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Lecture - 02
Position and Orientation of a Rigid Body

Welcome to this NPTEL course on dynamics and control of mechanical systems. My name is
Ashitava Ghoshal, I am a professor in the department of mechanical engineering and in the
centre for product design and manufacturing and Robert Bosch centre for cyber physical systems
Indian Institute of science Bangalore. In this course we will start with the representation of rigid
bodies in 3D space notation and basic concepts. Let us look at position and orientation of a rigid
body in 3D space.
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So, a rigid body can be denoted by this strange looking shape. So, basically this denotes an
abstract rigid body. A rigid body can have several points. So, for example we can have a point i
and a point j similarly point i and a point k and so on. We can always find the distance between

two points let us say i and j this is denoted by dij. So, this is the normal distance which is used in

everywhere it is a Euclidean distance.



So, the distance between any points two points i and j are say for that matter between p and q on
the rigid body is fixed. So, that is one definition of a rigid body that if I pick any two points the

distance does not change. So, there is no deformation. So, if dl,j changes as the rigid body moves

then we say that it is not a rigid body. There is deformation happening in the rigid body.
(Refer Slide Time: 02:23)
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So, now let us look at the rigid body in 3D space. So, we have a reference coordinate system X Y
and Z with an origin. There are many ways you can represent this rigid body. So, the position of
a rigid body is basically the position of a point of interest on the rigid body. So, it could be the
centre of gravity it could be the location of a sensor on the rigid body or it could be any other

point.

So, the position of a point on the rigid body is again as mentioned earlier is with respect to a
reference coordinate system or origin and a right-handed coordinate system X, Y, Z. So,
there are various ways of representing position of a rigid body you can have Cartesian

coordinates. Cartesian coordinates are nothing but x, y and z the usual Cartesian coordinate. You

can have spherical coordinates and you can have cylindrical coordinates.

So, in this course we will be mostly using Cartesian coordinates. So, let us look at Cartesian

coordinates a little bit more detail so what is X, Y and Z of this point P. So, it is nothing but you



draw a vector from o to P and you project the vector along the X axis along the Y axis around
and along the Z axis. So, these projected distances are X, y and z . In the spherical coordinates
you can have these three different angles.

So, you can have two different angles 0, ¢ and the distance to that point. So, spherical
coordinates are given by r, 0, ¢. cylindrical coordinates on the other hand are given by this
radius p and some ¢ and z. So, we will be always or most of the time using Cartesian

coordinates.

(Refer Slide Time: 04:33)
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So, let us continue. So, let us see we have this rigid body in a reference coordinate system A and

as | said we pick a point P on this rigid body and we find this vector Ar which is from the origin
of a coordinate system which is denoted by OA to P and then we have these three projections

which is x, y and z. So, as I said we have a right-handed coordinate system specified by the

A

origin O , aset of three mutually orthogonal axis unit vectors X o Y o Z It

So, you can think of this along the index finger the middle finger and the thumb. So, again Z is X
cross Y this is the right-hand system and as I said earlier, we have to label this reference
coordinate system with A because we will have several such coordinate systems. So, the position
of a point P is denoted by Ar in this rigid body and the position vector Ar can be denoted by 3

Cartesian coordinates X, y and z.



And mathematically this Ar can be written as x along X oY small y along this Y, unit vector
and z along ZA. So, remember XA in its own coordinate system is 1 0 0 likewise YA in its own

coordinate system is 0 1 0 and Z A in its own coordinate system is 0 0 1. So, if you expand this
out you will get x, y and z as a column vector.

(Refer Slide Time: 06:33)
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Now let us look at the very important notion of the orientation of a rigid body and why do we
need this concept of orientation. So, let us look at a dice. So, you can see this dice has a dice has
six faces. So, one such faces with 1 another one is with 5 and this one is 3. Now I can locate the
corner of this dice by this vector which components x, y and z. But this is not enough to

completely describe the dice.

So, for example this price could be rotated about this axis and this axis and then you can see
different things. So, you will see that there is A )

on this face, 3 on this face and 6 on the other face. So, remember in a dice opposite sides add up
to 7. So, when you rotate it this 5 will now you will see as 2. Similarly, this one you will see a 6

whereas these three sort of remains the same this is still the face with the three.



But as you can see this dice looks completely different when you rotate about this line keeping
this corner point fixed. So, just one point on this rigid body with components x, y and z is not
enough. So, that is what I have said the position of one point in 3D space is not enough. So, the
dice looks different when rotated about P x, y, z and what we need basically is something called
the orientation of the rigid body. Just one point is not enough to completely describe the rigid
body.

(Refer Slide Time: 08:26)
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So, let us continue with this concept of orientation. So, let us do a little bit mathematically. So,

we have this rigid body, and we have a coordinate system reference coordinate system

A

XA, YA, ZA labelled as A with the origin OA. And we have another coordinate system which

is fixed to the rigid body which is X iy YB, Z 5 and this we are looking at orientation of the
rigid body. So, we are not really interested in so the origin of the two coordinate systems can be

at the same place.

So, again as I said we attach a coordinate system B to the rigid body and the origin of A and B
are coincident. So, what we want to do is we want to obtain a description of this B coordinate
system with respect to A. So, if you think about it so I have a rigid body and I have a fixed
coordinate system and there is a coordinate system which is attached to the rigid body. So, as I

look at this rigid body in different orientation.



So, basically if I can describe to you what is the B coordinate system with respect to the fixed A
coordinate system that will tell me everything about the orientation of the rigid body.

(Refer Slide Time: 09:50)
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So, let us continue with this concept of orientation. How do we mathematically represent

orientation? So, one very nice way is what is by using called direction cosines. So, we have this

A

unit vector s X iy YB, Z 5 which are attached to the rigid body B and we want to describe this

A

unit vector X 5 YB , Z 5 with respect to the A coordinate system with respectto X 2 Y e Z It

A A

So, basically, we can project X p vector onto X 2 Y o Z M exactly the same way as we

projected the vector of a point to a point along X 2 Y 2 Z 4 and we said that the coordinates

were X, Y and Z. In this case we will see the coordinates are r__, r Likewise, if you

r_ .
11 21’ 31
N N N N
roject Y onto X, Y , Z we will call the coordinates asr_ _,r__,r_ . andforZ r_ _,r
proj B A A A 12° " 22> 32 13° 23’

Tas So, we will see later why this particular way these coordinates are labelled.



Why is it T and now why is not this one not T why are we calling it r21,? We will see that in

a little while. So, this rl_j, are called the direction cosines. And what do we mean by direction
cosines? Basically T is nothing but the dot product of X s with XA. So, the by definition of
dot product X 5 dot X A in the same coordinate system is nothing but the magnitude of AX 57

magnitude of X 4 in the cosine of the angle between the two vectors.

So, it is the cosine of the angle between )/(\ 5 and XA’ A and we can define a 3 x 3 rotation matrix

BA[R] with all the elements T 1, j=1, 2, and 3. So, what is the first column of this rotation
matrix? So, first column of the rotation matrix will be T intol100,r 21into 0 1 0 remember Y
axis in its own coordinate system is 0 1 0, Z axis in its own coordinate system is 0 0 1. So, the

first column willber_ ,r_.r_ .
11° ' 217 ' 31

What will be the second column? The second column will be the Y axis YB axis in this

reference coordinate system A and the third column will be the Z 5 axis in the reference
coordinate system A. And this is one of the reasons why we deliberately labelled these
coefficients be T T Tag like this because I want the first column to be XB with components

r ,r.,r._ ..
be 11 " 21’ " 31

So, as I said this rotation matrix contains the X vector, Y vector, the YB vector, X 5 vector and

ZB vector with respect to the A coordinate system. So, as I had argued earlier if I know these

axes which are fixed to the rigid body with respect to a reference coordinate system then I know
the how the rigid body is oriented with respect to the reference coordinate system. So, hence
BA[R]

completely describes all three coordinate axis of {B} with respect to {A} and that implies
BA[R]

is the orientation of rigid body B in A.



So, just let us go through it once more. So, what I am trying to do is I am trying to write this

A

vector X, Y , Z Bwhich are fixed to the rigid body with respect to the A coordinate system.

And just like any position vector in a rigid body when you project it onto the XA, YA, ZA axis

it has three components. In the case of a position vector, it was x, y and z. In the case of this we

are going tocallit r_ ,r_,r_ .
gomg 11° ' 21° 31

N N A N N
Likewi Y hen project nto X, Y, Z r ,r.,r._and Z_ r _,r_,r. _.Andwhen
ewise, g W en projected onto A A TA 122 220 32 d B 13’ 23’ 33 d whe

we organize all these coefficients in the form of a matrix which is B with respect to A and matrix

with elements T then each column of this rotation matrix is nothing but the at first column is

A

XB, second column is YB and the third column is ZB.
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So, as we discussed in the last slide the first column of the rotation matrix BA[R] has r 1 Tope
T and this is the same as the X 5 axis in the A coordinate system and the rotation matrix first
column is AX 5 second column is AYB third column is AZ 5 And as I had mentioned earlier T

is nothing but the dot product of X 5 with X It So, it is the magnitude which is both of them are

one. So, we are left with cosine of the angle between these two axes X 5 and X R



So, here is AQuick short way or a mnemonic to remember what the direction cosines are and

what are the elements of the rotation matrix BA[R]. So, we put the X 5 along this vertical line

N

YB in this vertical column Z 5 also vertical and the horizontal rows are X o Y 4 and Z I So,
what you can see is T is the dot product of X 5 with X e r21is the dot product of YA with X s

, r31is the dot product of ZA with X 5 and so on.

