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Lecture-18
Inverse Dynamics and Simulations of Equations of Motion

In this lecture we look at the 2 main problems in dynamics of multi-body systems. The first is the

inverse dynamics and the second is the simulation of equations of motion.

(Refer Slide Time: 00:36)

So, there are 2 main problems in dynamics of multi-body systems, the first is called as the

inverse dynamics. In the inverse dynamics problem we are given the geometry and inertial

parameters of all the rigid bodies in a multi-body system and we are also given a trajectory as a

function of time. So, what I mean by trajectory is? We are given the generalized coordinates

.𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)

And the goal in the inverse dynamics problem is to obtain the torque which must be applied at

the joints, so as to get these . In the direct problem on the other hand we are𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)

given the kinematic and inertial parameters and the joint torques as a function of time. So, we are

basically given as a function of time and the goal is to find the trajectory of the rigidτ 𝑡( ) 

multi-body system.



So, the goal is to find , so as you can see which is in some sense opposite of the𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)

inverse problem. The inverse problem or the inverse dynamics problem is required for sizing of

actuators and model based control as I have mentioned earlier. So, once I know that the

multi-body system should be able to have a desired trajectory given by to we𝑞 𝑡( ),  �̇� 𝑡( ), �̈� 𝑡( ) 

need to choose the motors and the actuators in the multi-body system.

So, we need to solve this inverse dynamics problem to get an estimate of the torque required to

achieve this . So, hence the solution of the inverse dynamics can be used to𝑞 𝑡( ),  �̇� 𝑡( ), �̈� 𝑡( )

estimate the size of the actuators, it is also used in model based control. The direct problem on

the other hand is required for simulation, so if I make a model of my multi-body system.

And if I tell that the torque which you are applying at the actuator is given by , I need toτ(𝑡)

show you how the rigid bodies of this multi-body system are going to move. So, hence we need

to solve the equations of motion and that is called simulation.
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The inverse dynamics problem in multi-body system is relatively simple, it is actually quite

simple. All we require to do to solve the inverse dynamics problem is to take in𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)



the right hand side of the equations of motion. So, we have an equation of motion which is given

in this form

+ , there might be also be a friction term.τ = [𝑀(𝑞)] �̈�  𝐶 𝑞, �̇�( ) + 𝐺 𝑞( ) + 𝐹(𝑞, �̇�)

All we need to do is substitute on the right hand side and evaluate torque as a𝑞 𝑡( ),  �̇� 𝑡( ), �̈� 𝑡( )

function of time. So, the left hand side is nothing but after substituting this we𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)

get torque as a function of time. So, as you can see it is relatively simple problem, it can be done

for any multi-body system once the equations of motion are known.

So, once the right hand sides are the full equations of motion are known the inverse dynamics

problem is nothing but simple substitution. That is why I said that the inverse dynamics problems

for multi-body systems are very simple. It can be done very, very efficiently, so it can be done for

example in O N steps using the Newton-Euler algorithm which we have looked earlier. So, we

can start with the base we can substitute .𝑞 𝑡( ),  �̇� 𝑡( ), �̈�(𝑡)

And find all the terms on the right hand side as we go up to the final node. And then we can

come down and find the torque as a function of time, so it is the linear complexity algorithm.
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So, let us take an example and again we will use our simple example which is the planar 2 degree

of freedom of 2 rigid bodies connected by 2 rotary joints. So, there is a link 1 and a link 2 and

again the link 1 is specified by mass, length, location of CG and inertia, likewise link 2 is

specified by mass and , again is the z component of the inertia which is of 𝑚
2
,  𝑙

2
,  𝑟

2
 𝐼

2
𝐼

2

relevance here because this is a planar motion.

So, to solve the inverse problem we need the numbers for the geometry and the mass properties.

So, in this example I have assumed that the length of this link is 1 meter, the length of the second

link is also 1 meter, the mass is some 12.456 kg, this is from some actual example which we

considered long time back. The location of the CG of the first link is at 0.773 meters from this

origin.

And for the second link it is at 0.583 meters again from this origin and the inertia is 1.042 kg

meter square, each link has the same geometry it is made of the same material and hence the

inertia about the z axis about the CG are same.

(Refer Slide Time: 07:24)

So, for the mass inertia and geometry parameters which were shown in the table, we can now

solve the inverse dynamics problem. So, the next thing that we need to solve the inverse

dynamics problem we need to choose a trajectory. And in this example we have chosen a circular



trajectory, meaning that the tip of this 2R manipulator or rigid body chain with 2 degrees of

freedom will trace a circle which is given by , .𝑥 =  𝑎 +  𝑟 cos 𝑐𝑜𝑠 ϕ  𝑦 =  𝑏 +  𝑟 sin 𝑠𝑖𝑛 ϕ 

Where a and b are the center of the circle and r is the radius of the circle, so it will be some circle

which is located somewhere in this region. And to find out actually what the circle is and where

the circle is we need to choose some . And again in this example I have chosen as𝑟,  𝑎 𝑎𝑛𝑑 𝑏 𝑟

0.2 meters, as 1.2 and as 1.2. So, the center of this circle is somewhere here 1.2 here and 1.2𝑎 𝑏

here and it is a circle of radius 0.2.

To bring time into the picture we need to now specify how does this tip of this robot traces the

circle in how much time? So, that can be specified by saying that this angle phi in the parametric

equation of the circles goes from 0 to 2 in 10 seconds. So, here is a picture of the circle whichπ

it is actually going to trace, so this is very straightforward computation. You substitute phi going

from 0 to 2 , we substitute in these equations and we trace this circle.π 𝑟,  𝑎 𝑎𝑛𝑑 𝑏

(Refer Slide Time: 09:31)

So, in the previous slide I showed you that the tip of this robot will trace the circle of radius 0.2

and located at 1.2, 1.2. Now to solve the inverse dynamics problem we need to find and asθ
1

θ
2

a function of time. We also need to find out and and also the second derivatives of andθ
1
˙ θ

2
˙ θ

1



as a function of time. Because remember, the equations of motion are tau equals sum m intoθ
2

 θ̈

plus some coriolis term plus some gravity term.

