stable. If any of the root of the characteristic polynomial has positive real part it is unstable.



So, let us continue so, let us assume a function Lyapunov of function which is𝑉 𝑋( ) 𝑉 𝑋( )

.𝑋𝑇[𝑃]𝑋

And we start with the assumption that P is symmetric positive definite and a constant matrix.

So, one can find the derivative of this so, using chain rule we get + ,𝑉 𝑋( ) 𝑋𝑇˙ [𝑃]𝑋 𝑋𝑇 𝑃[ ]𝑋̇

remember is a constant matrix. So, once we have this right hand side we can substitute on[𝑃]

the right hand side equals and what we will get is .𝑋̇ [𝐹]𝑋 𝑋𝑇( 𝐹[ ]𝑇[𝑃] + [𝑃] [𝐹]) 𝑋

So, Lyapunov said that let us assume that this is – . So, what it, what does it𝑉̇ 𝑋( ) 𝑋𝑇[𝑄]𝑋

mean? In 1892 Lyapunov showed that for any positive definite the solutions for this[𝑄] [𝑃]

set of linear equations is – is positive definite. If and only if the roots𝐹[ ]𝑇[𝑃] + [𝑃] [𝐹] [𝑄]

of determinant of 0 have negative real parts. So, what does this determinant of|λ 𝐼[ ]– 𝐹[ ]| =

?λ 𝐼[ ]– 𝐹[ ]| | = 0

So, they are the roots of the characteristic polynomial of this constant . So, what have we[𝐹]

done? We have said that we have assumed a which is positive definite. So, hence –[𝑄]

will be negative definite. So then if I can solve for from this set of linear𝑋𝑇[𝑄]𝑋 [𝑃]

equations . And it turns out that is positive definite then we𝐹[ ]𝑇[𝑃] + [𝑃] [𝐹] =− [𝑄] [𝑃]

have found our candidate Lyapunov function.

Why? Because remember is and we have a found of which satisfies ,𝑉(𝑋) 𝑋𝑇[𝑃]𝑋 [𝑃] 𝑉(𝑋)

. So, hence if is positive definite is positive definite 0. And then I have𝑋𝑇[𝑃]𝑋 [𝑃] 𝑉 𝑋( ) >

used this equation . with is positive definite. So, . is𝐹[ ]𝑇[𝑃] + [𝑃] [𝐹] =− [𝑄] [𝑄] − [𝑄]

negative definite so, hence is negative definite.𝑉̇ 𝑋( )

So, what he said is? Such a linear set of equations, the solutions of this set of linear equations.

The solutions means solutions is positive definite if and only if the roots of determinant[𝑃]

of . So, this is the relationship between roots of this constant and the existence|λ 𝐼[ ]– 𝐹[ ]| [𝐹]

of a Lyapunov of function which 0 and is 0.𝑉 𝑋( ) > 𝑉̇ 𝑋( ) <



So, this is a much more constructive approach to see whether a set of linear equation

is stable or not or represents a stable system or not. So, what do we do? We𝑋̇(𝑡) =  𝐹[ ]𝑋 

can choose Q as a simplest possible positive definite matrix , we know what is .[𝐼] [𝑄] [𝐹]

And then we solve for this set of linear equations and test to see if is positive definite for[𝑃]

stability. So, if we can find a positive definite then we know that the system is stable.[𝑃]

So, what is the usefulness of this concept? Basically we do not have to keep on searching for

a positive definite . The algorithm is quite simple, you say is which is so –𝑉 𝑋( ) [𝑄] [𝐼]

is definitely negative definite. And then we solve these linear equations for and if𝑋𝑇[𝑄]𝑋 𝑃[ ]

is positive definite the system is stable.[𝑃]

(Refer Slide Time: 51:13)

Example so, let us take a simple example of F which is a 2 by 2 matrix it is – ,– – andα β β α

0. So, we choose as and the elements of it is a symmetric matrix.α > [𝑄] [𝐼] 𝑝 𝑎𝑟𝑒 𝑝 𝑞,  𝑞 𝑟

So, if you solve , you will get these three equations in .𝐹[ ]𝑇[𝑃] + [𝑃] =− [𝑄] α β 𝑝 𝑞 𝑎𝑛𝑑 𝑟

So, you will get and so on.–α 𝑝 – β 𝑞 – α 𝑝 – β 𝑞 𝑎𝑠 –1

So, if you choose 1/ α and q = 0 if that is the solution then is 1 by 0 0 1 by𝑝 =  𝑟 = [𝑃] α α

and this is clearly positive definite because > 0. So, hence what we can conclude is? Thatα

this set of equations with F given in this form is stable for greater than 0. So, in a definiteα

number of steps which is basically solution of three equations.



