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Lecture-22
Solution of State Equations

In the last lecture we derive the state space representation, we obtain the state space equations

and the output equations from the differential equations of motion by linearizing the

nonlinear differential equations about an equilibrium point. In this lecture we will look at the

solution of the state equations.

(Refer Slide Time: 00:49)

To recap we showed that this state space realization of a linear time invariant system is given

by 4 matrices. So, the state equations involving [F] and [G] and the output equations

involving [H] and [J]. I also discussed and presented the concept of a state transition matrix

and in this lecture we look at the solution of the state equations.

(Refer Slide Time: 01:22)



So, again to continue the equations of motion for a mechanical system can be linearized about

an equilibrium point. The linearized equations can be written in the state space form. So, the

state equations are of the form . So, the dimension of , so�̇� = 𝐹[ ]𝑋 + 𝐺[ ]𝑢 𝑡( ) 𝑋 =  𝑛 × 1

hence the dimension of F is and so the output equations can be written as y = [H] X +[𝑛 × 𝑛 

J] u. The dimension of could be .𝑢 𝑚 × 1

So, hence [G] is . The number of measurements of the outputs could be . So,𝑛 × 𝑚 𝑝 × 1

hence this [H] matrix is and the [J] matrix is . So, if you assume that there is no𝑝 × 𝑛 𝑝 × 𝑚

direct term basically the input is not directly connected to the output𝑢 𝑡( ) 𝑦(𝑡)

then this [J] into will be equal to 0. So, here means that the input u is a function𝑢 𝑡( ) 𝑢 𝑡( )

of time. is of the state variable X and Y here is the output variable.�̇� 𝑑 / 𝑑𝑡

So, for single input single output system the dimension of and is . So, that is𝑢 𝑡( ) 𝑦(𝑡) 1 × 1

what single input single output implies. So, the question is can we solve these state

equations? So, this is a first order differential equation with constant coefficients, however

this is a matrix equation. So, there are n of these ordinary differential equations. These are

also non-homogeneous, because it is not only but there is also a .�̇� = 𝐹[ ]𝑋  𝑢 𝑡( )
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So, let us look at solution of state equations. Before we look at the general form of n matrix

equations at the same time we look at a single ODE, if you have a single ODE which is

homogeneous it can be written as and remember we are talking about linear time�̇� =  𝑎𝑥

invariant system. Hence, this a is a constant, a is not a function of time. So, this is very, very

standard, it is very well known what is the solution.

is nothing but , where is the initial condition. If you have a non𝑥 𝑡( ) 𝑥(0)𝑒𝑎𝑡 𝑥 0( )

homogeneous ODE meaning that we have and again a and b are not𝑥 ̇ =  𝑎𝑥 +  𝑏 𝑢(𝑡)

functions of time, we can solve this non-homogeneous single ODE and we can write it as

.𝑥 𝑡( ) = 𝑒𝑎𝑡𝑥 0( ) +
𝑙/2

−𝑙/2

∫ − 𝑒−𝑎𝑡𝑏𝑢 𝑡( )𝑑τ

So, is a dummy variable which goes from 0 to t. So, if you do not remember this please goτ

back and see any textbook and calculus or ordinary differential equations which you would

have done and you can see that this is indeed the solution of this. You can also substitute this

back into this equation and convince yourself that this is indeed a solution to this non

homogeneous ordinary differential equation.

So, as I said it can be easily verified that this is a solution to the non-homogeneous ODE by

just simply substituting it in this differential equation. The extension to n by 1 state vector



and the matrix equation , where is now a constant matrix can be also now�̇� = 𝐹[ ]𝑋 [𝐹]

tackled. We can write the solution of this matrix equation as .𝑛 × 1 𝑋  𝑡( ) =  𝑒 𝐹[ ] 𝑡( )  𝑋 0( )

So, this is exponential of this matrix. So, remember [F] is an matrix; is a𝑛 × 𝑛 𝑋 𝑛 × 1 

vector. So, hence is some e to the power matrix some exponential of a matrix [F] t and𝑋  𝑡( ) 

into . We will see how we can evaluate or what is meant by very soon.𝑋 0( ) 𝑒 𝐹[ ] 𝑡( ) 

(Refer Slide Time: 06:31)

So, the exponential of a matrix just like exponential of a constant is written by𝑒𝑎𝑥  

and so on. So, here is given by identity matrix1 +  𝑎𝑥 +  𝑎2 𝑥2 ( 1
2! ) 𝑒 𝐹[ ]𝑡 𝐹[ ] 𝑡( ) + ( 1