So, r ,3 You can easily see it is the dot product of ZBwith Y it And AYB this column vector is

A A A
T, along X, axis, T, along Y, axis, T along z, axis. Later on, we will see that when we are

A

rotating about either the XA’B , YB, ZAB or the )?A, l}A, ZAA axis these are two different kinds of
rotations. We will you can see that the columns are not changing when you are rotating about
)23 , the first column will not change. Similarly, if you are rotating about ); 4 the second row
will not change.
(Refer Slide Time: 17:53)
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So, let us look at an example. So, I have, and this is a very simple example this is a planar
example. So, I have a rigid body which is nothing but a square in this case. So, let us say I rotate

this square about this Z axis by 45 °. So, this dark square will now become this dotted square. So,



A N N A
we have a reference coordinate system X o Y K Z 4 and then we have a coordinate system X 2

N

Y . Z, and origins OA and OB are at the same place.
And in this example Z 4 and ZB are at the same place. So, let us find out what are the direction

cosines. So, how do I find direction cosines? So, basically, I find r " is nothing but the dot

product of X, with X 4 S0, in this example this is rotated by 45 °. So, cos of 45 °is 1 by root

2. How about rlz? We can see that it is - 1 by root 2. How T13? What is r13? It is the dot product

of )?B with Z, X and Z.

So, since this is a planar rotation, we have this as T, 88 0. What is r21? If you go back and see
the slide earlier slide, r,, was the dot product of X 5 with respect to YA . So, that you can shown
to be 1 by root 2, r - is the dot product of Y, with respect to Y 4 SO this is 1 by root 2. And

how about the Y is r33=1? Because it is the dot product of Z 5 with respect to ZA . So, hence we

can find the all the element of this rotation matrix for this simple planar case the square is being

rotated about the Z axis.

And we can organize all these things in the form of this rotation matrix. So, the first element is

T, SO this is one by root 2 second element is Ty which is also 1 by root 2 and the third element

is 0. Likewise, the second column is the y axis with written in the A coordinate system. So, that

isr is - 1 by root 2, Ty is 1 by root 2, Ty is 0 and the third column is the ZB axis with respect

to in the A coordinate system. So, now Z s and Z  are at the same place so we have 0 0 1.

(Refer Slide Time: 21:03)
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So, let us look at a slightly more interesting and harder example. So, we want to do how to find
the rotation matrix for some arbitrary orientation. So, let us say we are given this rotation matrix,
and this comes from this example. So, in several examples from now on we will use this cube.
So, this cube is like a dice except now instead of marking 1, 2 and 3 we have coloured it different

colours. So, 1 means the face with 1, 5 means the face with 5, and 4 means the face with 4.

So, this is also shown in this slide pictures. So, 3 is on the other side which is not visible. So,
opposite to 1 is 6 which is here and 5 and the opposite to that will be 2 which is shown in this
view. So, 1 and 6 5 and 2 and this is the third one. So, remember in a dice sum of the opposite

faces add up to 7. So, now let us look at this cube at these dices in this given orientation. So, here

what you can see is this X 5 which was like this basically along this X axis, parallel to this X

axis, Y Z 5 parallel to the Z axis, X Y in this direction.

Now it has rotated. So, X 5 is in this direction, YB is in this direction and Z 5 is in this

direction. So, now you do not see 1, 5 and 4 these faces you see 1, 3, 5 and little bit of so one is
on the other side which you actually do not see and little bit of 6. So, the three views of these
dice are given in this form. So, the task is that [ want to find the orientation of this rigid body. So,

again what you can see is because this is done using some software tool in MATLAB.



N

I can find out what is the dot product of X 5 with X K X 4 is in this direction, Y 4 is in this
direction, ZA is in this direction. So, I can find out the dot product of X 5 with A and it turns
out it is 0.1667. So, X 5 with Y is 0.9832 so first column vector is the X 5 with respect to the

original A coordinate system. Second column is Y, with respect to the original A coordinate

system.

So, as you can see it is slightly harder to visualize or to compute but nevertheless the basic
definition still hold.
(Refer Slide Time: 24:12)
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So, let us look at some of the properties of a rotation matrix BA[R] . So, as I said we have a rigid
body, we have this A coordinate system which is the reference coordinate system, B coordinate
system which is attached to the rigid body, the origins are at the same place O 4 and OB. And

the first column of this rotation matrix is XB with respect to A, second column is YB with

respect to A, third column is Z 5 with respect to A.

So, this vector which is locating a point on the rigid body which is Br we can describe this
vector in a coordinate system and this is again well known you must have seen it in

undergraduate that BA[R] into Br will give you this vector in the A coordinate system. So, if



you pre multiply a vector with a rotation matrix you change the coordinate system. The second

important property of a rotation matrix is that each of these columns are unit vectors.

Why are the unit vectors? Because it is nothing but the XB axis it is a unit vector except it is
described in the {A} coordinate system. So, the magnitude of this each of this axis is still unit

vector so the magnitude is 1 . So, AXB, AYBmagnitude AZBmagnitude are all equal to 1. It is

also important to see that this AX 5 and AYB are perpendicular to each other because remember

this 1s how it was fixed.

A N

The XB , YB and ZAB are fixed on the rigid body {B} but they are still a right-handed

coordinate system they are still orthogonal to each other. So, we have three constraints here that

the magnitude of this column vector is 1 and AXB . AYB is 0, AYB. AZB is 0 and AXB . AZB 1s

also 0. So, we have three constraints here and then there are three constraints here so this is a 3

by 3 matrix. Remember there were nine T ’s, i and j were going from 1, 2 and 3.

So, there are nine direction cosines in this rotation matrix. But because of these 6 constraints

there are only three independent parameters out of this nine T 's. This is a very important

concept that although the rotation matrix contains nine quantities only three of them are
independent. The next important property of this rotation matrix is that the determinant of this
rotation matrix is +1 and because the determinant is 1 you can show that the transpose up into

this matrix.

So, BA [R]T . BA[R] is an identity matrix. So, I am going to use U as an I as an identity matrix

because I did not use I because I later run, in dynamics, we will denote inertia. So, BA[R] into
BA[R] will be a identity matrix. So, because of these two properties the inverse is same as the
transpose. So, remember any matrix A, inverse of A into A will be identity that is a property of a
matrix.



But in this case, it transpose into that matrix is also identity so hence transpose is same as

inverse. So, inverse of this rotation matrix will be denoted by BA [R]_l. Also, physically what it

means is instead of B with respect to A, we have A with respect to B that is what inverse means
and that must be that is the same as BA [R]T .
(Refer Slide Time: 28:47)
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So, let us continue, let us look at what are the eigen values of this matrix. So, it is a 3 by 3 matrix
hence there are three eigenvalues and what is the how do we find the eigen values. We state the
eigenvalue problem which is R into X will be same as A X. There is nothing new this is a
standard eigenvalue problem for any matrix that A into X is same as A into X where As are the

eigen values.

In this case if you expand this eigenvalue which is nothing but determinant of R X - A X = 0. We

can find what is called as the characteristic polynomial and the characteristic polynomial is given
o . 3 2. . .
in this form. It is some - A~ + A into r11+ r22+ T A into this M11’ M22, M33 are called the

miners of this rotation of this matrix and the last term is the determinant of R. This is an

expansion of the determinant of R - Al, =0.



So, the characteristic polynomial is cubic and can be written in this form - A". So, this is not
. 3 2 : . .

minus A — a, A+ a, A- a,= 0. So, a is the sum of the diagonal elements, a, is related to the

minus and a, is the determinant of this matrix R. So, a, is given by 7\1 X 7\2 X 7\3 that is equal

to 1. So, this comes from linear algebra.

So, these are called the invariance and one of the invariants is the product of the eigen values.
And we know this is also equal to determinant of this rotation matrix which we know is one. So,

hence 7\1 X }\2 X A3 the 3 eigen values the product is always 1. Let us continue little bit more.

So, let us from this eigenvalue problem I can rewrite as following. If you take the transpose of

left- and right-hand side.

And three multiply by X "R transpose into R X will be same as R X transpose A transpose A into

X. Now this is same as A transpose A which is 1 . Why is that? Because R'X is identity.

Remember the inverse is the same as the transpose for the rotation matrix so this is identity. So,

the left-hand side is X' X and the right hand side is X' A" A X.