I can find the condition for which a system given by which is is stable. Again𝐹[ ] –α β,  –β α

this is a very simple example and it is to illustrate this approach of how to use

to test for stability. And as and we will come back to this important𝐹[ ]𝑇 𝑃[ ] + 𝑃[ ] =− 𝑄[ ]

aspect of stability for linear systems, this is after all a linear system and linear SISO system,

again next module when we look at root locus.

That is a much simpler way to handle the question of stability for SISO systems using root

locus.
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So, till now we looked at stability according to Lyapunov. So, there are other ways or other

definitions of stability, one such definition is called BIBO stability. So, BIBO stands for

bounded input bounded output and the basic idea is the following. If the input is unbounded

say , the function goes to infinity as t tends to infinity. And if the input is unbounded, the𝑒𝑡 𝑒𝑡 

trajectory for the stable system will also go to infinity.𝑋(𝑡)

So, if you give infinite inputs the output will clearly be infinite, however if I give a bounded

input, meaning that the input is not unbounded, the input is some number. And then if the<

output is also some number then the system is stable. So, this is the concept of BIBO<

stability so, for a bounded input if the output is bounded then the system is said to be BIBO

stable.



So, if you have a linear time invariant system and again X is n𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢

dimensional, u is m dimensional and . This system is said to be BIBO𝑦 =  𝐻[ ]𝑋 + [𝐽]𝑢

stable if , the magnitude of the input is . Then magnitude of the output is𝑢(𝑡) < 𝑢
𝑚𝑎𝑥

<  

some . So, this is another way of looking at stability it is slightly different from𝑦
𝑚𝑎𝑥

  

Lyapunov stability.

Lyapunov stability considered the state equations + [G]u. Here we have to𝑋̇(𝑡) =  𝐹[ ]𝑋 

also find out what is the output equation which is ? So, for linear time𝑦 =  𝐻[ ]𝑋 + [𝐽]𝑢

invariant system the condition for BIBO stability is that the impulse response isℎ(𝑡) 

integrable or .
−∞

∞

∫ ℎ 𝑡( )| |𝑑𝑡 < ∞

So, I do not want to prove this if anybody is interested they can look into some advanced

control book. But the concept of BIBO or stability is also very, very useful. Let us continue if

] is and then we have . and So, BIBO stability deals with magnitude of[𝐻 [𝐼] [𝐽 =  0 𝑦 =  𝑋

the output which is y of t and we are going to we want to insist that the magnitude of the

output is , when the input is .< 𝑦
𝑚𝑎𝑥

< 𝑢
𝑚𝑎𝑥

But if ] = then and so, hence in some sense the BIBO stability is related to the[𝐻 [𝐼] 𝑦 =  𝑋

stability of X. And stability of from the point of view of state equations was what Lyapunov

considered. So, BIBO stability is a little bit like a generalization where we also look at what

is happening to the output y? We are not restricted to what is happening to the states.

BIBO stability is same as asymptotic stability, except in case of pole-zero cancellation. So,

we will come to this notion of pole-zero cancellations later when we look at root locus, for

linear systems we will find out what are the poles and zeros and then if there is some

something called pole-zero cancellation then of course, BIBO and asymptotic stability are

different but otherwise they are same.
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So, in summary, we looked at stability according to Lyapunov. So, basically we start near the

equilibrium point and if the trajectory does not go outside another region then it is𝑋(𝑡)

stable. If the trajectories comes back to the equilibrium point it is asymptotically stable. And

Lyapunov gave his direct or second method which is based on use of positive definite

functions, whose time derivative is negative so then the system is stable.

This existence of this Lyapunov function is a sufficient condition, it is not a necessary

condition and Lyapunov direct method cannot be used to show instability, it is only a test of

stability. For linear systems, the roots of the characteristic polynomial of ] determine[ 𝐹

stability and instability. So, if the roots of the characteristic polynomial have negative real

parts then the system is stable if even one root has positive, real part then the system is

unstable.