We have specified the trajectory using x and y but I mean the trajectory is in terms of as aθ
1

function of time and as a function of time. How do I obtain this? We can obtain and as aθ
2

θ
1

θ
2

function of time by what is called as inverse kinematics. So, basically this can be done

analytically and all we need to do is we need to take the kinematics equation which is x = +𝑙
1

𝑐
1

2 and y = + .𝑙
2

𝑐
1

𝑙
1

𝑠
1

𝑙
2

𝑠
12

So, we have 2 equations in 2 unknowns we are given x and y, we have to solve for and . So,θ
1

θ
2

remember means cos , 2 means cos + , means sine , is sine + . So, we𝑐
1

θ
1

𝑐
1

θ
1

θ
2

𝑠
1

θ
1

𝑠
12

θ
1

θ
2

can solve these 2 equations in 2 unknowns by doing some tricks. So, basically if you do x square

+ y square - square - square then you will get , so is cos inverse of this quantity𝑙
1

𝑙
2

θ
2

θ
2

divided by 2 .𝑙
1

𝑙
2

can also be found once you find and that is given by 8 and 2 of y, x - a tan 2 of s 2, +θ
1

θ
2

𝑙
2

𝑙
1

. So, what is a tan 2? This is a function which is like tan inverse of y by x, however a tan 2 is𝑙
2

𝑐
2

giving an angle in the right quadrant. We had seen this a tan 2 when we were doing Euler angles

and that is exactly the same thing that we have using here. We want to obtain the correct angle in

the correct quadrant.

So, tan inverse of -1, -1 will give you 45 degrees but a tan 2 of -1, -1 will give you in the third

quadrant. The expression for and can also be obtained analytically. So, basically we takeθ
1
˙ θ

2
˙

the derivatives of these 2 equations we have x dot, then we will see this will be - -𝑙
1

𝑠
1
θ

1
˙ 𝑙

2
𝑠

12

+ and so on. And then we can solve and in terms of x dot and y dot and that is givenθ
1
˙ θ

2
˙ θ

1
˙ θ

2
˙

by this expression, you can verify it yourself.



That , is 1 by s 2 into sum matrix which contains 2 - - 2, so this isθ
1
˙ θ

2
˙ 𝑙

1
𝑙

2
𝑙

2
𝑐

1
𝑙

2
𝑠

12
𝑙

1
𝑐

1
𝑙

2
𝑐

1

the first column. And the second column is - – okay and then we multiplied𝑙
2

𝑠
12

𝑙
1

𝑠
1

𝑙
1

𝑠
12

by x dot, y dot. So, we can obtain this expression for and , so this is actually . Theθ
1
˙ θ

2
˙ 𝑙

2

expression for and can also be obtained from the expressions of the derivative of x dot andθ
1
¨ θ

2
¨

y dot.
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So, now that we have expressions for and as a function of time, likewise and as aθ
1

θ
2

θ
1
˙ θ

2
˙

function of time and , as a function of time. We can go back and look at the equations ofθ
1
¨ θ

2
¨

motion which are given here, so we have , some matrix into , and then this coriolis andτ
1

τ
2

θ
1
¨ θ

2
¨

centripetal term which have square and and so on.θ
1
˙ θ

1
˙ θ

2
˙

And then the gravity term which contains m 2 g + and so on. So, functions of angles𝑙
1

𝑐
1

𝑟
2
𝑐

12

and as a function of time and gravity. So, we have now obtained as a function of time,θ
1

θ
2

θ
1

as a function of time, all we need to do is substitute in the right hand side of these equations ofθ
2



motion. So, if you substitute as a function of time and as a function of time everythingθ
1

θ
2

inside this matrix is known.

Then we multiply as a function of time and as a function of time with the relevant elementsθ
1
¨ θ

2
¨

of the mass matrix and we can get evaluate this term. So, we can write one code in MATLAB

where you give the inputs which are , , , , as a function of time and then youθ
1

θ
1
˙ θ

1
¨ θ

2
θ

2
¨ θ

2
˙

substitute here and we get as a function of time and as a function of time which is theτ
1

τ
2

inverse dynamics problem.
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So, here are some plots for that circle which I showed you varies in this form, is varies inθ
1

θ
2

this form, and looks like this. So, the blue one is and the green one is and so on.θ
1
˙ θ

2
θ

1
˙ θ

2
˙
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And then we can also obtain and , so it is not very important to see what are these numbersθ
2
¨ θ

1
¨

but this is over a period of 10 seconds, the x axis is 10 seconds and the y axis is in this case it is

and . So, as you substitute back in the right-hand side of the equations of motion we canθ
1
¨ θ

2
¨

plot and as a function of time. So, you can see that the is maximum, is of the order ofτ
1

τ
2

τ
1

τ
1

170 Newton meter, the maximum is of the maximum is of the order of 17 Newton meter.τ
2

These numbers are not important but basically what I am trying to show you is for a given , ,θ
1

θ
2

, , and basically the trajectory of this multi-body chain. In this case 2R manipulator, Iθ
1
˙ θ

2
˙ θ

1
¨ θ

2
¨

can find out the torque required to achieve that trajectory. You can have many different

trajectories and for every single trajectory you can obtain and .τ
1

τ
2

And what is the estimate or which motors will you choose you find out which is the worst case?

