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Lecture-21
State Space Formulation

In this lecture we will look at the state space formulation.

(Refer Slide Time: 00:27)

So, in the last lecture we looked at the concept of feedback control. So, before that in the portion

of dynamics I had showed you that any rigid body or a multi-rigid body system will have a

natural dynamic. So, whenever we apply some external forces or moments it would behave

according to Newton’s law or Euler's equation. In the concept of feedback control I showed you

that we can achieve a desired trajectory in spite of internal parameter change and external

disturbances.

So, basically even though the natural dynamics says something, using the concept of feedback

control I could make it follow a desired trajectory which is not necessarily the same as the

natural dynamics. I also showed you that we could use feedback control to stabilize an unstable



system, or we could use feedback control to improve the performance of a system. So, we started

with equations of motion, linear equation of motion using an example of a DC servo-motor

rotating a link.

Then I showed you that we could use Laplace transform to convert it into s domain. So, basically

ordinary differential equations became algebraic equations in s and then we could define the

concept of a transfer function which was the ratio of the output to the input. And we could

represent these transfer functions in a pictorial from, in a geometrical form using block diagrams.

And with this example of this DC servo-motor rotating a single link, I showed you that we could

ensure that the rotating link follows a constant speed or some other desired trajectory.

In spite of changes in internal parameter changes or some external disturbance. So, the output in

a closed loop feedback control system would be very close to what we want as a desired

trajectory. So, in this lecture we will go back to the state space equations which are obtained

from the dynamics of the rigid body or a multi-rigid body system. We will show you that we can

linearize these nonlinear ODEs and then obtain state space formulation.

(Refer Slide Time: 03:15)

So, let us look at a broad classification of dynamical systems. So, dynamical systems basically

systems which changes with time can be described by a partial differential equation or it could be

described by ordinary differential equations. So, in our case for multi-rigid body system or even



a single rigid body we had ordinary differential equations. The ordinary differential equation can

be of 3 kinds, one is called SISO which stands for single input single output systems.

We could also have SIMO single input multi-output systems and then the most general case of

multi-input multi-output system. The ordinary differential equation also could be linear or

non-linear. So, if they are non-linear we could have time varying or time invariant, if it is time

varying then the state equations can be written as , u is an external input, t is𝑋̇ = 𝑓(𝑋,  𝑢,  𝑡)

explicitly time.

So, sometimes these equations have time explicitly in them. We could also have what is called as

an output equation which is . If it is a time invariant non-linear system then is a𝑦 = ℎ (𝑢,  𝑡) 𝑋̇ 

function of and and is a function of alone, there is no explicit dependence of time in𝑋 𝑢 𝑦 𝑢

these equations. As I said we could also have ODE which represents a linear system and again in

linear system we can have time varying or time invariant.

So, if it is a time varying linear system then we could represent the state equations in the form of

, so this matrix contains functions which are functions of time. And the𝑋̇ = 𝐹 𝑡( )[ ]𝑋 + 𝐺 𝑡( )[ ]𝑢

output equation will be . So, basically what I am trying to show here is𝑦 = [𝐻(𝑡)] 𝑋 +  𝐽 𝑡( )[ ]𝑢

that these coefficients which multiply X and multiply u and multiplying again X in the output

equation, they could be themselves functions of time.

If you have a time invariant linear system these are also called LTI systems. So, then we could

describe this LTI systems by this kind of differential equation which is and𝑋̇ = 𝐹[ ]𝑋 + 𝐺[ ]𝑢

the output equation . So, in this case and are constants, they are not𝑦 = [𝐻] 𝑋 +  𝐽[ ]𝑢 𝐹,  𝐺,  𝐻 𝐽

functions of time. So, as I mentioned SISO means single input single output system, SIMO

means single input multi-output system, MIMO means multi-input multi-output system.

So, in this lecture and in fact in most of the course we will primarily be concentrating on LTI

systems, linear time invariant systems. If you want to study linear time varying system or general

non-linear systems there are advanced courses in control which you need to look at.



(Refer Slide Time: 07:04)

So, let us look at an example of linearization. So, we have this simple example of a pendulum, so

we have this rod a mass less rod with the mass at the end and it is rotating about this z-axis, so

the rotation angle is from the vertical. There is also gravity which is acting here and we willθ

also assume that there is a torque which is acting at this joint. So, there is a motor which is

applying this torque.

So, the non-linear equations of motion for this pendulum if you write it in the state space form

we can write it as . And if you want to linearize these non-linear first order 𝑋̇ =  𝑓 (𝑋,  𝑢)

differential equations we have to linearize about a point. And which point do we choose? Most of

the time we will choose or the standard approach is to use linearization about an equilibrium

point. And how do we find the equilibrium point?