So, both sides X TX in some sense can be removed and then we have ATA = 1. So, what this shows
is that the magnitude of all three eigen values are 1. And we also have that the three product of
the three eigen values is also equal to 1. So, magnitude of each eigenvalue is 1, product of the

three eigenvalues is 1 . So, there are very few ways which both of these can be satisfied.

So, one such way which is that the eigen values of BA[R] are 1 and e Why? Because see if

the product of these three is 1 so I can have for example 7\1 is 1 Azis half and 7\3 is 3 then also I

will get 1. But then this one is telling me that the magnitude of each of the As is 1 . So, I cannot
have 7\3 as 3 or 7\2 as 1 by 3. So, the only way is that one of the eigenvalue is 1 and the other

+id
two are e

So, what is e It is nothing but cos¢ +i sind. So, I here means \/— 1 and ¢ turns out that it

is cos inverse of this. So, this can be proved mathematically if you go back and use all the



properties of the rotation matrix and also go and expand this characteristic polynomial so this is
well known fact. So, I am not going to go into the derivation of this.

(Refer Slide Time: 34:07)
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So, one of the eigenvalue is 1 so the eigen vector corresponding to 1 can be written in this form.

So, let us call that eigen vector as k I am going to write the unit eigen vector. So, that can be

written as 1 by 2 sin ¢ multiplied by a column vector which is Tar™ Tayr Tiz™ Tap Tor™ Ty

So, the previous one we saw that the angle ¢ was related to r 1w’y 2and T Whereas here the

eigen vector corresponding to 1 is related to the other elements of the rotation matrix which is

r T r ,r _and r _.
327 '32°°13° "31° 21 12

basically r
So, it turns out that this can be obtained, and I will show you little later that how we can obtain
this. But from basic linear algebra any eigenvalue problems for a real eigenvalue whichis 1 we
can find what is the eigen vector. So, one important thing to notice here is this is one divided by
2 sin ¢. So, ¢ cannot be 0 or n 1w so we will see some of this come little bit of complications later

on. So, if ¢ is 0 or 2 n 1 there is no rotation.

So, ¢ means that there is a rotation angle if the ¢ is O there is no rotation. If you have ¢ is 2 n - 1
T so then the eigen values are + 1 - 1 and - 1, this is a special case. In this case you do not have

et So, this rotation axis which is k or this eigen vector which we obtained for this eigen value



1 is fixed in A and B and here is the proof. So, we can write a vector in a coordinate system and

another vector which is given in the B coordinate system.

So, if I pre multiply by rotation matrix I get it in A coordinate system. But this BA[R] into
Bk is also same as 1 into Bk why ? because this is the eigen vector corresponding to the

eigenvalue 1 A. So, remember R X is same as A X. So, that this is the eigen value problem. So,
one side we have rotation of B to give you A and the other side it is the eigenvalue problem. So,
first equality comes from the transformation of a vector from B to A and the second equality
from the definition of an eigen vector.

So, hence Ak is same as Bk or in other words this unit vector k which is corresponding to

the eigen vector corresponding to the eigen value 1 is fixed in both coordinate system.

(Refer Slide Time: 37:50)
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In the last slide I showed you that there is a vector k which is fixed in both coordinate system

which is also called the axis of rotation. So, in this slide I want to show you that if I rotate a

vector AQ about this axis of rotation so we want to find out what is the expression for AQ'

which is the rotated AQ about this axis k. So, in this picture we have a reference coordinate

system A and from the origin we have a vector AQ which is rotated about k and it goes to AQ'

and the angle subtended if you look from this side, is 0 .



So, I want to find the expression for AQ" in terms of AQ k and 6. So, if you look at this picture
3D picture from this side opposite to the direction of the rotation axis you can see that AQ' can

be given by AQ plus some vector along A L and another vector along A 5
. So, the question is what is A1 and A ) ? So, what you can see is 4 ) will be perpendicular to Ak

and also to AQ . So, it is along a vector which is AAk cross AQ and this angle sine 6 comes
because it is this projection. So, you can see that there is a sin 6  which will show up Al s a
vector which is from Q to the centre towards the centre. So, what you can see is it will consist of
two parts, one is this AQ dot AAk along /fk - AQ . So, this is the direction that one and this 1 —

cos 6 comes because this entire magnitude cannot be taken.

We just want a small portion of it. So, this is in some sense like 1 and this is like cos 0. So, this is

1 -cos® sowe will get a term like this. So, AQ"' will be basically AQ which is this vector + A1
+ A2 . So, as I said we want to find out AQ' when it is rotated about k by an angle 0. So, AQ'is

given by AQ into cos 0. So, you can see here you will have minus AQ into 1 - cos 6 + some

other terms will show up. 8 So, hence you will be left with AQ cos 6 then AQ so Ak cross

AQ into sin 6 which is this along this A 5 and then the rest of it 1 - cos 0 into Ak into dot AQ

along this k axis. So, this term is coming from here into 1 - cos & and - AQinto 1 - cos 8 +

AQ will left with this term. So, this is a very well-known formula this is called the Rodriguez
formula. So, basically what it is telling you is that if I have a vector which is rotated about
another vector in 3D space.

I can write the location of the new rotated vector in terms of the original vector A and the axis of
rotation and 0. So, this is a very, very famous formula and we will use this formula later on to
derive rotation elements of the rotation matrix. This AQ' can also be written as a rotation matrix
into AQ . So, this is just like any other transformation.

(Refer Slide Time: 42:07)
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So, let us continue, let us assume that this AQ is 1 0 0. Whatis 1 0 0? It is the X axis and this is

being rotated by an angle ¢. So, what is the general form of this rotation axis is kx, ky, kZ as a

column vector. I want to find out what is the rotation matrix BA[R] . Basically, I want to find out
what is this TS So, if you use this Rodriguez formula so we have BA[R] into 1 0 0. So, it is that

and basically, we have cos ¢ into 1 0 0 sin ¢ into cross product and 1 - cos ¢ kx into this. So, this
can be seen and if you simplify this you will get T, as kx square into 1 - cos ¢ + cos ¢ T is kx

ky I -cosd+ kZ sin ¢ and T is nothing but kx kZ 1-coso- ky sin ¢. So, what is this BA[R]

into 1 0 O that is nothing but X 5 ? So, this is the first column of the rotation matrix, and these

are the elements of the first column of the rotation matrix. So, hence the first column of the

rotation matrix can be written in terms of kx, ky, kZ which is along the rotation axis and then

angle ¢ which is the angle about which it is rotated.
Similarly, if you assume AQ is the Y axis or AQ is the Z axis, we can go back to the Rodriguez

formula and then just apply the Rodriguez formula and we can find out what is the second
column and the third column of this rotation matrix. But now we are finding this rotation matrix

in terms of kx, ky, kZ and this rotation angle ¢.

(Refer Slide Time: 44:45)
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A little bit of algebra will tell you that these are the elements of the rotation matrix, T 1s kx
square into 1 - cos ¢ + cos ¢ ., 18 kx ky -1-cos¢- kz sin ¢ T8 this and so on so T, 18 this.

(Refer Slide Time: 45:17)
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So, once we know this general form of a rotation matrix in terms of kx, ky, kZ and this rotation
angle about the rotation axis k rotation angle ¢. So, we can assume that k is parallel to X 4 and of

course hence it is parallel to XB . Because remember X k does not change between the two

coordinate systems. So, the rotation X axis is fixed in both A and B and as a special case [ am

going to assume that this rotation axis is the X, Y axis.



So, let us see the picture. So, what we have is this rigid body my rotation axis is the X axis so
hence XA and X 5 are along the same direction and we are rotating this rigid body by an angle

¢ about this k axis. So, again the origins are at the same place. So, this is the rigid body to which

we attach the B coordinate system and A coordinate system is the reference coordinate system.

So, what is the angle between YA and YB ?

It is ¢ it is the same angle between Z A and Z 57 only the X axis is aligned X 5 and X , areat

the same place along the same direction. So, let us find out the rotation matrix which is BA[R]
, I am going to denote this for a reason which we will see very soon by R into X, ¢. So, basically

it is a rotation matrix consisting of a rotation about the X axis by an angle ¢ and we can find the

elements of the rotation matrix as 1 0 O first column.

Why? Because X axis are at the same place so X 5 and XA are at the same place. This one is 0

cos ¢ sin ¢ and O - sin ¢ cos ¢ so is that correct. So, let us see the Y axis in with respectto Y R

A

Y, axis with respect to X, Y, and Z,. So, y.. X, will be 0 because remember this is

A

rotation about the X axis. So, YB dot X ) will be 0 which is what you see here YB .Y A is

cos ¢.

A A

This is cosine of this angle, YB . ZA is sin ¢ and likewise for the Z axis 0 - sin ¢, cos ¢. So,

what is what we see in this figure is a rotation about X axis and this is what the picture is.