So, you find the maximum and maximum which you get for all the possible trajectories thatτ
1

τ
2

you can think of or all the trajectories which this 2R robot is planned to be used for and then you

can get an idea, okay I need so many Newton meter torque for the first motor and so many

Newton meter torque for the second motor.
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So, next we look at the simulation of the equations of motion. So, simulation is exactly the

opposite problem, this is also the direct problem. In simulation we are given the external torques

and forces and we obtain the motion of the multi-body system. So, in this case and as aτ
1

τ
2

function of time will be given to us for this 2R chain and then we have to find out what is as aθ
1

function of time as a function of time and so on.θ
2

So, how do we do this? We go back again to the general equation of motion of n degree of

freedom multi-body system. So, we have this equation of motion which is torque equals

+ , which we have added in adhoc manner. So, inτ = [𝑀(𝑞)] �̈�  𝐶 𝑞, �̇�( ) + 𝐺 𝑞( ) + 𝐹(𝑞, �̇�)

simulation we are given the left hand side as a function of time, we are given tau as a function of

time and we have to find out by solving these differential equations.𝑞 (𝑡)

So, these are n coupled non-linear second order ordinary differential equations. Coupled, because

remember the mass matrix contains even for the 2R case contains , these have and andθ
2

θ
1
2 
˙

θ
2
2̇

all possible combinations. So, for the 2R manipulator example both the equations were coupled

and these are also non-linear because you have sine , cos and so on.θ
2

θ
2



For the 2R case cos( + and then something like sine into , so all kinds ofθ
1

θ
2
) θ

2
θ

1
2 
˙

non-linearities is there in this equations of motion. So, for most of these cases we cannot solve it

analytically, differential equations are very hard to solve if it is non-linear and coupled. So, only

for maybe some very, very simple case we can solve these equations of motion, basically we can

integrate those equations of motion given the left hand side as a function of time, we can find q

as a function of time.

So, that is most of the time are in fact actually almost everywhere it is not possible to do

analytically. So, we need to do numerically, so the numerical solutions of ODE are very well

known it is a very, very again a very mature topic. There are many software tools which are

available and we are going to use MATLAB. So, in this NPTEL course you have access to

MATLAB and you can try getting some numerical solutions of the differential equations.

So, we will give at least 1 homework where you can solve numerically this differential equation

to see what is the solution or what is the simulation of a multi-body system. So, MATLAB gives

you in-built integration routines such as ODE45. So, if you see the MATLAB tutorial which is

written by one of the TAs for this course. You can see the he has used ODE45 for some solutions

for some solution of certain differential equations, so please get familiar with ODE45.
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So, the input to ODE45 is required to be in the state space form. So, what exactly is the state

space form? We want the differential equations as a first order equation, so basically we want it

in the form So, this right hand side could be nonlinear functions of X and also�̇� =  𝑔(𝑋,  τ).

torque. But we the equations of motion are second order because they contain . So, what weθ̈ 

want everything in the form of a first order equation, this is what ODE45 requires you to give.

So, basically ODE45 requires you to give what is the right hand side of this first order

differential equation and it also requires you to give some initial condition. So, we need to say

what is the solution at t = 0, all integration routines require an initial condition, even analytically

if you want to solve or integrate then you need some initial conditions. So, how do we convert

the second order ODEs into the state space form, so how do we do it?

We start with the equation of motion which is M = . So, we know that�̈� τ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( )
the mass matrix is invertible, so hence we can always write = , so�̈� 𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( ) 𝐹

is the friction term, this is the gravity term, this is the centripetal coriolis term and this is the

external torque. Next we define which is it is an element twice the number of q's, so we have𝑋

through as through .𝑋
1

𝑋
𝑛

𝑞
1

𝑞
𝑛

So, remember we had , , , , so we need to say is , is or is , is andθ
1

θ
2

θ
1
˙ θ

2
˙ 𝑋

1
𝑞

1
 𝑋

2
𝑞

2
 𝑋

1
θ

1
𝑋

2
θ

2

then we write and as and . So, in general what we have is through are the𝑋
3

𝑋
4

θ
1
˙ θ

2
˙ 𝑋

1
𝑋

𝑛

generalized coordinates through and to are the derivatives of the generalized𝑞
1

𝑞
𝑛

𝑋
𝑛+1

𝑋
2𝑛

coordinates. So, we had n q’s and n s, so hence we have X which are 2n of them.�̇�

And then we write this n second order ODE’s as 2 and first order ODE’s and how do we do that?

You can see that the which is nothing but dot is same as , similarly which is will𝑋
1

˙ 𝑋
𝑛+1

𝑋
2

˙ 𝑞
2
˙

be and so on. So, will be and what about all the way to ? That we can𝑋
𝑛+2

𝑋
𝑛

˙ 𝑋
2𝑛

𝑋
𝑛+1̇
˙ 𝑋

2𝑛
˙

obtain from these equations of motion which is ,.𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( )



So, instead of writing it as we can write that C , this is a function of time, so it is𝑞 𝑎𝑛𝑑 �̇� (𝑋) τ 

not a function of . But gravity could be a function of but it is not a function of but 𝑋 𝑞 �̇�

nevertheless we write it as G as a function of X, the friction will be a function of both q and �̇�

which is a function of X. Remember, there are 2n of these X's, so we have n first order equations

of the form = = and so on.𝑋
1

˙ 𝑋
𝑛+1

, 𝑋
2

˙ 𝑋
𝑛+2

And then all the way till as equations of motion which is𝑋
𝑛+1
˙   𝑋

2𝑛
˙ 𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( )

,. So, we have converted n second order equation into 2n first order equations, this is a very

standard technique. Those of you who have used it should be familiar but otherwise it is very

easy to convert a second order equation into 2 first order equations. So, hence if you have n

second order equations we will get 2n first order equations.
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So, for parallel systems and closed-loop mechanisms the equations of motion are little bit more

complicated. So, we have and all those𝑀 �̈� = 𝑓 − ψ]𝑇(  ψ[ ]𝑀−1[ ψ]𝑇)
−1

{  ψ[ ]𝑀−1𝑓 +  [ψ]˙  �̇� }

things, where now denotes . So, again we can obtain first𝑓 τ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( ) 2 (𝑛 +  𝑚) 

order equations because here the number of equations after elimination of lambda which is this is

n + m.