2! ) 

and so on and we can rewrite it in this form. The next term will be . So,+  [𝐹]2 𝑡2 1
3 𝐹[ ]3𝑡3

the dimension of is . 𝑒 𝐹[ ] 𝑡( ) 𝑛× 𝑛

Why because this is an identity matrix, this is an matrix, which we have𝑛× 𝑛 𝑛× 𝑛 [𝐹] 

obtained from the state space realization, will also be and so on. This can be[𝐹]2 𝑛× 𝑛

written as . The solution of the state equation = F x + G u can be written similar
𝑘=0

∞

∫ [𝐹]𝑘𝑡𝑘

𝑘! �̇�

to what happened in the non-homogeneous case.



So, we will have . So, previously in the non𝑋 𝑡( ) = 𝑒 𝐹[ ] 𝑡( )𝑋 0( ) +
0

𝑡

∫ 𝑒 𝐹[ ] 𝑡−τ( )𝐺 𝑢 τ( )𝑑τ

homogeneous case e to the power something was outside, but then everything has been taken

inside. So, is a dummy variable which goes from 0 to t. We will denote τ 𝑒 𝐹[ ] 𝑡( ) = ϕ 𝑡( ).

So, the solution of the state equations can also be written in terms of which is nothingϕ 𝑡( )

but . So, is an matrix.𝑋 𝑡( ) = ϕ 𝑡( )𝑋 0( ) +
0

𝑡

∫ ϕ 𝑡 − τ( )𝐺 𝑢 τ( )𝑑τ ϕ 𝑡( ) 𝑛× 𝑛

(Refer Slide Time: 08:53)

So, let us take some examples, so we will start with a very basic and simple example. Let us

assume that this matrix F has element 0 1, -2 -3, it is a matrix. We can show that2×2 𝑒 𝐹[ ]𝑡 

which is the which is also denoted by this is given by 𝑒 𝐹[ ] 𝑡( ) ϕ 𝑡( ) 

.2𝑒−𝑡 −  𝑒−2𝑡,  − 2𝑒−𝑡 +  2𝑒−2𝑡,  𝑒−𝑡 −  𝑒−2𝑡 , −  𝑒−𝑡 +  2𝑒−2𝑡

So, it might seem like magic, we do not know where we obtain these forms, but at least we

can verify that this is indeed correct but just by simple substitution. We will see very soon

how we can obtain the exponential of a matrix. So, if you want to find the solution of the

non-homogeneous part and let us assume = 1 then we have is again F is [ 0 1 -2 - 3]𝑢 𝑡( ) �̇�

X + 0 1 and we are going to assume is a constant = 1𝑢 𝑡( ) 𝑢 𝑡( )



So, once we do this we can find the solution to the non-homogeneous part also,

non-homogeneous or ordinary differential equation which is given by same thing as first part

is same , this is the first column of this matrix . The2𝑒−𝑡 −  𝑒−2𝑡 , − 2𝑒−𝑡 +  2𝑒−2𝑡 ϕ

second column is multiplied by the initial conditions𝑒−𝑡 −  𝑒−2𝑡, −  𝑒−𝑡 +  2𝑒−2𝑡 𝑥
1

(0) 𝑥
2

and the particular part which is the non-homogeneous part due to this is(0)

.1/2 − 𝑒−𝑡 +  1/2 𝑒−2𝑡

And the second term or the second element is again and it us not yet clear how I𝑒−𝑡 −  𝑒−2𝑡

got this but at least you can verify that this is indeed the solution by simply substituting it. So,

we can take as this, as this and then you can go back and substitute and then𝑥
1

𝑡( ) 𝑥
2

𝑡( ) �̇�

you can simplify and show that the solution and indeed satisfies this𝑥
1

𝑡( ) 𝑥
2

𝑡( ) 

non-homogeneous linear ordinary differential equation.