(Refer Slide Time: 48:18)
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How about rotation about Y axis and Z axis again we can either go and see these pictures and see

or we can go back and use the formula in terms of kx, ky, kZ and that angle. So, in that case k

will be 0 1 0 and this is ¢ angle. So, we will get cos ¢ 0 sin ¢, cos ¢ O - sin ¢ and so on. Similarly,
for the Z axis we will get cos ¢ - sin ¢ 0, sin ¢ cos ¢ 0 and 0 0 1. So, I am sure this you have seen

in very many basic mechanics problems in undergraduate.

So, if I rotate a rigid object about the Z axis the X and Y components are cos ¢ - sin ¢ sin ¢ and
cos ¢. So, something like this rotation about X, Y and Z are called simple rotations.
(Refer Slide Time: 49:23)
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Next let us look at another very important concept which is two successive rotations. So, what |

want to mean by two successive rotations is that initially the rigid body B is coincident with A.

A A

So, let us this picture so initially XA, YA , ZA is the reference coordinate system, the B rigid

A

body is aligned with respect to this XA, YA , ZA . So, XB , YB , ZB at this initial instant is

A

aligned with XA, YA s ZA.

The first rotation is relative to A coordinate system after the first rotation A will go to B L So,

A

the rigid body is now described by a coordinate system XB 1, YB land Z 5 1. So, basically

what is happening? You can think of it that this A coordinate system which was the reference
coordinate system the rigid body was in this reference coordinate system it has gone to or it has

been oriented and gone to another coordinate system which is B L

The second rotation is relative to B ) it is very important. The second rotation is not relative to A

it is related to B1 , the moved coordinate system. So, after the second rotation ZB 1 will go to

ZB , XB 1 will go to XB and YB 1 will go to YB . So, the coordinate system B1 goes to B.
So, there are two successive rotations which are happening first A to B1 and then B1 to B. So,

the question is what is the resultant rotation matrix?

And it turns out that the resultant rotation matrix which is the rigid body B with respect to A so

A B x B L B so B with respect to A is nothing but the product of the rotation matrices B 1A [R]
and then BBl[R] . So, it is important to notice the order of the matrix multiplication. So, we went
from A to B1 and then B1 to B. So, from A to B1 there is a rotation matrix BlA[R] . So,

basically B L with respect to a then second one is we went from B , oB.

So, we have B with respect to B , SO this and again if you follow my notation used here sort of

you can think of B L and B ) cancelling and we are left with A and B. So, the resultant rotation



matrix is nothing but the product of the rotation matrices in the sequence it occurred. We went

from A to 81 , B1 to B so it is not in the opposite order. And if you think about it a little bit you

can see that if I have n such successive rotations.

So, I want I go from A to B x B , o B 5 all the way from B to B, I make n's successive

{n-13
rotations. Then the resultant is nothing but the product of all these rotation matrices in the order
of the rotations and matrix multiplication is non-commutative in general. So, we cannot switch

the order. So, we cannot say that it is A B1 , B1 B is not the same as B1 B, A B1 . So, if you
multiply this matrix before this and you know so if you do BBl[R] into B A [R] it is not the

correct one.

It is not the same as BA[R] which is B A [R] into BB 1[R] . And again, in the notation I have
used you can sort of see that here B, and B, is cancelling and we are left with the superscript A

and A subscript B which is nothing but B with respect to A. But in this case, nothing like that is
happening. So, this is cancelling out and we are left with some A and B not in the right way.
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So, important observation is this orientation can be described by three important independent

parameters. So, remember in the rotation matrix each column vector has unit magnitude and each

of these column vectors are perpendicular to each other say hence out of the nine parameters in



the rotation matrix only three were independent. So, we can at least think of representing a

rotation matrix completely by three parameters and this is indeed possible.

So, we can do three successive rotations about fixed access or access fixed to the moving body.
So, there are two ways of doing it. One is we can have rotations about three distinct taxes. So, we
have six combinations we can rotate about X then Y and then Z. But you can change the order
we can have X Z Y Likewise Y Z X and so on. You can also obtain by rotation about two distinct

axes.

So, a distinct here means combinations like this so you can have X Y X, X Z X and so on. So,
there are 12 possible ways of finding rotation of a rigid body by rotating about three axes by
three angles in some sense. We can also have rotations about axis fixed in space. So, remember

these are access rotated about the moved coordinate system. So, remember we went from A to B )

and then from B L to B.

The second rotation which was with respect to B L or the rotated coordinate system. But we can

also rotate about the first with respect to the fixed A then with respect to fixed Y and third with
respect to fixed Z not with respect to the axis which are attached to the moving body or rotating
body. And then there are 12 possible combinations of rotations about access fixed in space and

these are about three and two distinct axes.

So, we will see later most of the time we use this axis which are fixed to the moving body and
rotations about axis which are fixed to the moving body. This is a minimal representation of
orientation of a rigid body only three parameters which are basically angles and no constraint.
So, I can have one angle about X, one angle about Y and one angle about Z. So, the product of
these three rotation matrices are rotations about X, Y and Z will give me a rotation matrix which

represents the orientation of B with respect to A.



So, if you have three angles about two distinct axes so, these ones X Y Z, Z Y Z. These are
called classical Euler angles and about three distinct axes which is X Y Z, X Z Y these are also
called Tait Bryan angles. In some books all of them are called Euler angles.

(Refer Slide Time: 58:04)
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Let us look at orientation of a rigid body using three angles. So, here is a typical example this is a

sketch of an aircraft. So, in this figure we have a reference coordinate system which is X o YA ,
Z 4 with origin O 4 and this aircraft is located by its centre of mass or centre of gravity which

is this vector AC . And at the centre of gravity, we have these three axes which is X i YB and

A A A

ZB . So, XB is along the body or the fuselage of the aircraft, YB is perpendicular to the

fuselage, and Z 5 is perpendicular in this direction.

So, these are also sometimes called as the role which is rotation about the X 5 by an angle «
is the role. Then rotation about YB which can be denoted by 3 as the pitch and rotation about

Z, by an angle y
this is called the yaw. So, pitch means the nose of the plane goes up and down, yaw means it is
rotating about the Z axis and roll means it is rotating about the X axis and although we are not

going to go into the details.



This role, pitch and yaw could be done using what are called as control surfaces. So, we have
elevators we have radar and early run. So, the I want to describe the orientation of this aircraft.
So, we can describe the orientation of this aircraft by these three angles by this roll angle o , 3
and pitch angle B and the yaw angle y . So, these are what are called as three rotations about
body fixed axis.

So, remember the axis are fixed to the aircraft and these rotations are about axis which are fixed
to the aircraft.

(Refer Slide Time: 01:00:25)
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So, if you go back and remember we were going from one coordinate system A to B ) then B , to
another coordinate system and then B let us call that B 5 and then from B , We go to another

coordinate system which let us call that the B coordinate system. So, there are three rotations

which are happening. So, the first rotation in this X, Y, Z Euler angles is that we go from A to B )

. So, this is I have introduced this notation earlier.

It is a rotation matrix about X axis by an angle 91 . So, what will be the elements of this rotation

matrix? So, you can see this will be 1 0 0, the X axis is same Y axis is given by 0 cos 91 sin 91 ,



Z axis is given by 0 - sin 61 cos 91 . So, this we can obtain using the general formula of T in

terms of kx, ky, kz and angle ¢. So, here ¢ is 0 L which is the rotation about the X axis.

Likewise, we can find the rotation about Y axis which is taking B | to B 5 and then we find the

elements of the rotation matrix as cos 0 5 0 sin O . 0 1 0 and so on. So, pictorially what is

happening is first rotation is about the X axis. So, A and B , are like this X 4 and X 5 I are at

A

the same place YA is going to YB 1, ZA is going to ZB 1. The second rotation is about B1 it
is the moved axis.

So, as you can see Y, 1 and Y, 2 are at the same place and then the third rotation is about the

move Z axis. So, now ZB and ZB 2 are at the same place so this is the third rotation 63 . So, I

have given you the rotation matrix corresponding to rotation about X which is the rotation about

Y which is this and pictorially this is what is happening. So, it is important to notice that the first

rotation XA and XB 1 are the same place.

In the second rotation YB 1 and YB 2 are at the same place and there is a third rotation ZB

and Z 5 2 are at the same place. So, you can see there are all these different lines depending on

which is the fixed axis or about which axis you are rotating and how the other axis is changing.
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So, the rotation about the Z is given by R( ZA, 0 3)which is given by this rotation matrix cos 0 -
sin 63 0 sin 63 cos 63 0 and 0 0 1. So, the resultant rotation as I have mentioned is in the order
of the rotations. So, we went from A to B L which is rotation about X axis B ) to B 5 which is
rotation about Y axis then B2 to B which is rotation about Z axis. So, we multiply the rotation

matrices in the order in which it happened.