The equilibrium point is obtained by settin which is in this case torque = 0,[𝐺]𝑢 𝑢(𝑡)

0 and then we solve . So, this is the nonlinear algebraic equation. So, the solution of𝑓 (𝑋) =  0

a set of nonlinear algebraic or transcendental equations will give me X and these are the

equilibrium points. So, this could be any algebraic or transcendental equation at least

conceptually we can solve them and we find all X such that and we can have more𝑓 𝑋( ) =  0 

than 1 equilibrium point is possible.



So, again the example of the pendulum. So, the equation of motion of the pendulum is

and we will call this as . So, if you use state variables θ̈ + 𝑔
𝑙  ( ) sin 𝑠𝑖𝑛 θ  = τ

𝑚𝑙2 = 𝑢(𝑡) 𝑢(𝑡)

and , is , is , so my state variables X is , it is a 2 by 1 vector. So, in state𝑥
1

𝑥
2

𝑥
1

θ 𝑥
2

θ̇ 𝑥
1

𝑥
2

space form we can have = , is𝑥
1
˙ 𝑥

2
𝑥

2
˙ − 𝑔

𝑙  ( ) sin 𝑠𝑖𝑛 𝑥
1
 + 𝑢(𝑡)

. So, this we have done earlier, and I am just repeating it that we can derive the first order

equations from the second order equation by using as and as .𝑥
1

θ 𝑥
2

θ̇
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So, continuing with that example of a simple pendulum to find the equilibrium point for those

state equations. So, hence the first step is we assume or set , so then the function on the𝑢 𝑡( ) = 0

right hand side will be equal to 0 when = 0 and = 0 or . So, if you linearize about , of𝑥
2

𝑥
1

π 𝑥
1

𝑥
2

0 comma 0 basically we have to substitute = . And then the 2 first order differentialsin 𝑠𝑖𝑛 θ θ

equations can be written in this form = , remember it was written in the previous case,𝑥
1
˙ 𝑥

2

previous slide.

And will now become . + , it was g / l . but then is same as so -g𝑥
2
˙ − 𝑔 / 𝑙 𝑥

1
𝑢(𝑡) sin 𝑠𝑖𝑛 θ θ 𝑥

1

/ l into and this is 0 comma . So, this is the F matrix and this is the G vector in this𝑥
1

𝑥
2

𝑢(𝑡)



case. If you want to linearize about , remember could also be and is what? It is(π ,  0) 𝑥
1

π π

standing vertically upwards. What is = 0? The pendulum is hanging down.𝑥
1

So, in that case if you linearize about then what you will get is which isπ ,  0( ) 𝑠𝑖𝑛(π + θ) 

in you will get - , so for small is same as . So, then the first order− sin 𝑠𝑖𝑛 θ θ θ, sin 𝑠𝑖𝑛 θ θ

differential equations or the state equations are = that one does not change and = +(g / l)𝑥
1
˙ 𝑥

2
𝑥

2
˙

+𝑥
1

𝑢(𝑡)

. Previously when the pendulum is hanging down and when is 0 and you are linearizing aboutθ

the hanging down position then it is – (g / l) , in this case it is + (g / l) .𝑥
1

𝑥
1
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So, in general what can we do? We can use Taylor series. So, instead of simply saying sin 𝑠𝑖𝑛 θ 

is same as and doing this simple thing we can formally linearize any differential equation usingθ

non-linear differential equation using Taylor series and again we linearize about an equilibrium

point. So, let us assume that we have a set of non-linear differential equation ,𝑋̇ =  𝑓(𝑥,  𝑢)

where now is an vector, is an vector.𝑥 𝑛×1 𝑢 𝑚×1 

So, the number of inputs could be less than the number of states, so is an element of and𝑥 𝑅𝑛 𝑢

is an element of . So, we are going to linearize about an equilibrium point and what is the𝑅𝑚



equilibrium point? All such that or which implies all which satisfies this𝑥,  𝑢( ) 𝑋̇ =  0 𝑥,  𝑢( ) 

vector non-linear set of equations . And again these are non-linear algebraic or𝑓(𝑥,  𝑢) =  0

transcendental equations, so you can have more than 1 solution for .𝑓(𝑥,  𝑢) =  0

So, basically we can have more than 1 equilibrium point and so we need to linearize about a

chosen equilibrium point. So, let denote an equilibrium point we are interested in, so we(𝑋
𝑒
,  𝑢

𝑒
)

can expand this right hand side using Taylor series about .𝑋
𝑒
,  𝑢

𝑒( )
(Refer Slide Time: 14:06)

So, what is the expression for Taylor series? So, any one of these functions, so let us say 𝑓
𝑖
 (𝑥, 𝑢)

can be written as + . So, this is the first term in the𝑓
𝑖

(𝑋
𝑒
,  𝑢

𝑒
)