(Refer Slide Time: 12:14)

So, before we see how we obtain this just quickly let us see some of the properties of𝑒 𝐹[ ]𝑡 

this matrix which I am also going to call . So, first thing is is nothing but𝑒 𝐹[ ]𝑡 ϕ(𝑡) ϕ (0) 𝑒 𝐹[ ]0

, so . That is nothing but the identity matrix, which is is given by𝑡 =  0 ϕ−1 𝑡( ) ϕ(− 𝑡)

because and will be .𝑒 𝐹[ ] 𝑡( ) 1/𝑒 𝐹[ ] 𝑡( ) 𝑒− 𝐹[ ] 𝑡( )



So, it is = , we can also show very clearly and easily that isϕ−1 𝑡( ) ϕ(− 𝑡) ϕ (𝑡
1

+ 𝑡
2
) 

nothing but which is and we can change the order because if you𝑒
𝐹[ ] 𝑡

1( )
. 𝑒

𝐹[ ] 𝑡
2( )

ϕ 𝑡
1( ) ϕ 𝑡

2( )
have it is same as . So, then we can write it as .𝑒𝑎. 𝑒𝑏 𝑒𝑏. 𝑒𝑎 ϕ 𝑡

2( ).  ϕ 𝑡
1( )

Likewise , again it follows from this expression. So, then again you will haveϕ 𝑡( )[ ]𝑛 ϕ 𝑛𝑡( )

so many products of these matrices and you can show that this is ,. Lastly you can seeϕ 𝑛𝑡( )

that , so I go from and then . So,ϕ 𝑡
2

− 𝑡
1( ) ϕ 𝑡

1
− 𝑡

0( ) 𝑡
2

→ 𝑡
1
 𝑡

1
→ 𝑡

0

is same as .ϕ 𝑡
2

− 𝑡
1( ) ϕ 𝑡

1
− 𝑡

0( ) ϕ 𝑡
2

− 𝑡
0( )

Again it follows from the fact that these are exponentials and will be𝑒
(𝑡

2
−𝑡

1
)
  . 𝑒

𝑡
1
−𝑡

0( )
𝑒

𝑡
2
−𝑡

0( )

and again we can reverse the order, we can write this as and . So,ϕ 𝑡
1

− 𝑡
0( ) ϕ 𝑡

2
− 𝑡

1( )
which is as I showed you is is also sometimes called as the state transition matrix.𝑒 𝐹[ ] 𝑡( ) ϕ 𝑡( ) 

This is a very important term in control theory especially when we are using the state space

formulation.

And we are analyzing a system using the state space formulation the exponential of this

matrix is a matrix which is and it is called as the state transition matrix. And these𝐹 𝑡 ϕ 𝑡( ) 

are some of the properties of which I just now discussed. So, the question is how toϕ 𝑡( ) 

obtain in general? So, I have showed you some examples where I said okay here is theϕ 𝑡( ) 

solution.

So, the question is where did I get it from? So, we need to look at what are the ways to obtain

this exponential of a matrix or the state transition matrix.
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So, let us look at some simple methods first. So, if can be diagonalized, so what do we[𝐹]

mean by can be diagonalized, we can convert from are related by[𝐹] 𝑋 = 𝑃[ ]𝑍 𝑋 = 𝑃[ ]𝑍 

then and as I said is diagonal. So, then we can write this�̇� = 𝑃[ ]−1 [ 𝐹][ 𝑃] 𝑍 𝑃[ ]−1 [ 𝐹][ 𝑃] 

as a diagonal matrix . So, what does this contains? Λ𝑍  Λ 

It is the diagonal matrix with elements . So, if you have a which can be λ
1
, …, λ

𝑛
[𝐹]

diagonalized by a change of state variables, a linear transformation of . Remember𝑋 𝑡𝑜 𝑍 [𝑃]

is a constant matrix, it is a full rank and exists. So, then because what𝑃[ ]−1 𝑍 =  𝑒 Λ[ ]𝑡𝑍 0( ) ,  

do we have .�̇� =  Λ𝑍 

So, the solution will be , each term is like is into Z 1 0, second term𝑒 Λ[ ]𝑡 𝑍 0( ) 𝑍 1( )  𝑒
Λ

1[ ]𝑡  

is this because this is a diagonal matrix now. So, hence let us continue, so from𝑍 2( ) 

we can rewrite X = . So, where did I get this from? So,𝑋 = 𝑃[ ]𝑍 𝑡( ) 𝑃[ ] 𝑒 Λ[ ]𝑡 𝑃[ ]−1𝑋 0( )

remember , Z is .𝑋 = 𝑃[ ]𝑍 𝑒 Λ[ ]𝑡 𝑍 0( ) 

So, can be written as , is . So, if you𝑋 =  𝑃[ ] 𝑒 Λ[ ]𝑡 , 𝑍 0( ) 𝑃[ ]−1𝑋 0( ) 𝑍 (0) 𝑃[ ]−1𝑋 0( )

substitute all those things you will get . The solution of this can𝑃[ ] 𝑒 Λ[ ]𝑡 𝑃[ ]−1𝑍 0( )  𝑋 (𝑡)

also be written as into , because what did we have? We have = F times X. So, X𝑒 𝐹[ ]𝑡 𝑋(0) �̇�

is also .𝑡 𝑒 𝐹[ ]𝑡 𝑋(0)