So, then we can see that the resultant rotation matrix is this. So, little bit of math little bit of
algebra that you multiply three rotation matrices and then you will get back this as the resultant

rotation matrix where c, and S, denote the cosine 6 and sin 6 respectively. So, what is the

English meaning of this? This tells you that the rotation of B resultant rotation of the object and

B with respect to A is given by cos and sin of this various angles 6 L 0 5 0 -

So, c 5 here denotes cos 6 .05 denotes sin 0 L So, as mentioned here C.»S, denote cosei and sin
GL_ respectively. So, it is again I want to stress it again and again that we need to multiply the

matrices in the order of the rotations that we did. So, if you were to switch the order you will get
completely different terms here and they are not the rotation of this airplane or orientation of
airplane with respect to A coordinate system.

(Refer Slide Time: 01:05:28)
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In the last slide we had obtained the rotation matrix from X Y Z Euler angles. So, when we had
91 rotation about the X axis 92 rotation about the Y axis 93 rotation about the Z axis, we obtain

the Euler BA[R] which is given by these elements. So, for example the T is c, C,- Recall c,
means cosine of 62 c, means cosine of 63 . So, for example here stands for sin of 91 . So, we

had obtained this 3 by 3 rotation matrix.

A natural question is if you are given a rotation matrix and if you are told that these are the X Y

Z Euler angles can we find out 91 92 93 ? So, some numbers are given. All these 9 numbers for
which populate this rotation matrix we want to find out 6 L 0 5 and 0 - So, we can look at these

elements of the rotation matrix and derive an algorithm. So, let us look at this element of the

rotation Matrix.

So, if T which is sin 62 is not equal to +1. So, in that sense 62 is not equal to plus minus 90.

2 2 2 2 . .
So, then we can find that T i\/(rll + rlz). So, .t rlzwﬂl be left with cos 62 . And when
you take the square root, you can have 2 plus minus signs. And we can find 6 5 because sin 92 is
known r 13 is known and also this term under the square root is known because r " and r 12 is

known.



And we can use this atan2 which is that basically a tangent inverse of Y by X but it gives you in

the right quadrant. So, I can find out 92 from this expression. Once I find out 62 then I can take
these 2 terms which is T s and Tos I can divide by cos 92 . So, I will be left with sin 91 and cos
0 L So, 6 , can again be found as using atan2. Of these 2 terms 7 23 divided by cos 62 and Tas

divided by cos 0 -

So, again we go back to this thing that if 62 is £90° ° or T is r33i1 then cos 92 will be 0. So,
we could not divide by cos 62 . So, this is a special case which is why we are in the algorithm.
We have a special case of if T, not equal to £1 we can find out 0 , Wecan find out 6, and we

can also find out 6 3 because again we can divide r 12 by cos 0 , We will be left with sin 6 -

And we can divide r 1 with cos 0 5 and we will be left with cos 0 5 - Again, we can use atan2
formula and obtain 93 . So, atan2 is this MATLAB supplied routine which gives you the angle in

the right quadrant. It is basically tan inverse of Y by X but it looks at the sign of Y and X. So, tan
inverse of minus 1, minus 1 will be in the third quadrant. So, as I said atan2 y, X is a 4 quadrant

R tangent function. It is available in MATLAB.

And it will give you the angles in this - T to + 1. So, what is the algorithm telling you? That if I

give you these 9 numbers, I can get 2 sets of values as 6,6, and 0 -

(Refer Slide Time: 01:10:09)
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So, let us continue. So, we are basically deriving an algorithm where if you are given the
rotation matrix BA[R], we can find X Y Z Euler angles. In the last slide | had showed you that
starting from this rotation matrix where sin 92 is not +1. Then we obtain 91 92 and 93 . So, let

us see what happens when you have 62 is + %

. So, if 92 is + % so this will become 1 these 2 terms will become 0. So, cos %
is 0.

Here also these 2 terms will be 0. And now we are left with these 4 terms so, this is T Ta1 T
and Ty So, if you substitute 62 as + % in this expression so you will have c, +s 3 c,- So, if

you go back to your trigonometry this is nothing but sin of 61 + 63 . So, similarly if you substitute

92 as % here with - c,c, +s 3 ¢, which is nothing but cos of 91 + 63 .
So, what you can see is when 62 is + % | cannot find out both 61 and 63 because this term

which is the only left term because these are all zeroes everything else has become 0. You will
see that it is sin of 61 + 93 . So, we cannot find both 91 and 93 uniquely. So, we cannot give up.

So, there is a convention when you want to find Euler angles given a rotation matrix and in this

special case of 6 is + -



We make a convention which says the following. If Tl is 1 so sin 92 is 1 which means 62 is +

% . Then we can say 61 is atan2( T rzz) it will be atan2 this T which is sin of 91 + 93 and
this is cosine of 91 + 93 . So, we can find out atan2 and then since we know we cannot find 61

and 6, uniquely. We say 6 is this and 6, is 0. So, in summary if Tis is 6, is obtained from

this atan2 formula 62 is of course % And 93 is chosen as 0. If T is - 1 then 61 will be — atan2

of T Ty again, we can check these terms, one of them is sin of a + b another one is cos of a +

b. And then we say 6, is - % and 8, is 0. So, this condition 8, is + % is known as a

singularity condition. So, this happens in all Euler angle representations. So, there are special
angles when we cannot find the other 2 angles uniquely.
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So, is there a practical example for Euler rotations about 2 axes? And the answer is yes. So, one
of the well-known problem in dynamics is this problem of a spinning top. So, this is a sketch of a

top which is spinning about this point which is fixed. So, OA and OB is the point about which

this top is spinning. So, typically in a top there are 3 possible angles. One is called precession

which is rotation about the Z axis.

Then there is this tilt or this top which can tilt from the vertical that is about the X axis this is 92
and then the top itself is spinning about its Z axis which is 63 . It is called the spin axis. So, in

this case we have Euler rotations about Z X Z. So, you can see Z 61 X0 5 andZ 0 - And again,



we can find individual rotation matrices rotations about Z, rotations about X, rotations about Z

and pre multiply all of them in the order in which it is happening.

And we will get a resultant rotation matrix which looks like this. So, again we can see that 3 3

element is cos 92 and so on.
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How about rotations about 2 distinct axes? There are many such examples in actual robotics and
various other places. One such example is this robot. So, this is the sixth degree of freedom
robot. It is a very well-known robot called the Puma 560 robot. It consists of 6 motors. So, one
rotation is about this vertical axis, waist then shoulder then elbow. More importantly as far as we

are concerned here there are 3 rotations which are happening at the wrist.

So, wrist bend flange and wrist rotation. So, in this case for this Puma robot the wrist has 3 ° of
freedom. You can achieve arbitrary orientation by the wrist, and it can be modelled as Z Y Z
Euler rotations. So, we do not want to go into too much detail. But in a robot the Z axis is
typically the rotation axis. So, in one case you have one Z axis then you have another one which
is perpendicular to the Z which is the Y axis and again there is a third rotation which is
happening about the Z axis.
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Next, we have an example of Z Y Z Euler angles. Basically, there are 3 consecutive rotations

about the Z axis, then the Y axis and then again, the moved Z axis. Pictorially what is happening

is what you can see is that the first rotation ZA and Z 5 1 are at the same place so, this is 61 .

The second rotation is about the Y axis. So, YB 1 and YB 2 are at the same place and rotation

axis is Y axis it is about 62 . And the third rotation is about the moved Z axis.

So, ZB 2 and ZB are at the same place so, this is 0 - So, the locations or the orientation of the

different access are shown in all these pictures. So, how do I find what is the resultant rotation

matrix? So, basically, we multiply 3 rotation matrices first one is about Z axis. So, here ¢ | means
cos 6 L sin 0 L and so on. And you can see that the Z axis is the fixed axis so 0 0 1 that does not

change. Then the second rotation is about the Y axis moved Y axis.

So, cos 6 5> 0, sin O ) and again the Y axis is not changing, and the third rotation is back to Z but

it is the moved Z. so, in this picture it is about the moved Z axis. So, again we have this rotation
matrix. And we can multiply all these 3 out and then you can see that you get a resultant rotation

matrix which looks like this. So, the important thing here is that the 3 3 element is cos 92 . This

element is sin O 5 sin 0 -



And the three one element is - sin 62 cos 93 and these 1 3 elements is cos 91 sin 92 and this
one is sin 91 sin 92 . So, you can notice that the rotation matrix here is very different from the

previous rotation matrix.
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And again, we can find the algorithm which given r, are given the rotation matrix. And I know
itis a Z'Y Z Euler angle I can find out all the 3 angles 91 , 62 and 63 . So, for example 61 is
given in this form 0 5 is given in this form 0 3 is given in this form. So, again here you can see
that there is some problem in sin 62 is 0. So, when T is + 1 you have a singularity, and we

cannot find 91 + 93 .

So, this is a typical thing which happens in all Euler angles. So, there are certain angles which

you cannot find uniquely for some cases. And again, we can find out 91 is this 92 is given by
this in terms of rl,j . So, first we find 92 then we find 91 then we find 63 . So, that is similar to

whatever we have done before. And then there are these special cases if r 23 is 1 then we find 6 )

to 0 and 93 is this.