𝑗=1

𝑛

∑
∂𝑓

𝑖

∂𝑋
𝑗
​|

 𝑋
 
= 𝑋

𝑒
,   𝑢=𝑢

𝑒

(𝑋
𝑗

− 𝑋
𝑗𝑒

)

expansion of the Taylor series and what is ? It is equilibrium point. We can alsoδ  𝑋 𝑋
𝑗

− 𝑋
𝑗𝑒( )

look at the because remember there is .
𝑘=1

𝑚

∑
∂𝑓

𝑖

∂𝑢
𝑘

​|
 𝑋

 
= 𝑋

𝑒
,   𝑢=𝑢

𝑒

(𝑢
𝑘

− 𝑢
𝑘𝑒

) (𝑥,  𝑢)

So, again we have . And is again and then plus we
𝑘=1

𝑚

∑
∂𝑓

𝑖

∂𝑢
𝑘

​|
 𝑋

 
= 𝑋

𝑒
,   𝑢=𝑢

𝑒

(𝑢
𝑘

− 𝑢
𝑘𝑒

) δ  𝑢 𝑢
𝑘

− 𝑢
𝑘𝑒( ) 

have order 2 and order 3 and all the higher order terms. So, we are going to drop all the higher



order terms and this term is also equal to 0, the first term because why this is the definition of an

equilibrium point. So, .𝑓
𝑖

𝑋
𝑒
,  𝑢

𝑒( ) = 0

So, what you are left with is one part which and then
𝑗=1

𝑛

∑
∂𝑓

𝑖

∂𝑋
𝑗
​|

 𝑋
 
= 𝑋

𝑒
,   𝑢=𝑢

𝑒

(𝑋
𝑗

− 𝑋
𝑗𝑒

)

. So, both terms can be written as some , so
𝑘=1

𝑚

∑
∂𝑓

𝑖

∂𝑢
𝑘

​|
 𝑋

 
= 𝑋

𝑒
,   𝑢=𝑢

𝑒

𝑢
𝑘

− 𝑢
𝑘𝑒( )   𝑋

 

~̇
 = 𝐹[ ]𝑋

~
+ 𝐺[ ]𝑢

~

what is the dimension of ? It is because there are of these state variables. So, what is 𝑋
 

~̇
 𝑛×2 𝑛

the dimension of ? It is .[𝐹] 𝑛× 𝑛

And what is ? So, and are nothing but , . So, it is this small deviation about𝑋
~

𝑋
~

𝑢
~

𝑋 − 𝑋
𝑒
 𝑢 − 𝑢

𝑒

the equilibrium point. So, what is the dimension of ? It is , remember is an element of[𝐺] 𝑛× 𝑚 𝑢

, so there are inputs and state variables is n dimensional, is dimensional. So, now𝑅𝑚 𝑚 𝑛 𝑋 𝑢 𝑚

we have into , so this is and . So, these are the state variables element of and[𝐺] 𝑢
~

𝑛× 𝑚 𝑚× 1 𝑅𝑛

what are these matrices?

They are nothing but the . And what are the elements of ? This is .
∂𝑓

𝑖

∂𝑋
𝑗
​|

  𝑋
𝑒
,   𝑢

𝑒

[𝐺]
∂𝑓

𝑖

∂𝑢
𝑘

​|
  𝑋

𝑒
,  𝑢

𝑒
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Similar to the state equation we can also look at the output equation. And here we are going to

assume that denotes the output, it is also a vector but there is only of them. So, the number of𝑦 𝑝

state variables are , the number of is and the number of measurements or output variables𝑛 𝑢 𝑚

are and will be less than or equal to . So, again we can use Taylor series and expand this𝑝  𝑝  𝑛

non-linear equation about .𝑋
𝑒
,  𝑢

𝑒

So, similar to the state equations we will get some and what is ? is 𝑌
 

~̇
 = 𝐻[ ] 𝑋

 
 

~
   + 𝐽[ ] 𝑢

 
 

~
𝑌

𝑒
𝑌

𝑒
 

the equilibrium point which is the and . So, what is this element of the ℎ  𝑋
𝑒
,  𝑢

𝑒( )  𝑌
 
 

~
=  𝑌 − 𝑌

𝑒

H matrix? So, . The elements of . So, what are the dimensions𝐻
𝑖𝑗

=  
∂ℎ

𝑖

∂𝑋
𝑗
​|

 𝑋
𝑒
,  𝑢

𝑒

  𝐽
𝑖𝑗

=  
∂ℎ

𝑖

∂𝑢
𝑘

​|
 𝑋

𝑒
,  𝑢

𝑒

of ? 𝑌
 
 

~

Remember, it is of them, so this is clearly . How about the dimension of ? It is ,𝑝 𝑝× 1 [𝐻] 𝑝× 𝑛

is , the dimension of is and is . So, in the rest of the course or in the 𝑋
 
 

~
 𝑛× 1 [𝐽] 𝑝×𝑚 𝑢

 
 

~
𝑚× 1

rest of this lecture we will drop this tilde unnecessarily we are carrying around one more symbol.