So, if you compare these two expressions what you can see is is nothing but𝑒 𝐹[ ]𝑡 𝑃[ ] 𝑒 Λ[ ]𝑡

and what was ? This was the state transition matrix. So, very simply if ] can be𝑃[ ]−1 𝑒 𝐹[ ]𝑡 [𝐹

diagonalized all we need to do is find out the diagonal Eigen values of this ] matrix, all the[𝐹

n Eigen values and then we do pre-multiplied by some the matrix ] and post multiply𝑒 Λ[ ]𝑡 [𝑃

by . ] and are the transformation which converts ] into a diagonal form.𝑃[ ]−1 [𝑃 𝑃[ ]−1 [𝐹

(Refer Slide Time: 19:09)

If ] can be written in the Jordan canonical form meaning that some of the Eigen values are[𝑃

repeated then again we can find out what is which is the state transition matrix and theϕ 𝑡( ) 

procedure is as follows. So, we write again . So, remember when you have a𝑋 = 𝑃'[ ]𝑍

Jordan canonical form the ] which was used for with distinct roots is not the same when[𝑃

you have repeated roots.

So, that is why I am using ] here. So, we can have . So, hence .[𝑃' 𝑋 = 𝑃'[ ]𝑍 𝑃'[ ]−1 [ 𝐹][ 𝑃']𝑍

So, is this Jordan canonical form into . So, the solution to this is is𝑃'[ ]−1 [ 𝐹][ 𝑃'] 𝑍 𝑍 𝑒 𝐽[ ]𝑡

which is that matrix which we get in the Jordan canonical form into and hence if you𝑍 0( ) 

go back and see what in terms of X. So, .𝑋 = 𝑃'[ ]𝑍

So, hence and again comparing this with this we can see that𝑋 𝑡( ) =  𝑃'[ ]𝑒 𝐽[ ]𝑡 𝑃'[ ]−1 𝑋 0( )

the which is = ] . So, if the ] matrix can be either converted into a ϕ 𝑡( )  𝑒 𝐹[ ]𝑡 [𝑃' 𝑒 𝐽[ ]𝑡 𝑃'[ ]−1 [𝐹

pure diagonal form or into a Jordan canonical form we can find ] state transition matrix by[𝐹



doing or and pre-multiply by a transformation matrix ] and post multiplied by a𝑒 𝐽[ ]𝑡 𝑒 Λ[ ]𝑡 [𝑃'

transformation matrix .𝑃'[ ]−1

(Refer Slide Time: 21:08)

So, let us see an example. So, if ] can be written in Jordan canonical form. So, for example[𝐹

this ] has element 0 1 0, 0 0 1, 1 -3 3. This is picked up from somewhere that arbitrary[𝐹

numbers. So, the Eigen values of this matrix are all equal which is 1 1 and 1. So, hence this

] the matrix which will convert it into the Jordan canonical form can be written as 1 1 1, 0[𝑃

1 2, 0 0 1.

Where did I get this? If you go back and see your notes, you can see if the roots are repeated

once then we have the second column is the derivative of the first column. So, here it is

repeated twice. So, this is what you will get as ] and is now given in this[𝑃 𝑃[ ]−1 [ 𝐹][ 𝑃] 

form. So, it is not a diagonal. So, the diagonal elements are 1, but then you have two of

diagonal elements 1 and 1. So, this is the Jordan canonical form after we do this

.𝑃[ ]−1 [ 𝐹][ 𝑃]

(Refer Slide Time: 22:26)



So, , was the Jordan canonical form can be written as then and𝑒 𝐽[ ]𝑡 [𝐽] 𝑒𝑡0 0 𝑡 𝑒𝑡 𝑒𝑡 0

. So, this is basically in some sense similar to that we have repeated roots,1
2 𝑡2 𝑒𝑡   𝑡𝑒𝑡 𝑎𝑛𝑑 𝑒𝑡

. The next one is repeated, so we will have then it is repeated again it is and so𝑒𝑡 𝑡 𝑒𝑡 1
2 𝑡2 𝑒𝑡

on.