If Tas is - 1 then 91 is 0 62 is and 63 is this. So, again for a given rotation matrix the 3, ZY
Z Euler angles 6 a 2 and 3 there are 2 possible sets.
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We can also have rotations about axis which are fixed in space. So, these are called space fixed

rotation. So, here is an example. So, first rotation is about the X axis. So, you can see X A and

A

X 5 1 is at the same place and this is rotation about 0 L The second rotation is about the Y axis

and not the YB 1 axis not the moved B axis but the original Y axis. So, it is about YA by 62

and finally the third rotation is about the Z axis.

And again, it is not this moved Z axis in which case would have been Z 5 2 but it is about Z,.

So, what we are doing is 3 successive rotations but not about the body fixed access. It is about

the original reference or X Y and Z in the space fixed axes. So, as I said the first rotation is about
X axis. So, I go from A to B1 and we can find this rotation matrix very easily. So, XA and X 5

1 is at the same place.



So, we have 1 0 0 X axis is at the same place Y axis you know cos 91 and sin 91 and so on. The
second rotation is about YA I know the formula if I rotate about the moved Y axis. But I do not

know where the moved Y axis is. So, what we want to do is we want to find out Y 4 in the

moved coordinate system in the rotated coordinate system B L And we can find this? Yes. So, we

know that this rotation matrix B1A [R] into B1 YA is010.

Why? Because this is I am rotating about the A axis. So, A B, into B, this will give me the Y
axis in its original coordinate system in its own reference coordinate system so, it is 0 1 0. So,
solving this equation I can show that IA( L isSAB , transpose R transpose into 0 1 0. So, inverse of
this is same as transpose. So, I want to find out what this Y axis is in the B coordinate system.
Let us call it IA( ) and this can be found out by this simple transpose of the rotation matrix into 0

10.

Likewise, now I can know what is B L to B - So, I can find out where is B 5 with respect to B L
by rotating about K in by 62 . And can I find this? Yes, because I have the general formula for a
rotation matrix given an axis and an angle long time back, I had shown you T in terms of kx

square into 1 - cos ¢ and so on. So, various rij ’s in terms of kx, ky, kz and ¢. So, I know what is

K 1 know; what is ¢ in this case it is 92 .

So, hence I can use the general formula to find B, with respect to B, rotation matrix. The third
rotation is about the Z I Again, [ want to find out why this Z 4 axis is with respect to the

moved coordinate system. So, I want to find out what is Z 4 with respect to the B 5 coordinate

system. So, can I find that out? Yes. So, again we use this simple relationship that B 1A [R] into



A

BzBl[R] into B2 ZA should be equal to 0 0 1 because you can see B1 B1 cancels B2 B2

cancels.

And you have A Z, which is 0 0 1. So, do I know what is BlA[R] ? Yes, this is B A [R].Dol

know what is BzB1[R] ? Yes, I know this from this formula once I expand it. So, then I can find
out B 5 Z 4 Z M in the B 5 coordinate system. And then I can find the rotation meter is going

from B2 to B and this is 32 ZA by 63 . So, this is that K ¢ formula I can easily find this out.
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So, as mentioned in the last slide the X Y Z space fixed rotation the first rotation is about X A

axis. Remember A is the fixed coordinate system. So, we have a rotation matrix B A [R] which

is nothing but rotation by angle 0 Ny about the X M axis. We can obtain the rotation matrix itis 1 0

0 first row 1 0 O first column. This is ¢ L- €, 80, is sin O L€ is cos 0 L The second rotation is

about Y P



So, we need to find out 1;' A in the moved coordinate system in the B L coordinate system. And
that we can obtain by using this transformation which is B 1A [R] into B1 1;A is nothing but 0 1
0. The 1?' A in its own coordinate system is 0 1 0. And again, we can see that B L and D 1 will
cancel out. So, we will get l?A in the A coordinate system which is 0 1 0. So, from this formula
we can find out what is B1 I?A which is nothing but you take the inverse of this rotation matrix

multiply on the left and right.

A

The inverse is same as the transpose. So, you will get B1 YA is BlA[R] transpose 0 1 0. So,
hence we can find out what is B ) Y i And if we want to go from B , to B 5 coordinate system

so the rotation is 92 about the YA in the B1 coordinate system. Again B1 YA after doing this
transformation we can find out that it is O ¢ LTS column vector 0 ¢ LTSy And we can find out

what is this B L B ) R by applying this and we again use the k ¢ formula to obtain the rotation

matrix.
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To recapitulate we obtain the k ¢ formula using this rotation of an axis of a vector AQ by an

angle 0 about the k axis. And this was the famous Rodriguez formula which is AQ"' whereas



AQ cos 8 + Ak cross AQ intosin ® +1-cos® Ak dot AQ along Ak vector. And this
formula was derived earlier. So, we obtained r 1 which is nothing but ki (1 -cos ¢) + cos ¢ and

so on. So, for example Tos is kj (1 - cos ¢) + cos ¢.

So, we had seen these formulas before. So, we use the Rodriguez formula and then we obtain the

rotation matrix elements T in terms of kx, ky, kZ and the rotation angle cos ¢. So, now we have

A

the rotation x axis is this YA in the B coordinate system. So, the k here is 0 c,-S, and then

B 2B 1[R] it is the rotation about this }; 4 by 0 5 So, if you substitute k as 0 ¢ 1S and then you
have 0 5 which is the rotation about this k axis. And then you use these formulas for T, you will
get the rotation matrix going from B1 to B2 . So, it is a little bit complicated. Some
simplification is required. So, you can see that the T is cos 62 T, is sin 91 sin 92 r

1Isc. s
3512’

. : . : . 2 .
- - , + -1)tc..
r, 8- s, T is-c s, the r,, termis much more complicated. It is 1 sl(c2 1) c, This

termis ¢ ) into ¢ , - 1 and so on. So, it is a rotation matrix.

Because what have we done? We have used this k ¢ formula. Now k is not one of the X Y or Z

axis. The k is 0 c,-S, and the ¢ here corresponding to 92 . So, if you just substitute these X you

know in these expressions you will get this rotation matrix. So, now we have obtained from A to

B, and then B, toB, . So, if you multiply A B, into B B,,we will get B.A [R]. And then if

we have seen earlier what was A B ) it was nothing but a rotation about the X axis.

And then B 2B 1[R] is this complicated rotation matrix. And then if you multiply these 2 you will
get a nice simple rotation matrix which tells you what is B2 with respect to A. So, you will get
c, s.5,C5, 0 c -5, then - sin 61 sin Glcos 92 c,c, - So, all these squares and product of

square into (c - 1) and so on will be simplified and you will get this simple rotation matrix.



And this rotation matrix is a result of 2 rotations about X and Y. Both the X and the Y are the
space fixed rotation matrices about space fixed axis.
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So, in the X Y Z space fixed rotations the third rotation is about the Z axis and this is the original

Z axis the Z 4 axis. So, the fixed axis which is X ) Y A Z I And how do we find out what is
this Z 4 axis in the moved B 5 coordinate system. So, again we can use this formula which is

B.A [R] into B, Z, will be 0 0 1. Again, you can see that these B, and B, will cancel out sort

of and then we are left with these 0 0 1 the Z axis in its own coordinate system.

And now again we can pre multiply by BZA[R]T. So, then 32 QA will be that BZA[R]T into0 0 1.
And we have obtained what is BZA[R] in the previous slide. So, hence BZAZ will be given by
A

this column vector - s, €, €€, . And again, we can use the k ¢ formula. Now in this case k is

this axis which is not a 0 0 1 or 1 0 0 one of those simple rotations. But it is a rotation about an
axis which is - s, $,¢, €€, and the angle of rotation about this axis is 63 .

So, if you go back and substitute k is this and 93 in that k ¢ formula, we will get some really

complicated rotation matrix. And what is this? This is B 5 and it is finally going to B. So, we will



. . ) 2 . .
get this expression which is s, tc, into c, and so on. So, as you can see now the rotation
o . . . 2 2 2.
matrix is much more complicated. So, for example this r,, termis 1 - (52 + s c, into (1- c3)

.2 2.
riss,tc into c, .
So, you will get this very complicated terms. And this can be again done if you are careful, or

you can use this one of this computer algebra tools to obtain this rotation matrix. And this as |

said this rotation matrix was obtained from again using k ¢ where now the k axis is this axis - s 5

s.c, cc, and ¢ here corresponds to 63 .
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But finally, if I multiply these 3 in the order that it has happened remember we went from A to
B Lo B L to B 5 B 5 toB,Ato B | was rotation about X. This is about that K L this is about K 5 and

then if you multiply all these things, you will get a nice much simpler rotation matrix example.

So, the x axis is C,C, C,S, -5, So, the Z axis is s, C, + S.S, and so on. This looks sort of

little bit more familiar but clearly it is not the same as X Y Z about body fixed access.