So, we will use and instead of , and .𝑋 ,  𝑢 𝑌  𝑋
 
 

~
 𝑢

 
 

~
 𝑌

 
 

~



Remember is a vector of dimension , is a vector of dimension and is a vector of𝑋 𝑛× 1 𝑢 𝑚× 1 𝑌

dimension . And they are nothing but , and , we are just going to drop this tilde𝑝× 1  𝑋
 
 

~
 𝑢

 
 

~
 𝑌

 
 

~
 

from the rest of the treatment.
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So, in summary we can obtain the state space formulation of a linear time invariant system in

these following 2 sets of equations. One is called as the state equation which is

, is an element of , is an element of . And then we have an output𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑋 𝑅𝑛 𝑢 𝑅𝑚

equation which is and is an element of . So, this is is again to repeat𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢 𝑦 𝑅𝑝 𝑋

at the state variables, it has dimension of , are the control inputs which has dimension of𝑛×1 𝑢

, are the output of the measured outputs and this has dimension of .𝑚×1 𝑦 𝑝×1

(Refer Slide Time: 20:51)



So, let us continue one of the most basic issues in state space formulation is that state variables

are not unique and I will show you an example. Again we will use this planar pendulum, so now

we have this pendulum with the mass which is oscillating here with an angle , gravity is thisθ

way and we had chosen the 2 state variables and as and . We could also use another set𝑥
1

𝑥
2

θ θ̇

of state variables which are and .𝑥
1

~
 𝑥

2

~
 

is defined as and is same as , so is same as earlier . However is a scaled𝑥
1

~
 ω

0
θ 𝑥

2

~
 θ̇  𝑥

2

~
𝑥

2
𝑥

1

~

version of the previous and what is ? . So, now if you obtain the state equations𝑥
1

ω
0
 ω

0
2 = 𝑔/𝑙 

you will get these following state equations which is = and dot is -𝑥
1

~̇
 ω

0
𝑥

2

~
𝑥

2

~̇
ω

0
2 sin 𝑠𝑖𝑛 (𝑥

1
 /

+u(t).ω
0
)

Again if you linearize about we will get and , so this is like(0 , 0) 𝑥
1

~
 𝑥

2

~
 

. So, you can see that the has changed,𝑥̇ 𝐹[ ]0  ω
0
,  −  ω

0
 0 𝑥

1

~
 𝑥

2

~( ) 𝑎𝑛𝑑 (0 1) 𝑢 𝑡( ) [𝐹] 𝑚𝑎𝑡𝑟𝑖𝑥

in the initial [ ] matrix it was 0 1 and then something like .𝐹 𝑔
𝑙  𝑎𝑛𝑑 0
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In general we can have another set of state variable and let us assume that and are related𝑍 𝑍 𝑋

by this transformation and it is a linear transformation. Meaning, that this is𝑋 = [𝑃]𝑍 [𝑃]

constant and this is full rank, so is invertible, so is , so Z is also and this is𝑃[ ] [𝑃] 𝑋 𝑛×1 𝑛×1 [𝑃]

matrix and it is constant elements, and it is invertible. So, now in terms of we can write𝑛×𝑛 𝑍

the state and output equations in this form.

So, basically we had , now we have X is , so we have𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑃[ ]𝑍 

. Remember , so if you were to worry about what happened[𝑃] 𝑍̇ =  𝐹[ ] 𝑃[ ]𝑍  + [𝐺]𝑢 𝑃[ ]˙  𝑖𝑠 0

to when you did should we get a , no, that term is 0. So, which is what is here𝑋̇ 𝑃[ ]˙   𝑍 𝑋̇ = 𝑃[ ]𝑍̇

and likewise we have . So, we could rewrite these state an output𝑦 =  𝐻[ ][𝑃]𝑍 +  𝐽[ ]𝑢

equations as .𝑍̇ =  𝑃[ ]−1  𝐹[ ] 𝑃[ ]𝑍 +  𝑃[ ]−1 𝐺[ ]𝑢  𝑎𝑛𝑑 𝑦 =  𝐻[ ] 𝑃[ ]𝑍 + [𝐽] 𝑢

Remember, is invertible, so exist. So, the first basic question is how do we know that[𝑃] 𝑃[ ]−1 

both these just systems are same? So, if you are a analyst somewhere which you are using as𝑋

your state variables you would have got . If you are in another analyst𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢

somewhere else and you are using as your state variables, then you will get𝑍

and the output equations are now .𝑍̇ =  𝑃[ ]−1  𝐹[ ] 𝑃[ ]𝑍 +  𝑃[ ]−1 𝐺[ ]𝑢  𝑦 =  𝐻[ ] 𝑃[ ]𝑍 + [𝐽] 𝑢