So, will become and then finally we have only one term three, three element which is𝑒𝑡 𝑡 𝑒𝑡

. So, is this and remembers we found out what was ] in the previous𝑒𝑡 𝑒 𝐹[ ]𝑡 𝑃[ ] 𝑒 𝐽[ ]𝑡 𝑃[ ]−1 [𝑃

slide. So, if you substitute . All of these are existing, you will get this𝑃[ ] 𝑒 𝐽[ ]𝑡 𝑃[ ]−1

reasonably complicated expression for the state transition matrix or the exponential of this

matrix.

So, I do not want to go through each and every term, but the first term is 𝑒𝑡 −  𝑡 𝑒𝑡 + 1
2 𝑡2 𝑒𝑡 

which is straightforward multiplication of and then you find the 1, 1 term. The𝑃[ ] 𝑒 𝐽[ ]𝑡 𝑃[ ]−1

2, 1 term is . The last term in the first column is .1
2 𝑡2 𝑒𝑡 𝑡 𝑒𝑡 +  1

2 𝑡2 𝑒𝑡

Likewise if you see the 3, 3 term it is So, how are these obtained? You𝑒𝑡 +  2𝑡 𝑒𝑡 + 1
2 𝑡2 𝑒𝑡.

can use any computed algebra system or a tool to multiply all these expressions. So, we have

a ] which is a constant matrix is this matrix containing exponential with time and then[𝑃 𝑒 𝐽[ ]𝑡



which was also known and then you can multiply simplify and you will get this𝑃[ ]−1 

expressions for . So, , where the matrix ] had three repeated Eigen values of 1.𝑒 𝐹[ ]𝑡 𝑒 𝐹[ ]𝑡 [𝐹

(Refer Slide Time: 25:00)

Let us look at another method. So, this is the use of Laplace transforms. So, remember we

showed you that we can write the state equations using the Laplace transform form. So, 𝑒 𝐹[ ]𝑡

was . So, please go back and see the block diagram representation of𝐿−1[ 𝑠 𝐼 [ ] − 𝐹[ ]( )−1 ]

the state in state equation written using Laplace transforms. This is what was mentioned

there.

So, if I want to find the using this Laplace transform approach then I have to find𝑒 𝐹[ ]𝑡 

and then take the inverse Laplace transform of this. So, let us take an𝑠 𝐼 [ ] − 𝐹[ ]( )−1 

example. So, this matrix ] is given by 0 1, 0 -2. So, the Eigen values are 0 and -2. So, here[𝐹

we can find out which is 1 0, 1 -2 because remember the first element is 1 . 𝑃[ ] λ
1

Second element is 1 . So, we can find out the . So, we can go back and use theλ
2

𝑃[ ] 𝑒 𝐹[ ]𝑡

expression because these are distinct Eigen values. So, it will be some , are the two𝑃[ ] 𝑒 Λ[ ]𝑡 λ

Eigen values 0 and -2. So, and into . So, if you multiply this out and simplify𝑒0 𝑒−2𝑡 𝑃[ ]−1

you will get 1 0 and . So, this is obtained from as I said, 1/2 (1 −  𝑒−2𝑡) 𝑒−2𝑡 𝑃[ ] 𝑒 Λ[ ]𝑡

Let us do the same thing using Laplace transform.𝑃[ ]−1.  

(Refer Slide Time: 27:01)



So, what is ? So, into is and . So, ] is the identity matrix - is 0 0 1𝑆[ 𝐼] – [𝐹] 𝑆 [𝐼] 𝑆 𝑆 0 [𝐼 [𝐹]

-2. So, if you simplify this you will get . So, will be , this𝑆 0 −  1 𝑆 + 2 𝑆  𝐼[ ]– 𝐹[ ]( )−1 1/𝑆

and . In this case it is very simple, but at 2 by 2 matrix we can find1 /𝑆 (𝑆 + 2) 1 / (𝑆 + 2)

very easily the inverse in symbolic form. So, this at standard methods in linear algebra. So,

we have the inverse of this matrix which is this.𝑆 𝐼[ ]– 𝐹[ ]( )−1

And the Laplace inverse of this matrix what is the inverse of ? That is unity. So,1/ 𝑆

remember I had given you a set of common Laplace transforms and their inverse. So, what

about .. This you can also go back and see it is So, will1 /𝑆 (𝑆 + 2) 1
2 (1 −  𝑒−2𝑡). 𝑆 +  2

give you this . So, this is what is shown here, it is and when you have𝑒−2𝑡 𝑒−2𝑡 1/ 𝑆(𝑆 + 2)

you can do partial fractions and then you will get this term.