So, if you were to do about body fixed X Y X rotations then it is much simpler. This is the body
fixed X rotation this is the body fixed Y rotation this is the body fix Z rotation. And you multiply

it again in that order it happened, and you will get this rotation matrix. So, what you can see is



these 2 are not anywhere similar. So, for example this is c,C, SO this one look okay ¢, c, it

looks okay.

But here it is s, whereas here it is this complicated term which is c s, ¢, tss, whereas here
it will be just S,- So, the body fixed X Y Z rotation and the space fix X Y Z rotations are not the

same. So, space fixed X Y Z rotation is different from body fixed X Y Z rotations.
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However, they are related. This is a very interesting observation. So, if you were to take the body

fixed X Y Z rotation matrix replace all Gi, i=1, 2, 3 by - Gi, and then transpose the resultant

matrix you will get the space fixed rotation matrix and this can be proved. So, if you think about

it if I rotate about the space fixed X axis by 61 then Y axis by 62 then Z axis by 63 followed by

X axis by - 6, followed by body fixed Y axis by - 6, and body fixed Z axis by - 93 .

It will bring B back to A. You can draw it yourself and see, so hence this order of matrix
multiplication R( XA, 61) ( YA ,62) ( ZA, 93) followed by ( XA - 91) ( YB1 ,-62) ( ZB2 ,
-0 3) will give you identity. And what is R (X ,- 6 1) ? It is nothing but the inverse of the matrix.

So, more details of this you can see in this book by Kane and Levinson. So, hence rotation



matrix obtained from space fixed X Y Z rotation is same as rotation matrix obtained from ZY Z

and vice versa.

So, this is in many books that you say that if you do X Y Z then if you invert sometimes the
invert the order, they will say this is same as Z Y X and this is what is exactly happening. So,
body fixed X Y Z is same as space fixed Z Y Z and vice versa. And you can get similar results
for rotations about two distinct axes.
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So, just let us look at pictorially what is happening with rotations about 3 angles. So, if you have

X Y Z body fixed so first, I rotate about X then I rotate above the moved Y and then I rotate

about the moved Z. So, this is XA X 51 is same. Then I rotate about YB1 then I rotate about

A

Z 52 - So, you can count the number of lines. So, these are the X axis Y axis and Z axis. So, what

N N N A
you can see is there are 3 X axes one is X o X 5 then X 5 and then X 52 and so on.

Similarly, there are 3 Y axis lines and there are 3 Z axis lines. If you have rotations about 2
distinct axis body fixed which is Z Y Z. So, meaning what? First rotation is about Z then it is
rotated about the new Y. And then it is rotated about finally again the new Z or the moved Z. So,

you can see that there are 2 lines about Z and there are 3 lines about Y and there are 4 lines about



Z for the X- axis. If you see space fixed on the other hand what you can see is the first rotation is

about X.

So, there is one XA and XBl is same. Then the next rotation is about YA and the third

rotation is about Z 4 So, you can see the number of lines. So, there are 4 lines in Y. There are 4

lines in Z and there are 3 lines in X. Actually, two of these are coincident here. So, the reason
why this picture is drawn here is you can get a good geometric field as to how many different
lines are there in each one of these different kinds of Euler angles rotations and they are

different.

So, this is 3, this is some 3 2 4 and this is 4 4 3. And this is mentioned here. So, X Y Z body fix 3
line seen along each X Y and Z, ZY Z- 2 for Z for X -3 for Y. X Y Z -3 for X -4 for Y and 4 for
Z.

(Refer Slide Time: 01:41:46)

¥
s

HEFTEL Mix

Example = 30 numerical example continued for X-¥-Z, Z-Y-Z body fixed Euler angles
3D numerical example for X-Y-Z & Z-Y-X space fixed rotations

Ashitava Ghosal {115 Dynamics & Control of Mechanical Systems NPTEL, 2022

So, let us look at some examples.

(Refer Slide Time: 01:41:51)
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So, these examples were all created in MATLAB. So, we will quickly go through them. So, let us
see this cube again that dice and the original configuration is in this form. So, the top one is 1,
this is 4 and this is 5. And then the other 3 views you can see what the other views. So, the
bottom will be 6 which is shown here and this side will be 3 which is shown here and so on. So,
if I rotate about x axis it will look like this.

(Refer Slide Time: 01:42:21)

®
Rotation about X by 60 degrees »
. HIFTEL e
:.:

#

*

Ashitava Ghosal {I15¢) Dynamics & Control of Mechanical Systems NPTEL, 2022

So, if I rotate by 60 ° so X b and the same new X are at the same place. The Y and Z looks like
this. So, now you can see that you see different faces you see 1, 2 and 4 is same. But you see 1, 2

and something else is happening.



(Refer Slide Time: 01:42:50)
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If you rotate now about Y axis by 45 ° it will look like this. So, you see 2 second phase 1 phase a
little bit of you know maybe the fourth face. So, it looks different.
(Refer Slide Time: 01:43:04)
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And finally, if I rotate about Z by - 75 ° it looks like this. So, these angles were chosen randomly.
So, there is a program which is available which you can rotate this cube or this dice and see how
it looks like. And you can see that these rotations are different depending on which way you
rotate. And what is the sequence of rotations?

(Refer Slide Time: 01:43:29)
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So, here is an initial configuration here is the final configuration and this is what it looks like. So,
we have rotated about the original X axis Y axis by 45 © and the original Z axis by - 75 °. And
this is what it will look like the initial and the final configuration.

(Video Starts 01:44:11)

And here is a video which shows how these rotations are happening. So, what you can see here is
the rotation matrix as it is changing. If it is rotating about ZA axis in this case. But you can see

the third row is not changing similarly when it was rotating about the X axis the third row. So, in
space fixed rotations the rows will not change.

(Video Ends 01:44:49)

(Refer Slide Time: 01:44:50)
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So, for Z rotation in space fix the third row was not changing, X rotation first row was not
changing. Now let us look at body fixed X Y Z. This is the original configuration. This is [ am
rotating about X axis by 60 °. Then I am rotating about Y axis by 45 ° and then I am rotating

about Z axis by- 75 °. So, we are using the same angles as in the space fixed. But in one case it is
about the original X Y and Z reference X 4 Y 4 Z 4 but now it is about X 5 YB Z 5

(Refer Slide Time: 01:45:42)
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So, again you can see that the initial configuration is this. We started with the same initial
configuration. And then the final configuration looks like this and the rotation matrix is this and

again you can see this video.



(Video Starts: 01:46:00)

So, if you watch little bit carefully if you are rotating about X 5 the column vector X 5 is not

changing it is still staying 1 0 0. And next you will see that when it is rotating about YB the

second column is not changing. The second column remember, is for the Y axis. And third is
when we are rotating about the moved z axis the third is not changing. The first 2 columns are
changing. So, this is another interpretation of space fixed versus body fixed rotations.

(Video Ends: 01:46:38)
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In the space fixed especially for these videos the rows were not changing depending on which
axis it was rotating whereas for the body fixed rotations the columns are not changing.

(Refer Slide Time: 01:47:01)
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And here is a picture of the final rotation matrices. So, when you have space fixed X Y Z

rotations and again those 3 angles which I mentioned earlier about X Y and Z you will get this

rotation matrix and for the body fixed you will get this rotation matrix. So, as you can see both

are very different. Sometimes it might look the same you know this one is looking the same as

this.

This one is looking the same as this. But the other terms are very different which is what we saw

in the analytical formulations also.

(Refer Slide Time: 01:47:45)
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In the last slide I showed you that the body fixed X Y Z and the space fixed X Y Z rotations they
give rise to very different rotation matrices. It also shows you that the picture of this cube once it
is rotated by the same 3 angles looks very different. So, in this slide I want to prove to you that
body fixed X Y Z is same as space fixed Z Y X rotations. So, I can show it to you
mathematically but I want to show it to you numerically that after doing body fixed X Y Z.

And then on the similarly if I do space fixed Z Y X by the same angles then I will get back the
same final orientation.

(Refer Slide Time: 01:48:50)
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So, the first rotation is about Z axis by - 75 © because we are keeping the angles as same.

(Refer Slide Time: 01:48:55)
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The second rotation is about Y by 45 °.
(Refer Slide Time: 01:49:00)
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And the third rotation is about X by 60 °.
(Refer Slide Time: 01:49:03)
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Now the initial configuration was this. Then we did this 3 Z'Y X about space fixed axis. And we

get this. So, this is the rotation matrix. These are the elements of the rotation matrix which is

nothing new which has been seen earlier.
(Video Starts 01:49:26)

And this is the video.

(Video Ends 01:50:06)
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So, note again if it is space fix the first row it was not changing. So, this is the body fixed X Y Z
rotation it comes to this. And the space fix Z Y X rotation looks like this. So, both looks exactly
the same and the rotation matrix is this. So, at least numerically you can verify yourself of course
for those 3 angles which I chose that body fixed X Y Z is same as space fixed Z Y X.