So, it is not clear and remembers these are all numbers, it is not clear that we are describing the

same system. So, what is common between this description using and the previous description𝑍

of the state equations and the system using , so let us continue?𝑋

(Refer Slide Time: 25:29)

So, what is common between and let us start with that. So, one important thing𝐹[ ] 𝑃[ ]−1  𝐹[ ] 𝑃[ ]

that if you have studied linear algebra you can look at the Eigen values of this and  𝐹[ ]

. So, what is the Eigen value problem? We have to solve a characteristic polynomial𝑃[ ]−1  𝐹[ ] 𝑃[ ]

which comes from setting determinant of - = 0, so is the identity matrix.λ 𝐼[ ] 𝑃[ ]−1  𝐹[ ] 𝑃[ ] [𝐼]

So, this we can simplify as determinant of , could be written asλ 𝑃[ ]−1   𝑃[ ] [𝐼] 𝑃[ ]−1 𝑃[ ] −

= 0.𝑃[ ]−1  𝐹[ ] 𝑃[ ]

And again we can simplify again and we can write this expression as determinant of -𝑃[ ]−1( λ 𝐼[ ]

, so basically we will take outside. And then we will have - = 0. So,  𝐹[ ]) 𝑃[ ] 𝑃[ ]−1( λ 𝐼[ ] 𝐹[ ]) 𝑃[ ]

the determinant of a product of 3 matrices are the determinant of each one of these 3. So, we can

write as determinant of then determinant of and then determinant of = 0.𝑃[ ]−1 λ[𝐼] −  [ 𝐹] 𝑃[ ]

So, this itself can be simplified because now these are scalars, so we can take determinant of

and then we can go back and put this on this side, so you will get determinant of . So,𝑃[ ]−1 𝑃[ ]



P is identity matrix, so you are left with determinant of . So, what have𝑃[ ]−1 λ 𝐼[ ] −  [ 𝐹] =  0

we showed you that the Eigen values of is the same as the Eigen values of , so𝑃[ ]−1  𝐹[ ] 𝑃[ ] 𝐹[ ]

this is called as similarity transformation.

So, if these Eigen values are distinct meaning there are Eigen values of and let us assume𝑛 𝐹[ ]

that , all the way to are the Eigen values and if they are not equal to each other thenλ
1

λ
2

λ
𝑛

𝑛

you can obtain such that is a diagonal matrix. So, this is a diagonal𝑃[ ] 𝑃[ ]−1  𝐹[ ] 𝑃[ ] 𝑛 × 𝑛

matrix and each of these diagonals are , all the way to .λ
1

λ
2

λ
𝑛
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So, how do I find out what is ? Firstly is an matrix because we are doing F𝑃[ ] 𝑃[ ] 𝑛×𝑛 𝑃[ ]−1 𝑃[ ]

, so all of them are matrices. So, there is a very nice formula to obtain , this is called as𝑛×𝑛 𝑃[ ]

the Vandermonde matrix. You can look at this very good book on linear algebra by Golub and

Van Loan. So, what it says is to obtain this we put in the first column 1, , all the way till𝑃[ ] λ
1

λ
1
2

.λ
1
𝑛−1

Second column is , all the way to and the last nth column is 1 , then . And1 λ
2

λ
2
2 λ

2
𝑛−1 λ

𝑛
λ

𝑛 
2 λ

𝑛 
𝑛−1

remember we are discussing the case of all the way to are distinct Eigen values. So, ifλ
1

λ
2

λ
𝑛



you were to use this matrix then will be a diagonal matrix with all the𝑃[ ] 𝑃[ ]−1  𝐹[ ] 𝑃[ ] λ
1

λ
2

way till on the diagonal and all other elements are 0.λ
𝑛

If = , so let us say 2 of them are repeated then the can also be determined. In the firstλ
1

λ
2

𝑃[ ]

column of the is 1 , , . Then the second column is which is corresponding to is 0,𝑃[ ] λ
1

λ
1
2 λ

1
𝑛−1 λ

2

1, all the way till into . So, basically how did I get this second column? It is the2λ
1

λ
1
𝑛−1 λ

1
𝑛−2

derivative of this first column.

And since we are only considering 2 of them repeated, the rest of the matrix remains same, the

nth column is 1 all the way till . Now if you compute this what you will getλ
𝑛

λ
𝑛
𝑛−1 𝑃[ ]−1  𝐹[ ] 𝑃[ ]

is , 1 comma in the second column and again 3, 4, 5 all the way till are distinct. So, it isλ
1

λ
1

𝑛

not exactly a diagonal form but this is the best that you can do, this is called as the Jordan

canonical form.