So, as you can see the expression for Laplace inverse of this is the same as what we got using

. So, we can find the state transition matrix also using Laplace inverse.𝑃 [ ]𝑒 Λ[ ]𝑡 𝑃[ ]−1
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The third method is much more complicated and I will go through it in brief if anybody is

interested they can go and see this modern control engineering by k Ogata. This is a little bit

more complex. So, these uses two ideas, one is something called as a minimal polynomial

and something called as a Sylvester's interpolation formula. So, if you consider a polynomial

of degree where dot all these Eigen values lambdas are distinct.𝑚 −  1 λ
1
, λ

2

Then I can define a polynomial which is in this form. So, which is𝑝
𝑘
(λ)

 λ − λ
1( ) ... λ − λ

𝑘−1( ) λ − λ
𝑘+1( )…(λ − λ

𝑚
)/ λ

𝑘
− λ

1( ) ... λ
𝑘

− λ
𝑘−1( ) λ

𝑘
− λ

𝑘+1( ) ... λ
𝑘

− λ
𝑚( )     

. So, both of these numerator and denominator or will be 0 is missing.(λ − λ
𝑘
) (λ

𝑘
− λ

𝑘
)

So, hence this this polynomial of any lambda , if and 0 for not equal to𝑝
𝑘
(λ

𝑖
) 𝑖 =  1 𝑖 =  𝑘 𝑖

. So, you can see that the polynomial of degree can be defined in terms of this𝑘 𝑓(λ) 𝑚 −  1

and that is and what does this do? This polynomial takes on values of𝑝
𝑘
(λ)

𝑘=1

𝑚

∑ 𝑓(λ
𝑘
)𝑝

𝑘
(λ)

at points . This is well known; it is called Lagrange's interpolation formula.𝑓 λ
𝑘( ) λ

𝑘

So, what is f of lambda? This is a polynomial of degree m – 1. So, hence it passes through m

points. So, this is little bit of background that we are going to use this notion of this

Lagrange's interpolation formula in a special way to obtain the state transition matrix or .𝑒 𝐹[ ]𝑡

So, for the case of matrix F with n distinct eigenvalues. For the moment let us assume𝑛× 𝑛

that we have n distinct eigenvalues.



So, instead of , we can find Pk of this matrix. So, this is very similar concept that we𝑝
𝑘

λ
𝑖( )

can substitute in any characteristic equation the matrix which gave the characteristic

equations. So, Pk of F can be written as

𝐹[ ] − λ
1

𝐼[ ]( ) ... 𝐹[ ] − λ
𝑘−1

𝐼[ ]( ) 𝐹[ ] − λ
𝑘+1

𝐼[ ]( )…( 𝐹[ ] − λ
𝑚

𝐼[ ])/ λ
𝑘

− λ
1( ) ... λ

𝑘
− λ

𝑘−1( ) λ
𝑘

− λ
𝑘+1( ) ... λ

𝑘
−(

. So, basically here instead of lambda we will put this matrix . 𝐹[ ]

So, some of you may have heard of this something called as the Kelly Hamilton theorem

which states that the matrix satisfies its characteristic polynomial. So, basic idea is something

similar there that whatever is the characteristic polynomial, instead of the eigenvalues if you

substitute the matrix that also satisfies that. So, here I can get a polynomial in which the

elements are the matrices f and again if and 0 if not equal to .𝑝
𝑘
(λ

𝑖
) 𝐼[ ] 𝑖 =  𝑘 𝑖 𝑘

It follows more or less from whatever was happening to this and whatever is ,𝑝
𝑘
(λ

 
) 𝑝

𝑘
([𝐹])

instead of we now have the matrix which is in the state equations.λ 𝐹[ ]
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So, let us let us now define a which is given in this form which is𝑓 𝐹[ ]( )
𝑘=1

𝑚

∑ 𝑓(λ
𝑘
)𝑝

𝑘
( 𝐹[ ])

which we defined earlier and . This is called Sylvester's interpolation formula. This is𝑝
𝑘
([𝐹])

some sense is an extension of the Lagrange's interpolation formula and this f function of this

matrix can be written in this form which is this form here.𝐹[ ]



And it is equivalent to this complicated looking expression which is what this is the

determinant of some matrix. The first row of the matrix is and this is identity, second1 1 1

row is all the way then . Then and all the way and then f ofλ
1
 λ

2
𝐹[ ] 𝐹[ ]2 𝑓 λ

1( ) 𝑓 λ
2( ) 𝑓(λ

𝑚
)

function of this matrix. So, this function is equivalent to determinant of this matrix = 0.