So, when you convert it into first order equation, we will get first order equations2( 𝑛 +  𝑚) 

and again it is very easy. = , = and so on. And all the way till𝑋
1

˙ 𝑋
𝑛+ 𝑚 + 1

𝑋
2

˙ 𝑋
𝑛+ 𝑚 + 2

𝑋
𝑛+ 𝑚 + 1

˙

are obtained from these equations of motion. okay And again this denotes𝑋
2 𝑛+𝑚( )

˙   𝑓

, so it is a very reasonably straightforward approach of converting nτ − 𝐶[ ]�̇� − 𝐺 − 𝐹 ( )
second order ordinary differential equations into first order ordinary differential equation.2 𝑛

In the case of parallel systems and closed loop mechanisms we have first order2 (𝑛 +  𝑚)

equations.
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The nature of the ODE is however as quite different from the ODEs obtained from serial chain,

let us elaborate a little bit on that. So, we started with m loop-closure holonomic constraints

which needed to be satisfied. Remember, we had broken this 4-bar linkage at some point and

then we went from one side to that point and we went from the other side to the point and we

have equated the and the coordinates. So, they were loop-closure constraint equations they𝑋 𝑌

were holonomic.

So, what we have inherently is a set of differential equations and some holonomic constraints

which involve only the position you know , , they do not contain and or and so𝑥,  𝑦 θ
1

θ
2

θ
1
˙ θ

2
˙ θ

1
¨



on. So, these are called as differential algebraic equations in numerical analysis. And DAEs are

not the same as ODE’s and I do not want to go into full details but DAEs are what are called as

inherently stiff equations.

So, basically what you need to do is most of the time you can get away with ODE45 but for

some set of differential equations or differential algebraic equations you need to use what are

called stiff-solvers and MATLAB gives you these stiff-solvers. So, this ODE15S is the way to

solve stiff differential equations, so ODE23S is another such product or another such package or

another such routine which are given by MATLAB to solve stiff equations.

So, please take a look at MATLAB reference material and see how ODE15S or ODE23S is really

different from let us say ODE23. There is a ODE23 also and there is an ODE23S, so what is the

difference? You can see yourself. So, stiff-solvers in general broadly speaking they use what are

called as implicit schemes and they are slower than non-stiff solvers. Anybody who knows what

is implicit should know that the opposite of implicit is explicit.

In an explicit scheme you can march forward in time, in an implicit scheme at every point you

have to solve a set of linear equations, so hence they are slower than non-stiff solvers. For simple

problems such as the 4-bar mechanism ODE45 works fine, so we do not have to use any of the

stiff-solvers but you can try, it is very easy to change in a MATLAB code from ODE45 to say let

us say ODE23S.

All you need to do is wherever you are calling the solver, ODE solver you can change from

ODE45 to ODE23S nothing much needs to be changed. And then you can see what happens

when you solve a differential equation with ODE45 as opposed to a stiff-solver.
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So, let us continue in parallel configurations. There is also one another big difference which is

the following. So, actually what we want to solve is this , so this is the actualη (𝑞,  𝑡) =  0

loop-closure constraint equations. However, what we have actually done is? We have taken the

derivative of this and then the second derivative of this and we are using the equation after taking

the second derivatives to eliminate the Lagrange multipliers.

So, we are actually solving the constraint in this form, not in this form and what is the difference

between these 2? What you can see is instead of suppose you have + + tη (𝑞,  𝑡) η (𝑞,  𝑡) 𝑐
1

𝑐
2

= 0, where and are some small numbers. So, when you take the + + t = 0 what you𝑐
1

𝑐
2

η̈ 𝑐
1

𝑐
2

will get is this. So, any small changes numerical errors in due to integration will cause�̈�

increasing and because you are not solving this, you are solving actually this.�̇� 𝑞 

So, what you will get is not = 0 but it is possible that you are using + + andη (𝑞,  𝑡) η(𝑞) 𝑐
1

𝑐
2

this , t if and are increasing with time, so the actual = 0 will not be satisfied. And𝑐
1

𝑐
2

𝑐
1

𝑐
2

η(𝑞)

this and can arise always due to the numerical solvers, so we are using some numerical𝑐
1

𝑐
2

techniques to solve the differential equation, so it will never be exactly satisfying the constraint

equation, so it will be some small changes.



And because we are using the second derivative we will slowly grow with time. So, Baumgarte

in 1983 proposed a way to actually try and solve for = 0. So, what he said is we replaceη (𝑞,  𝑡)

the second derivative constraint equation which is this with something like this. So, instead of

, we will replace it asψ�̈� + ψ̇ �̇� + ϕ̇(𝑡) =  0

.ψ�̈� + ψ̇ �̇� + ϕ̇ 𝑡( ) + 2α(ϕ 𝑡( ) + ψ 𝑞( )[ ]�̇�) + β2η 𝑞,  𝑡( ) = 0

So, if you look carefully this sounds or looks very much like a spring mass damper system,

where are constants. So, this is like . So, if you choose justα 𝑎𝑛𝑑 β �̈� +  2 𝐶 �̇� + ω2𝑋 α 𝑎𝑛𝑑 β

like in a spring mass damper system properly the oscillations die down and what is oscillation

here which is . So, if you choose a properly then X will go to 0, will go to�̈�,  �̇�  𝑎𝑛𝑑 𝑋 α 𝑎𝑛𝑑 β �̇�

0 and will also go to 0.�̈�

In a spring mass damper system, if it is damped properly it will us all of them go to�̈�,  �̇�  𝑎𝑛𝑑 𝑋

0, so that is what he suggested. Then instead of trying to use this equation to find the Lagrange

multipliers and finally find the equations of motion we will use this equation. Then the question

comes, how do we choose ? You might say that it looks like a spring mass damperα 𝑎𝑛𝑑 β

system but it is not really a spring mass damper system.

This is nowhere like , this is nowhere like or this is nowhere like because it is[𝑀(𝑋)] �̈� 𝐶 �̇� 𝐾 𝑋

a very non-linear function. But nevertheless it is a reasonably good idea if I play around with this

I can ensure that not only = 0 but of time will also go to 0, so all of them willα 𝑎𝑛𝑑 β η (𝑞,  𝑡) η̇

go to 0. And hence the loop-closure constrained equations are exactly satisfied at 0, so this is

called Baumgarte stabilization.