In the Jordan canonical form and in this example there are only 2 repeated Eigen values. You will

have first column is , 0, 0, 0 all the way, the second column is 1, , 0, 0, 0 all the way, theλ
1

λ
1

third column is 0, 0 zeros and so on.λ
3
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So, while you are solving these eigenvalues of a matrix you can also get complex and Eigen

values. So, we can have a so the second Eigen value will be this is aλ
1

= 𝑎 +  𝑖𝑏 𝑎 −  𝑖𝑏

property of complex numbers. So, one of them is an Eigen value which is the other one𝑎 +  𝑖𝑏

must be . So, in that case if you do , then what you can see is you will get𝑎 −  𝑖𝑏 𝑃[ ]−1  𝐹[ ] 𝑃[ ]

and again since we are taking only 2 of them are equal then we will have all the𝑎  𝑏 − 𝑏  𝑎 λ
3

way till and all these off diagonal terms to be 0.λ
𝑛

So, this is the best we can do if you have complex conjugate Eigen values. Of course there could

be more complications; you can have many of these Eigen values equal. So, if there are 3 of

them equal then you will have some things which is happening in the first column of the P, the

second column of the P, the third column of the P, the third column is the derivative of the second

column, the second column is the derivative of the first column and so on.

So, you will have some more complications, so it will not be exactly diagonal but it is still the

Jordan form. You can also have repeated complex Eigen values, so you can find out what

happens when you have a repeated complex eigenvalue, what happens to . So, this𝑃[ ]−1  𝐹[ ] 𝑃[ ]

diagonalization or this Jordan canonical form these are very useful for state space formulation, so

we will see that in the next few slides.



For more details on this diagonalization or Jordan form or complex Eigen values you should look

at a modern or a good textbook on linear algebra. So, one such recommended textbook is by

Strang or you can also go back and see Golub and Van Loan.
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So, let us go back to state space formulation and transfer function. So, let us consider an ODE or

and in particular a single input single output system. The ODE is given in this form, so

. So, this is my ordinary differential equation which describes a𝑑3𝑦

𝑑𝑡3 +  6𝑦̈ +  11𝑦̇ + 6𝑦 = 6𝑢

single input single output system. So, if you were to use Laplace transform on this, so what

would you get?

So, the output is input is , so this will be some , this will be , this will be𝑦(𝑠) 𝑢(𝑠) 𝑠3𝑦 6𝑠2𝑦 11𝑠𝑦

and this is , all the initial conditions are 0. So, whenever we take Laplace transform we6𝑦

assume that the initial conditions are 0. So, what is the transfer function between and ? It is𝑦 𝑢

. So, I have chosen this example because we can now very simply do a partial6

𝑠3 + 6𝑠2+ 11𝑠 + 6

fraction of this.

So, if you go back and remember what partial fraction is, we can write this as some A divided by

s + something + B divided by s + something and C divided by s + something, so it turns out it



can be written as . So, this transfer function can be written as3
𝑠+1 − 6

𝑠+2( ) + 3
𝑠+3  𝑦(𝑠)/𝑢(𝑠)

sum of these 3 fractions. So, in the block diagram form I can represent this in the following. So,

what do I have?

I have an input which is and output which is . So, first thing you can see is this is𝑢(𝑠) 𝑦(𝑠)

multiplying by 6 and then into is given by all these terms. So, you have 6 is𝑢(𝑠) 6𝑢 𝑢(𝑠) 𝑢(𝑠)

into all this . So, that could be written in this way. So, what do we𝑦(𝑠) 𝑠3 +  6𝑠2 +  11𝑠 +  6

have here? So, you have a block which is , this is called as an integrator, remember Laplace1/𝑠

transform of y( is nothing but the integration of that quantity.1/𝑠)

So, we have and the output of that you multiply by -6 and then you put it back here. Then1/𝑠

you integrate again and then the output of that you multiply by -11 and put it back here and final

output of this you integrate and you multiply it by -6 and you push it back here. So, basically

what are we doing? We are finding that ) 6 + 11 s and integral and then -6 s, so we are(1/𝑠

putting back all these things here and then if you sum it up then you will get these. So, this is a

block diagram form of this transfer function.
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So, let us look at the state space form of that equation. So, this is the third order ODE, so there

are 3 state variables, so first equation is



. And what is the output variable?𝑋
1

˙ =  𝑋
2
,  𝑋

2
˙ =  𝑋

3
  𝑎𝑛𝑑 𝑋

3
˙ =− 6𝑋

1
−  11𝑋

2
– 6𝑋

3
 +  6𝑢 

That is . So, we can rewrite these 3 first order equations as , so what is𝑋
1

𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑋

here? It is , it is a vector of , so is , , that is equal to .3 × 1 𝑋
1
,  𝑋

2
,  𝑋

3
 𝑋̇ 𝑋

1
˙ 𝑋

2
˙ 𝑋

3
˙ [𝐹]𝑋

So, what is the first row of that you can see from this equation? So, = which is 0 1 0 into𝑋 𝑋
1

˙  𝑋
2

, , , so this will be the 1 here. The second equation is = , so what will be the second𝑋
1