So, if you are interested in the proof of this please go and see some advanced linear algebra

book. So, what do we have? I want to find out , you know I have done so much math and𝑒 𝐹[ ]

so much background, but eventually I have a way to find exponential of a matrix because this

function , of this matrix I can choose anything.𝑓[𝐹] 𝑓
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So, the determinant form of of this matrix can be used to evaluate functions of a matrix.𝐹[ ]

So, any function , in particular we can use this determinant form to evaluate . So, for𝑓 𝐹[ ] 𝑒 𝐹[ ]𝑡

evaluating the state transition matrix which is we set the last column in this form.ϕ 𝑡( ) 𝑒 𝐹[ ] 𝑡( )

So, everything here remains the same, but this is and this is .𝑒
λ

1[ ] 𝑡( )
 𝑒

λ
2[ ] 𝑡( )

 𝑒
λ

𝑚[ ] 𝑡( )
 𝑒 𝐹[ ]𝑡

And the last row is and this determinant will be equal to . So, what have we[𝐼] 𝐹[ ] 𝐹[ ]𝑚−1 0

done and we are looking at the case when the eigenvalues of this matrix are distinct. So,𝐹[ ]

now I have a way to calculate this determinant I have an expression which says determinant

of something is equal to 0 and what I can do is I can evaluate this determinant by by

expanding about the last column.



So, basically I can say that I can expand about this last column and then obtain into𝑒 𝐹[ ]𝑡

something is equal to something and hence using this form we can obtain what is ,𝑒 𝐹[ ] 𝑡( )

because this is an equation which involves many terms but we can expand about this last

element and then we will get into something will be equal to something.𝑒 𝐹[ ]𝑡

And then we can solve for . It turns out we will get in terms of basically these𝑒 𝐹[ ]𝑡 𝑒 𝐹[ ]𝑡 𝐹[ ]𝑘 

terms here, where k = 0, 1 through . So, this is a very complex way but very general𝑚 – 1

purpose way to find the exponential of a matrix.
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This method of minimal polynomial and Sylvester's interpolation formula can also be applied

when the roots are repeated. Again, I do not want to go into this. If anybody is interested,

they can look at this modern control engineering by Ogata or they can look at some advanced

linear algebra book. So, just as an example if the three of the roots are repeated let us say =λ
1

is .λ
2
 λ

3

All others are distinct then can be obtained by this determinant equation which is𝑒 𝐹[ ]𝑡

determinant 0 0 1 and then some other terms then 0 1 then 1 2 . So, where did I getλ
1

λ
1

λ
1
2

this from? This is because = = , it is repeated. Rest of the term is very similar. Theλ
1

λ
2

λ
3

term on the last column is different now which is some because it is repeated twice.𝑡2

2 𝑒
λ

1
𝑡 



Then the next one is and all the way to . Again, we have determinant of something𝑡 𝑒
λ

2
𝑡
 𝑒 𝐹[ ]𝑡

very complex many terms are there is equal to 0 and again by expanding about this𝑒 𝐹[ ] 𝑡( ) 

element we can obtain into something will be equal to something and we can obtain this𝑒 𝐹[ ]𝑡

state transition matrix.
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To illustrate the method of minimal polynomial and Sylvester's interpolation formula we take

an example which we have seen earlier. The matrix is given by 0 1 0 -2, the eigenvalues𝐹[ ]

are 0 and -2. To follow this method of minimal polynomial and Sylvester's interpolation

formula we obtained this determinant which has these elements. So, the first column is 1 1 𝐼[ ]

, the second column is and this matrix.λ
1

λ
2

𝐹[ ] 

The third column is and . So, the determinant of this equal to 0 can be simplified𝑒
λ

1
𝑡
 , 𝑒

λ
2
𝑡

𝑒 𝐹[ ]𝑡

by substituting what is and . So, we have 1 1 -2 1 - = 0. So, if youλ
1

λ
2

𝐼[ ],  0 𝐹[ ],   𝑒−2𝑡 𝑒 𝐹[ ]𝑡

expand this we will get which will further − 2𝑒 𝐹[ ]𝑡 +  𝐹[ ] +  2 𝐼[ ] −  𝐹[ ] 𝑒−2𝑡 =  0

simplify as follows.