So, the errors in the loop-closure constraint equations will not grow with time because they as t

tends to infinity they will go to 0. But it is not very clear how to choose ; you have toα 𝑎𝑛𝑑 β

play around with .α 𝑎𝑛𝑑 β

(Refer Slide Time: 37:29)



Let us take some examples now. So, another example is that we have worked on earlier which is

called the spring pendulum. So, basically we had a mass here which is mounted on a spring, the

free length is and then once the spring is compressed we have a force which is . And𝑙 𝑘( 𝑟 – 𝑙)

there is gravity acting and then there is these components and also we have𝑚𝑔 𝑠𝑖𝑛 θ,  𝑚𝑔 𝑐𝑜𝑠 θ

this centripetal term and we have this Coriolis term.

So, in order to solve this equations we have 2 equations basically 2 ODE’s and then we can write

down this ODE’s and we need to now find out some numbers for the mass of this bob, spring

stiffness, free length and some initial conditions. So, for the example we are assuming that the

mass is 2 kg, the spring system spring stiffness is 15 Newton per meter, the free length is 5

meters and initial conditions are r is 5 meters, radians per 𝑡ℎ𝑒𝑡𝑎 𝑖𝑠 π
4 ,  �̇� =  0. 1 𝑎𝑛𝑑 θ̇ =  0. 2

second.

And we will also compute the various components of the acceleration just to show how they are

changing with time. So, both of these 2 equations can be converted to first order ODE’s and then

we will use MATLAB ODE function to solve these differential equations.

(Refer Slide Time: 39:17)



(Video Starts: 39:34) So, here is a video of this spring pendulum and you can see this animation

of this mass which is the bob as it is going around. So, what you can see is the spring is

lengthening and shortening, so unlike a pendulum there is a spring which is here and the spring

can go in and out and this mass can also go in and out. So, this is the simulation which is

obtained after solving those 2 differential equations. (Video Ends: 40:07)

(Refer Slide Time: 40:07)

And as I said I want to plot the various acceleration, just to get a feel for what kind of numbers

we are talking about. So, the coriolis acceleration from 0 to 20 which is the motion of this bob



looks like this. The centrifugal acceleration which is and this is and this is looksθ̇
2

2 𝑟 θ̇
 

𝑟 θ̇
2

like this and the tangential acceleration which is looks like this. θ̈

So, what you can see is this coriolis acceleration is maybe slightly smaller; the tangential

acceleration is probably the largest. Of course this is because we have chosen some and𝑘,  𝑚,  𝑟

so on, if it is some other values maybe these plots could look differently. But the point is we can

take these 2 differential equations, we can use ODE45 and we can find out the motion of the bob

which is what I showed you in the video, not only that we can find out the velocities and

accelerations and I am showing you 3 of the components of the acceleration.

(Refer Slide Time: 41:31)

Let us continue, now we will see how we can simulate the motion of a planar 2R robot. So, we

had this 2R robot the first link was , , , this is the location of the CG, there is a torque𝑚
1

𝑙
1

𝑟
1

𝐼
1

which is acting, gravity is acting this way, this is a which is acting on the second link, okay itτ
2

is exactly the same, nothing new. And we can have these equations of motion which is , isτ
1

τ
2

given by some ( and So, why ?𝑀 𝑋
2
) 𝐶 (𝑋) 𝑎𝑛𝑑 𝐺 (𝑋

2
).  𝑋

2

Because it is only which is important whereas the coriolis term can contains , , ,θ
2

θ
1

θ
2

θ
1
˙ θ

2
˙

which is what this vector is. The mass matrix is only a function of which is why I have𝑋 θ
2



written it as . So, this is a 2 by 2 matrix which is a function of only , remember was𝑀 𝑋
2

θ
2

θ
1

𝑋
1

, was , was , was . So, the state variables as = , , , .θ
2

𝑋
2

𝑋
3

θ
1
˙ 𝑋

4
θ

2
˙ 𝑋

1
θ

1
𝑋

2
= θ

2
𝑋

3
= θ

1
˙ 𝑋

4
= θ

2
˙

And we can write it in the state space form which is = , = , is this. So, we have𝑋
1

˙ θ
1
˙ 𝑋

2
˙ θ

2
˙ 𝑋

3
,˙ 𝑋

4
˙  

written it in the state space form, so actually , we have to write it as , we have to write itθ
1
˙ 𝑋

3
θ

2
˙

as . So, because we want the state equations as to be equal to 0, so we have written it𝑋
4

𝐺(𝑋 ,  τ)

in the state space form.

(Refer Slide Time: 43:30)

So, once we have those 4 first order equations in the required state space form we can give some

initial conditions. So, for this simulation we are choosing as -90 and is 45 degrees, so whatθ
1

θ
2

does it mean? This link is hanging down because it is -90, so this angle is -90 and then is 45θ
2

degrees, so we have a link which is hanging down and the second link is like this at an angle of

45 degrees and there is no torque.

Again just to illustrate that we can solve all kinds of differential equations, we have chosen this

is a nice interesting case that there are no external torques, we can put and are 0, so it is likeτ
1

τ
2

a double pendulum. So, we have this pendulum one link and then the second link, so the first link



is hanging vertically down and then we displace the second link by 45 degrees and then we let it

go. So, I want to see what the motion of these 2 links is.

So, in order to solve these differential equations we need numbers. So, again we have assumed

length is 1 meter, mass is 12.456 equal, is this and inertia is 1.042, so these are the same𝐶𝐺

numbers which were used for the inverse dynamics. (Video Starts: 45:07) So, here is a video of

the 2 degree of freedom robot. So, as I said our double pendulum, as I said we will put the first

link down and the second link is rotated by 45 degrees and then we leave it.