𝑋
2

𝑋
3

𝑋
2

˙  𝑋
3

row of ? It will be 0 0 1 and then the third equation is is this[𝐹] 𝑋
3

˙  

. So, this is and− 6𝑋
1
 −  11𝑋

2
 +  −  6𝑋

3
 +  6𝑢 − 6𝑋

1
 −  11𝑋

2
 +  −  6𝑋

3
 +  6𝑢

what is the rest of it, what will be here is only 1, right.𝐺[ ],  𝑢

So, there is only one input and one output, so this is a single input single output system. So, ][𝐺

will be 0 0 6 into because remember there is a term. And how about the output equation y =𝑢 6𝑢

, so what is the single measurement we are doing? A single output which is , so it is 1 0 0[𝐻]𝑋 𝑋
1

into . So, y is 1 0 0 into , , , so basically .𝑋 𝑋
1

𝑋
2

𝑋
3

𝑦 =  𝑋
1
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So, the Eigen values of are obtained by solving determinant of - = 0. So, this is  𝐹[ ]   𝐹[ ] λ 𝐼[ ] 𝐹[ ]

a matrix, so the characteristic polynomial would be cubic and it turns out when you3 × 3



expand when you put all the whatever is there, all the elements of . You will get𝐹[ ] 𝐹[ ]

So, the characteristic polynomial is same as the denominator of λ3 +  6λ2 +  11λ +  6 = 0.  

the transfer function; this is a very, very useful observation.

And what are the roots of the polynomial? Their . So, theseλ
1

=  − 1,  λ
2

=  − 2,  λ
3

=  − 3

are distinct roots. So, hence we can find using that Vandermonde matrix, so remember the 𝑃[ ]

first column was 1, then , then , second column was 1, , , third column was 1, , . So,λ
1

λ
1
2 λ

2
λ

2
2 λ

3
λ

3
2

, , are given here, we can compute , , and all the terms.λ
1

λ
2

λ
3

λ
1
2 λ

2
2 λ

3
2

And we will get which is this, can also be calculated, this is a reasonably simple matrix[𝑃] 𝑃[ ]−1

and you can also go back and use MATLAB. So, if you type this matrix in MATLAB and say I

want the you will get back this. So, the has first column , second column𝑃[ ]−1 𝑃[ ]−1 3 − 3 1

, third column .2. 5 − 4  1. 5 0. 5 − 1  0. 5
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So, as I said let us choose a new state variable . So, the state equations in terms of𝑍,   𝑋 = [𝑃] 𝑍

Z are , go back and see the formulation. And then , so what do𝑍̇ =  𝑃[ ]−1  𝐹[ ] 𝑃[ ] 𝑍 𝑃[ ]−1[𝐺] 𝑢

we get? We know what is , we know what is , so you can substitute, and we can do some𝑃[ ] 𝐹[ ]



simplification. Then you will get and what do we expect? We expect it to be diagonal,𝑍
1

˙ ,  𝑍
2

˙ ,  𝑍
3

˙

remember will become a diagonal matrix that was the purpose of finding that𝑃[ ]−1  𝐹[ ] 𝑃[ ] 𝑃[ ] 

matrix.

So, , and or𝑍
1

˙ =  − 𝑍
1
 +  3 𝑢 𝑍

2
˙ =  − 2𝑍

2
 − 6𝑢 𝑍

3
˙ =  0  0 − 3 𝑍

3
3 − 3 𝑍

3
 +  3𝑢

and how about the output equation? Which is , again is we know that, so what𝑌 = 𝐻[ ][𝑃] 𝑍 [𝑃]

you will see is if you simplify this you will get 1 1 1, this into this is 1 1 1 into , , . So,𝑍
1

𝑍
2

𝑍
3

what have we got? So, we had one form which is and now we have another𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢

form which is = some matrix times + some other matrix times and likewise we had𝑍̇ 𝑍 𝑢

, now we have y is some matrix times Z.𝑌 = [𝐻]𝑋
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45789

So, let us write this transfer function in a block diagonal form. So, now what you have is which𝑢

is coming in and then you can see that you have to multiply by . And then𝑢 3,  − 6 𝑎𝑛𝑑 3

whatever is the output here you integrate once and you will get and then you feedback -1.𝑍
1

Similarly, whatever you do integrate once you will get and then whatever you integrate here𝑍
2

output of this input and you will get . And then when you add + + you will get ,𝑍
3