So, we can take outside and put everything on the other side we will get o𝑒 𝐹[ ]𝑡

and this if you substitute what is then you can obtain as 1 01
2 (𝐹 +  2 𝐼[ ] −  𝐹[ ]  𝑒−2𝑡) 𝐹[ ]

the 1 2 element is and the 2 2 element is . So, this is the exponential of1/2(1 −  𝑒−2𝑡) 𝑒−2𝑡



this given matrix and you can see and compare yourself that this is the same as obtained from

method 2.
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The last one which I am going to discuss is a purely numerical approach to obtain the state

transition matrix. This is by numerical integration. So, the reasoning is the following we

know is . So, now if you take the derivative of , so what is the derivative of this𝑒 𝐹[ ]𝑡 ϕ ϕ ϕ̇

matrix? Derivative of each term in the matrix you will get and what is the initial𝐹[ ]ϕ 𝑡( )

value is .ϕ(0) 𝐼[ ]

So, hence if I know what is , I have differential equations. So, remember is , so𝐹[ ] 𝑛2 ϕ 𝑛× 𝑛

we have is equal to some . Likewise we have differential equations which youϕ
11
˙ 𝐹[ ]ϕ

11
𝑛2

can integrate and we can obtain the elements of numerically. So, this can be integratedϕ 𝑡( )

numerically using some code like in Matlab. So, this is a way to obtain which is .𝑒 𝐹[ ]𝑡 ϕ(𝑡)

By solving this n square differential equations and these are ordinary differential equations,

linear because is constant. There are many other methods which are available which I do𝐹[ ]

not want to go into this, but there is a paper which is available in this link which is written by

some Cleve Moler and Charles Van Loan, he is a very well-known linear algebra person. So,

Golub and Van Loan; he is that same Van Loan and this is a very interesting way of saying

how to obtain the exponential of matrix.



So, he says that there are 19 dubious ways to compute the exponential of a matrix and the

SIAM review is a professional very well known journal. So, this came out long, long time

back and it is 36 pages. So, anybody who is interested in other methods other than this 4

please go and get hold of this paper and take a look at it.
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So, what can we do once we have this state transition matrix? So, basically what do we have

our state space is all the way till , it is an n dimensional. So, is an element of .𝑋
1

𝑋
2

𝑋
𝑛

𝑋 𝑅𝑛

So, what we can see is if I start from a point near to this equilibrium point we remember we

took the non-linear differential equations and we linearized it about an equilibrium point.

So, if you start from a point which is initially which is maybe near to this equilibrium𝑋 0( )

point, then the trajector his is governed by this differential equation and𝑦(𝑡) 𝑋 �̇� = 𝑓 𝑋, 𝑢 ( )

what is the solution to this differential equation which is X = +𝑡( ) ϕ 𝑡( ) 𝑋
0

. So, this is also sometimes called a convolution.
0

𝑡

∫ ϕ(𝑡 − τ)𝐺𝑢(τ)𝑑τ

So, what is this schematically telling you? That if I can solve this equation which I can

because I know how to compute . So, then I should be able to do all of these and then Iϕ(𝑡)

can show you what is the trajectory starting at . So, what is the as we go along,𝑋(0) 𝑋 𝑡( )(𝑡)

as we increase in time? So, this can be used to study the nature of the trajectoryϕ (𝑡, 𝑋
0
)

starting at .𝑋(0)



And this is conceptually important that later on we will see that we will look at these

trajectories to look at things called stability. So, the state transition matrix tells us what is the

trajector𝑦(𝑡)

he state variables or what is X as we start from some initial near to an equilibrium𝑡( ) 𝑋 0( )

point and where it is going.
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So, in summary the solution of state equations can be given in terms of matrix exponential.

The solution shows the trajectory of the system . So, basically it also tells𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒

you how the states are evolving in time. So, and are the states of the system. There𝑋 (𝑡) 𝑋

are several methods to obtain matrix exponential for linear time invariant single input single

output systems.

I have shown you four, I have indicated to you a link to a very well-known paper where there

are many other methods. This is a very useful concept for control system analysis. So, this is

the formal way of looking at what is happening to my system as time progresses. So, given

states given F given G what is happening X of t? So, it will tell you what is how the system is

evolving in time.

In simple cases where very, very simple cases, so need not be constant it would be𝐹 𝑡( )[ ] 𝐹[ ]

some simple constant functions of time, we can still solve the state equations, I am not going

to go into this in this lectures but you can look at some control systems book, advanced



control theory books where they might be having examples where this . So, this is for𝐹 𝑡( )[ ]

some simple linear time varying systems I can still get a solution in terms of this .ϕ(𝑡)