So, as you can see the motion of the tip is quite complicated, it is not like a simple arc of a circle,

it is going forward and doing all kinds of loops and then it is coming down. So, I am not sure

how many of you expected that it will do all kinds of crazy motions like this but a double

pendulum actually does motions like this. And I can clearly see that for this special case of this

link length which is 1 meter and 1 meter and no external torques and the located at some𝐶𝐺 

places, this is the motion of the tip.

I could have also plotted the motion of any other point on this link or any other point on this link,

MATLAB once you find as a function of time, I can find out what the is doing. What isθ
1

𝐶𝐺

the CG? This is the distance along the link, so we can plot what is is doing. (Video Ends:𝑟
1
 𝐶𝐺

46:42)

(Refer Slide Time: 46:42)



We can also plot actually and as a function of time. So, what you can see is is doing allθ
1

θ
2

θ
1

kinds of things like this, so it is not a simple harmonic motion although we do not should not

expect a simple harmonic motion like a sine wave. The second link is little bit more periodic

because again it is not because what you can see is the amplitude is changing as we go along.

The first link is definitely doing interesting things. So, why does this happen?

Basically what is happening is that the 2 differential equations they are coupled. So, once you

leave the second link the motion of the second link causes a motion of the first link. Remember,

we started with as 45 degrees and is -90 degrees, so it is vertically hanging down withθ
2

θ
1

second link displaced by 45 degrees. So, when you leave the second link it will start oscillating

but then due to the motion of the second link the first link will also start moving and that is the

nature of this coupled ODE’s.

And the path traced by this tip of this second link is as I showed you it is quite complicated. And

we can solve the equations of motion and exactly show you what the tip motion is. So, we started

from somewhere here and it went down and it went this and did all kinds of strange motions.

(Refer Slide Time: 48:27)



We can also simulate the 4-bar mechanism. So, we have derived the equations of the 4-bar

mechanism. And what I am going to do is we are going to place the 4-bar mechanism in this

almost folded configuration. So, the first fixed link is this, the second link is this way, the third

link is this way and the fourth link is this, so this is exaggerated a little bit. But basically all the 4

links are lying along the axis this is called as the folded configuration.𝑋

The initial and are small, so it is little bit exaggerated here in this drawing. And what youθ
1

ϕ
1

can see is you can do some simple calculations that if you choose , , and in a particular𝑙
1

𝑙
2

 𝑙
3

𝑙
0

way eventually this mechanism and if you start to rotate by after some angle the rotation it𝑙
1

θ
1

will stop and it will form a triangle. That is the reason why because and and and are𝑙
1

𝑙
2

 𝑙
3

𝑙
0

chosen in this way.

So, that it cannot rotate beyond this some angle because it will form a triangle. So, in theθ
1

actual simulation we will assume that this is rotated by means of a torsion spring. So, isθ
1

θ
1

actuated using a torsion spring, the right hand side of the equations of motion is now modified

because now we have tau which is acting here and the first joint is some .τ
0
 −  𝑘 θ

1



So, the idea is that there is a constant initial torque but as increases the torque which theθ
1

spring is supplying reduces. So, there is a initial preloaded torque , we have chosen thisτ
0

number 1.96 Newton meter and the spring constant is given as 0.1 Newton meter per radian. And

what is the basic idea that I do not want to keep on applying this constant torque because if you

go back to your basic mechanics this torque will be something like .𝐼 α

So, if the torque is constant will be constant but then integral of which is omega will increaseα α

with time and integral of omega is rotation which is that will be like square, so it will keep onθ
1

increasing in a parabolic path approximately, so we do not want that. We want eventually that θ
1

should stop.

(Refer Slide Time: 51:48)

So, for this simulation we assume that these are the masses and lengths. So, for this rigid body 1,

it is 1.241 meters, for the fixed length it is 1.241 m , so both the crank and the base is 1.241

meters. The second link is 1.2 m; the third link is 1.2 m , so if you choose these kinds of link

lengths then cannot rotate fully. As I showed you in the picture before after a while it willθ
1

form a triangle and the motion must stop.

So, the masses are 20 kgs initial crank is the heaviest and all other links are smallest. So, this is

actually some numbers which were obtained from a actual physical device, so these are what are



called as deployable systems. So, you keep these links in a horizontal position and then you go to

space or somewhere else and then we actuate the actuator, or you start giving torque due to a

spring or a motor and then it will unfold and it will form the triangle.

So, there are many such applications where you start from a folded configuration and then you

go to an unfolded configuration. So, we want to know how does these 4-bar mechanism moves

as it unfolds. So, as the spring unwinds body 1 rotates counter-clockwise the lengths are chosen

such that cannot rotate beyond a certain angle. So, the bodies 2 and 3 will lock when theyθ
1

align and the 4-bar will become a triangle.

And if you go back to some statics a triangle is basically like a structure, the degree of freedom

of a triangle is 0, the number of links, the number of joints and so on you can see that the degree

of freedom is 0 and it will become a structure. (Video Starts: 54:07) So, here is a video of this

4-bar. So, as you can see this links are almost flying in the horizontal direction. So, you saw this

motion, so the basic idea is it starts up very fast but then the torque is some so theτ
0
 −  𝑘 θ

1

torque is reducing.

So, towards the end it slowed down and then we form this triangle. So, what else can we find out

from once we have such a system and once we have solved the differential equations using

MATLAB what else can we find out? (Video Ends: 54:55)

(Refer Slide Time: 54:56)



So, what you can see is we can plot the various angles. So, for example is this dark line,θ
1

ϕ
2

which was the second angle is this dotted line and then which is the output angle is like this.ϕ
1

We can also plot the 2 Lagrange multipliers, remember this is a closed-loop system; this has 2

loop closure constraints. And associated with those 2 loop closure constraints we have two

, so I can plot as a function of time.λ
1
 𝑎𝑛𝑑 λ

2
  λ

1
 𝑎𝑛𝑑 λ

2
  

And what you can see is after about some 12 point something seconds this lambda was an and λ
2
 

go off to infinity. So, what does it means? That we do not have 2 Lagrange multipliers after some

time, at that time 12 point something seconds 2.5 seconds exactly is 150.4 degrees and thisθ
1

link 2 and link 3 will align, so they will become like 180 degrees and is approximately 150.4,θ
1

at 12.25 the Lagrange multipliers go off to infinity.