(Refer Slide Time: 01:50:43)
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Body fixed rotations about 2 distinct axes:

And similar results we can or numerical simulations we can do for body fixed rotations which is
Z Y Z. In this case again this is the original configuration. And we are going to rotate about body
fixed Z then Y and then Z. So, Y is the new Y and Z is the final again after second rotation

whatever is the Z.
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So, let us pick these angles Z by 30 °.
(Refer Slide Time: 01:51:16)
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Then Y by 60 ° and Z by 90 °.
(Refer Slide Time: 01:51:23)
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This is what it will look like. And again, this is the initial configuration 5 4 and after those 3
rotations of 30, 60 and 90 it looks like this.

(Video Starts: 01:51:35)

And this is a video of the body fixed Z Y Z rotations. So, remember I said Euler angles can be
both about 3 distinct axes and about 2 distinct axes. So, these are examples of 2 distinct axes.

And again, you can see that when it is rotating about the Z axis the last row column does not



change. In space fix the row does not change numbers in the row. In body fixed the column does
not change.

(Video Ends: 01:52:15)
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So, let us look at some other representation of orientation. So, there is a very well-known
representation of orientation called Euler parameters. So, basically it contains 4 parameters and it

is derived from that k and ¢. So, in k we have kx, ky, kz and then angle ¢. This is the k ¢

representation. So, out of this k and ¢ we define 3 parameters which are vector epsilon which is k

into sin ¢ by 2. So, k is a vector.

So, when you multiply by a scalar it still stays as a vector. And a fourth parameter € is cos ¢ by

.. .2 2 2 2. .. .
2. This is the scalar. So, what you can see is 60+ €, + €2+ €, 18 1. So, this is one constraint. In

Euler parameters there are 4 parameters but there is one constraint. Remember in Euler angles
there were only 3 angles and there were no constraints. So, a little bit about more about Euler

parameters.

We can derive the Euler parameters and their relationship to the rotation matrix or the direction

cosines T Top by using Rodriguez formula. So, if you keep AQ as 100 T Top Ty is

given by thls. So, you can see that this is 0 €, "€, and this is 2 €, [e1 €, €]. So, T is given by



. . o 2 2 — , .
+ - - +
this expression which is € € - €, , T, isgiven by this 2 € € 2 €, €, and T, 18

given by 2 € € -260 €,
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And we can obtain for all the other direction cosines by choosing AQ was 0 1 0or AQwas 00
1. We can find how all the 9 direction cosines are related to the 4 Euler parameters. These are
useful expressions to have. And given T or the direction cosines | can find out also the Euler

parameters. So, previously given the Euler parameters | can find out T ’s. So, we are going

from so for example if all the € € € and €, is given.

| can substitute on the right-hand side and get LU S and so on. We can also do the reverse.

If | give you T Ty T and T, and all the 9 parameters then | can find out €, is given by this

23

€, is given by this expression €, is given by T Ty into 4 € where finally € is 1/ 2 square root

1
of this. So, again as you can see, we can go from Euler parameters to direction cosines and
direction cosines to Euler parameters.

Little bit more on Euler parameters. So, for ¢ = m. So, remember the rotation axis is k and the
angle which it is rotating about is ¢. So, if that were m then € will be 0. But Eiz is still non-zero.

So, at least one Euler parameter is non-zero. So, unlike Euler angles there is no singularity in
Euler parameters. So, this is one very big advantage. So, remember in Euler angles there were

always these problems of some angle being either 0 or %



. So, you could not find all the Euler angles uniquely. So, no such problem exists in Euler
parameters. So, this is one of the reasons Euler parameters are used extensively in many
applications. I will mention those in a few slides from now.

(Refer Slide Time: 01:57:06)
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We can also have something called quaternions. Quaternion is very similar to and Euler
parameter. It has again 4 parameters. However, it is set up slightly differently. So, quaternion
consists of a scalar q, and a vector 4, 4,9, Vvery similar to € € €, and €, But it is written in

this form. It is written as q, + some unit vectors i, j and k. So, it is a strange beast. It is neither a

scalar nor a vector. It is a combination of 2.

And so, you might think that this is a strange thing and what useful it is. It turns out quaternions
are very useful. You know they have some useful ways of looking at rotations. So, if you have
something 2 quaternions the product of this is also Quaternion. The conjugate of Quaternion is

also defined. Conjugate is some sense like an inverse. So, Qis q,-4,- 4,

j- q, k and Q into 5 is the square of this.

So, basically it is an approach quaternion where an approach to see whether rotations instead
of using matrices can we do it like in some sense like vectors. It is not really a vector because it
has a scalar and a vector part but there are some nice properties. So, a vector p which is PP,

p

z



or x, y, z is Quaternion with q, = 0. And if you have this Qa or some of the squares of the

elements of Quaternion as one this is called as a unit quaternion.

And unit quaternion represents the orientation of a rigid body in r 3. Remember a rotation matrix
with 9 elements represents the orientation of a rigid body in 3D space. Whereas a Quaternion
with this condition a unit quaternion represents orientation of a rigid body in 3D space. There
are also some other nicer properties. For example, in a unit quaternion Q, Q p 6 So, 6 is the

conjugate p is a vector and Q p 6 is a rotation of p about q, 49,9,

So, remember we had this k axis and then we had a ¢ angle about rotation of that and then Q

went to Q Bar. So, here the same you can think of it as Q p 5 where p is this vector. If you do
this operation then it is rotation of this vector p about a9, 9,9,

(Refer Slide Time: 02:00:25)
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Quaternions like Euler parameters do not have singularities associated with Euler angles very big
advantage. Quaternions are extensively used in motion planning of robots especially for
orientation of the tool. So, I want a robot tool to follow a straight line but then the welding tool
which it is carrying must be oriented in some place in some particular way. So, then we use

quaternions.

It is also used in attitude controller spacecraft simply because it does not have singularities. It is
also used in computer graphics and animation. And it turns out also in quantum mechanics. So,



in quantum mechanics instead of scalar and vector 2 by 2 matrices called Pauli spin matrices
are used. So, | do not want to represent as 4, 49, 4, and q, where a, 4, and q, are along i j

and k and q, is a scalar.

But then they use 2 by 2 matrices. So, a general quaternion can also be expressed in terms of
these 4 2 by 2 matrices. So, you can have q, into an identity matrix q, into here this i is

imaginary number square root of -1, q, is again 0 0 but 1 and - 1 and then q, is 0 0 i and this.

So, this also represents a Quaternion. And these 3 matrices are very similar to the cross
product of unit vectors in i j and k.

So, whatever you want to do with 1 j and kyou can do sort of similar things with these 3

matrices. And these forms of quaternions are used in quantum mechanics.
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So, as I said quaternions can be used for rotations. And here is an example which shows how this
dice again the same dice if I represent it using quaternions what happens.

(Video Starts: 02:02:52)

So, you can see here that the elements of the quaternion are changing in some particular way.
And then this dice is rotating and different faces are being seen at each time. And these are the 3
views of the same dice.

(Video Ends: 02:03:12)



And what happens to the quaternions. So, again we can look at how Quaternion can represent
orientation. And since we are rotating the orientation is changing and we can find out what the

quaternion is doing.

(Refer Slide Time: 02:03:29)
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So, in summary the orientation of a rigid body in 3Ds is specified by 3 independent parameters.
There are various representation of orientation with their own advantages and disadvantage. A

rotation matrix has 9 directions cosines or 9 r. s + 6 constraints. There are lots of variables and
ij

there are constraints. But this is very useful or ideal for analysis. So, you can think that if you

have a multiple set of rigid bodies connected to form a mechanism and you have rotation matrix.

For all these 5 different rigid bodies you will have to deal with 45 TS and 30 constraints. So, it
is a lot of effort. If you have this access and angle form kx, ky, kZ and angle you have 4

parameters + 1 constraint which is a unit vector. This is useful to get insight into what are called
screws, twists and wrenches. These are for advanced kinematics of rigid bodies. Euler angles are

very useful because they have 3 parameters and no constraints.

So, as I said for these 5 rigid bodies which made up some mechanism I have only 15 parameters
to worry about. I do not need these 45 + 30 constraints. However, although it is a minimal

representation it contains a singularity. And also, we should know which sequence of Euler



angles we are using because X Y Z or Z Y X or X Y X depending on what sequence you are

using the rotation matrix will be different.

And then you have this Euler parameters and quaternions. They all have 4 parameters + 1
constraints. They are similar but not exactly same as this angle axis form. There are no
singularities, and they are very extensively used in various kinds of motion planning. More

importantly I can convert from any representation to another representation. So, remember kx, ky

, kZ and ¢ is given I can find out all these TS all these direction cosines.

And from this rotation matrix I found out the eigenvalues and eigenvectors and I found out that

kx, ky, kZ corresponds to the eigenvector corresponding to the real eigen value 1 and ¢ was

obtained from some eiiq) and likewise for all others.