𝑍
1

𝑍
2

𝑍
3

𝑦(𝑠)

remember is 1 1 1 into .𝑦 𝑍
1
,  𝑍

2
,  𝑍

3
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So, in general if you have a system which is and then you have ,𝑋̇ = 𝐹[ ]𝑋 𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢

so you have and . We can also write it symbolically in a𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢

block diagram form. So, this is the block diagram representation of the state equations. So, what

do we have? We have which is coming in, so this is and then we also need to add ,𝑢 [𝐺]𝑢 [𝐹]𝑋

so we will get .𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢

And how do I get here? That is the integral of this , so that is what is shown here you will𝑥 𝑋̇

have , actually there are if it is a vector you will have n parallel integrators. So, each of those1
𝑠  

needs to be integrated and you will get , you multiply by and then you add to , you𝑋̇  𝑋 [𝐹] [𝐺]𝑢

will get , so this is the feedback part. The output of this integrator is , so you can multiply it𝑋 𝑋

by and you also need .[𝐻] [𝐽]𝑢

So, you take this which is input directly multiplied by matrix and then you add these 2 and𝑢 [𝐽]

you will get . So, this is a nice way to represent what is happening in the state equations. So, if𝑦

you just have state equations like this which is and then𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢

you do not see this nice structure that there is some integration which is happening, input to the

block is output after integration is and then you can feedback.𝑋̇ 𝑋



So, the state space formulation which is this can be obtained directly from the equations of

motion. Remember, even if you have a non-linear equation of motion you can linearize about an

equilibrium point and then you will get this and . So,𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢

this term is also some times called as the direct term. So, whatever is the input this is[𝐽]𝑢

directly going to the output, it is not going through the plant, nothing is happening, no integration

or some other feedback is happening to the term.[𝐽]𝑢

So, for most a single input single output system and , we will have𝐽[ ]𝑢 = 0 𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢

and . So, we can also think of this as you can take the Laplace transform of this𝑦 =  𝐻[ ]𝑋 

ordinary differential equation, it is a vector equation but we can take the Laplace transform. And

we can write it as , so let us keep the initial conditions for a while,𝑠𝑋(𝑠) − 𝑋(0)

. [𝐹]  𝑋(𝑠) +  𝐺 𝑢(𝑠)

And the output equation can be written as = . So, both of these 2 can be now𝑦(𝑠)  𝐻[ ]𝑋(𝑠)

written in a simple form after some manipulation as what is ? is𝑦(𝑠) =  𝐻[ ]𝑋  𝑋 𝑋

. So, think about it that we want to rewrite𝑠  𝐼[ ] −  𝐹[ ] ( )
−1

𝑋 0( ) + [𝐻] 𝑠  𝐼[ ] −  𝐹[ ] ( )
−1

[𝐺] 𝑢(𝑠)

this we have to take this side. So you will have and then you will have something𝑋 𝑠  𝐼[ ] −  𝐹[ ]  

which is multiplying and something which is multiplying .𝑋(0) 𝑢(𝑠)

So, for 0 initial conditions which is = 0 then the transfer function is nothing but𝑋(0) 𝑦 𝑠( )/𝑢(𝑠).

Remember, now we are looking at single input single output system, so is 1 dimensional, is𝑦 𝑢

also 1 dimensional. So, this same expression here you drop this term which is ,𝑦(𝑠)/𝑢(𝑠), 𝑋(0)

so what do we left with is . So, the transfer function of a state equations[𝐻] 𝑠  𝐼[ ] −  𝐹[ ] ( )
−1

[𝐺] 

which is of this form and .𝑋̇ =  𝐹[ ]𝑋 + [𝐺]𝑢 𝑦 =  𝐻[ ]𝑋 +  𝐽[ ]𝑢



For a single input single output system with initial condition 0 is and this𝐻[ ] 𝑠  𝐼[ ] −  𝐹[ ] ( )
−1

𝐺[ ] 

can be written as adjoint. So, the inverse is nothing but the adjoint divided by the determinant.

So, we have .[𝐻]𝑎𝑑𝑗 𝑠  𝐼[ ]− 𝐹[ ] ( ) 𝐺[ ]

𝑑𝑒𝑡⁡| 𝑠  𝐼[ ]− 𝐹[ ] ( )|
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So, in summary control is a very vast area. We have linear system, non-linear systems, linear

time in varying system, linear time varying system, SISO system, MIMO system all kinds of

classification of dynamical systems we have. It is a very vast area; we are primarily interested in

linear time invariant systems. We can obtain the state equations of motion, state space equations

of motion from the dynamics of the system they can be linearized about an operating or

equilibrium point.

And then we get these matrices , so these 4 matrices are sometimes called[𝐹],  [𝐺],  [𝐻] 𝑎𝑛𝑑 [𝐽]

as the state space realization of a linear time invariant system. If this was a function of time, this

is also a function of time, is a function of time then you will have linear time varying system.𝐻[ ]

And I showed you there is a relationship between the state space formulation and the transfer

function. So, the transfer function for a SISO system is nothing but 𝑦(𝑠)/𝑢(𝑠) 

.𝐻[ ] 𝑠  𝐼[ ] −  𝐹[ ] ( )
−1

𝐺[ ]