So, if you go back and recall the Lagrange multipliers are basically denoting some constraint

forces. So, what do we have? As this mechanism is unfolding it is going from a 4-bar to a

triangle at some point of time this Lagrange multipliers go up to infinity, so the constrained

forces are going off to infinity. And physically what it means is the mechanism can no longer

rotate, so there is lot of internal forces in the second and the third link and that is what this

Lagrange multiplier is going off to infinity is showing.



So, the useful things in this simulation are the following. That I can find out exactly when this

4-bar will become like a triangle, when these 2 links will align and it will lock and then we have

a triangle and that is what approximately 12.25 seconds. And then we can also find out what is

the forces which are your joint should see at around 12.25 seconds. The simulations cannot

proceed beyond 150.4 degrees, why?

Because it is no longer moving, it is a structure; it is a triangle at that point of time. So, the

second order differential equation is no longer valid then, it is not moving anymore. So, the

simulations are telling me what should be the time for deployment and also at what angle it will

stop. So, for different link lengths this time and this angle will be different, so we can have

various designs of this 4-bar mechanism, if you are planning to use this 4 bar mechanism for

some application where we want to deploy it.

So, we can try out these simulations in the lab, in front of computer and then find out what is the

time, what is the forces and so on. And this is one of the goals or usefulness of simulations, I can

give you some very good idea about what exactly this 4-bar mechanism or for that matter any

other multi rigid body systems is doing is going to do.

(Refer Slide Time: 58:56)

Let us continue, let us look at this simulation of the rolling disk. So, the first simulation was 2R

robot with no constraints, the second simulation of the 4-bar mechanism had these loop closure



constraints and then we had these Lagrange multipliers. In this third simulation we impose what

are called as non-holonomic constraints, so constraints involving velocities. So, quickly the

generalized coordinates for this rolling disk are x, y, z which is the center of this disk.

There is a rotation matrix between this disk and this reference coordinate system which is the

because the first rotation is about the Z axis, the second rotation is which is𝑍 − 𝑋 − 𝑌.  𝑍 θ
1

θ
2

the tilting of the disk about the axis and the third rotation is about axis which is the spinning𝑋 𝑌

of the disk. So, is called heading, is called tilt, is called spin. If you have rolling withoutθ
1

θ
2

θ
3 

slip the constraint is that the velocity of the point of contact is 0 and velocity involves derivatives

of this generalized coordinates.

In the case of loop closure constraints there was no derivatives involved in the constraint. And

these constraints of that point of contact velocity being 0 can be written in this form, this was

done earlier also. So, we had as a function of , and in this form�̇� θ
3
˙ θ

2
˙ θ

1
˙

and so on. And the , again means cos ,𝑟𝑐
1
θ

3
˙ + 𝑟𝑠

1
𝑐

2
θ

2
˙ +  𝑟𝑐

1
𝑠

2
θ

1
˙ �̇� =  − 𝑟𝑠

2
 θ

2
˙ 𝑐

1
θ

1
𝑠

2

means sin and so on.θ
2

So, these constraints can be differentiated and written in this form, again it is repeating, we have

done this earlier also. And then the equations of motion are given by =�̈�

, the are the Lagrange multipliers introduced for these 3𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 ( ) +   [ψ]𝑇λ λ 

constraints. We can solve for that lambda with this long complicated expression involving

.(  ψ[ ]𝑀−1[ ψ]𝑇)
−1

And then we can obtain the equations of motion and they can be solved in MATLAB using

ODE45. So, we will substitute lambda back into this equation, so we have second order

equations, how many second order equations do we have? There are 6 second order equations

because , , , so will be 6 of them. And then when you convert it into first𝑞 𝑖𝑠 𝑥,  𝑦,  𝑧, θ
1

θ
2

θ
3 

�̈�

order form we will have 12 first order equations.



In this case also there are no external torqueses, this is simply rolling, gravity is there but there

are no external torques. So, if this was like a wheel with a motor here then we would have to take

into account the torque given by the motor, so that is a separate story altogether.

(Refer Slide Time: 1:02:48)

So, let us look at some simulations. Before we do any simulation we have to assume some

numbers because any simulation software we have to give some numbers. So, in this case we are

going to assume that the mass is 0.5 kg, the radius of this disk is 0.1 meters and then we need

initial conditions for all the generalized coordinates , , at . So, we have𝑥,  𝑦,  𝑧, θ
1

θ
2

θ
3 

𝑡 =  0

randomly chosen (0) as 45 degrees, (0) as 10 degrees, (0) as 0 degrees, x and y is 0θ
1

θ
2

θ
3 

basically at the origin, so we are going to start at the origin.

The z is tilted a little bit and the z coordinate is 0.0985, so if (0) is 10 degrees, then intoθ
2

, so this is very close to 1 but not exactly 1. And we also need initial𝑧 0( ) = cos 𝑐𝑜𝑠 θ
2
(0)   𝑟

conditions for , , , and these are chosen here. So, is 0, is 100 degrees perθ
1
˙ θ

2
˙ θ

3
˙ 𝑥

 
˙ ,  𝑦

 
˙ ,  𝑧

 
˙ θ

1
˙ θ

2
˙

second, 200 degrees per second, this is 0.3684 meters per second, (0) is 0.1253 meters per𝑦
 

˙

second, = -0303. 𝑧
 

˙



So, these have been chosen sort of randomly by trial and error just to make the simulation

interesting. So, what do you think the simulation of this disk will look like and how do we find

out? So, we basically need to solve the equations of motion. (Video Starts: 1:04:41)

So, this video is showing what the disk is doing. So, as you can see it is doing something

reasonably interesting. And at every place at the point of contact there is no slip, so as you can

see that the trace of this point of contact is very, very interesting, it will make this curves on the

ground. (Video Ends: 1:05:15)

(Refer Slide Time: 1:05:16)

We can also now plot the center of the disk, how it is moving? The Y coordinate, the X

coordinate, so this is the X coordinate, this is the Y coordinate and this is the Z coordinate. And

this is the way the Z coordinate is changing with time, the simulation is for 10 seconds, so the Z

is sort of approximately understandable it has come to 0 go back up and down, it keeps on doing

this.

The X and Y coordinates are much more interesting. We can also find what , and areθ
1

θ
2

θ
3 

doing. So, this is the plot of , and in radians, so you can see there is some interesting plotθ
1

θ
2

θ
3 

as how the heading, the tilt and the spin of the disk is changing with time.

(Refer Slide Time: 1:06:09)



How do we know all these simulations are correct? One test is that we need to ensure that the

total energy of the system is constant. Remember, there is no external forces, so whatever is the

initial starting energy which is the kinetic energy and the potential energy, we know what is the

potential energy it is like , we know what is the kinetic energy, there is an expression𝑚𝑔 𝑟 𝑐𝑜𝑠 θ
2

for the kinetic energy which I have shown earlier.

So, the sum of kinetic plus potential energy should be constant and we can plot that. So, in this

example the red curve is that of the kinetic energy of this disk, some and1
2   𝐼 ω2 + 1

2  𝑚𝑉
𝑐
2

potential energy is some , So, the potential energy is the blue one and the sum of𝑚𝑔 𝑟 𝑐𝑜𝑠 θ
2

.

both of them is this dark one which is more or less constant. So, this gives us some confidence

that whatever the code you have written, whatever the simulations you have done makes sense.

(Refer Slide Time: 1:07:27)



Let us look at another interesting example of this rolling disk. So, in this case the initial

conditions are different. So, now we start with (0) as 45 degrees, (0) as 5 degrees as 0,θ
1

θ
2

θ
3 

again the coordinates are starting from origin, the tilt is around the same. But then we𝑥 𝑎𝑛𝑑 𝑦

give some initial , initial , initial and initial , so we are going to give some motion to theθ
3
˙ �̇� �̇� �̇�

center of mass of this disk.

So, let us see what this disk will do now, so what is the motion of this disk? (Video Starts:

1:08:19) So, this is a plot which is obtained in MATLAB, MATLAB allows you to do all this

simulation also do this animation. So, as you can see it looks pretty good that we have this disk

which is going around in this circle, it is also tilting a little bit because is not 0, there is some 5θ
2

degrees initially. So, it is roughly going around the circle but it is also tilting in and out of this

from the vertical. (Video Ends: 1:08:52)

(Refer Slide Time: 1:08:53)



Again we can plot , so these are some plots which you have obtained from𝑋
𝑐
,  𝑌

𝑐
 ,  𝑍

𝑐

MATLAB. We can also plot , and , so is pretty much constant it is going up, is likeθ
1

θ
2

θ
3 

θ
3 

θ
2

some oscillation and is also going in the opposite direction.θ
1

(Refer Slide Time: 1:09:21)

And again to check whether this simulation is correct or not, we can plot the kinetic energy

which is this red which is oscillating like this, the potential energy which is oscillating like this.

So, remember the disk is not tilting too much; it was tilting a little bit, so hence the potential



energy itself is very constant. Similarly the kinetic energy is not going to change much, it is

going more or less in a circle sort of like a constant speed with some little bit of perturbation.

And the sum of both of them again is whatever is the initial kinetic and potential energy and that

is staying constant.

(Refer Slide Time: 1:10:04)

Let us look at third simulation, this is a nice interesting problem now you can see all these nice

motions of this disk. So, again here we have some other initial conditions, so basically z now is

some initially it is 0.1 meter and then we have this some different initial , and and alsoθ
1
˙ θ

2
˙ θ

3
˙

different . So, it is not very easy to guess what this rolling disk will do with this initial𝑥
 

˙ ,  𝑦
 

˙ ,  𝑧
 

˙

condition, so let us find out. (Video Starts: 1:10:48)

So, it is sort of similar to the first case but as you can see it is doing this but not going at the

same place, it is also moving along the axis. So, it is moving in the and axis but it is also𝑦 𝑥 𝑧

moving forward and we can do all this very, very nice simulation and animations in MATLAB.

(Video Ends: 1:11:19)

(Refer Slide Time: 1:11:20)



And again we can plot this x, y and z, we can also plot , and , so this is , and thisθ
1

θ
2

θ
3 

θ
1

θ
2

θ
3 

is x, y and z you can make this plots.

(Refer Slide Time: 1:11:40)

And we can again check that the sum of the kinetic energy and the potential energy is constant.

So, again the kinetic energy is shown here, this is the potential energy and the sum is this and

you can play around with these codes. So, the TA will put up this code in some available place,

you can try it with some different initial conditions and you can see what the disk is doing.
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So, in summary after the equations of motion of a multi-body system are obtained one can solve

2 problems in multi-body dynamics. One is this is called as the inverse dynamics problem which

is that given trajectory as a function of time, find joint torques. This is just simple substitution on

the right hand side of the equations of motion. And the next one is forward dynamics which is

given the joint torques, find the trajectory in time.

And these are I have shown you for the thin disk and even the 4-bar mechanism and even the

planar 2R. So, if I give some torqueses which are acting at the joint what does the mechanism

do? How does it move? The inverse dynamics as I said is straightforward; it is just substitution in

the equations of motion. Forward dynamics involve numerical integration, so you have to go to

MATLAB with some initial conditions and in the state space form and then you can integrate.

And I have showed you examples of the planar 2R, a 4-bar mechanism and a thin rolling disk.

These dynamic simulations can be done by computer tools, so right now we have derived the

equation of motion and we have solved it in MATLAB. But we can also without deriving the

equations of motion we can solve it in computer tools and that is what we will discuss later.


