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Welcome to this NPTEL lectures on dynamics and control of mechanical systems. In the last

week we had looked at how to derive equations of motion and we had given many examples of

the equations of motion of multi-body systems. In this week we will look at simulation of

multi-body systems. My name is Ashitava Ghosal; I am a professor in the department of

mechanical engineering in the center for product design and manufacturing and also in the

Robert Bosch Center for Cyber Physical Systems, Indian Institute of Science, Bangalore.

(Refer Slide Time: 01:03)

In this week there will be 3 lectures, in the first lecture we will introduce and discuss what is

simulation and a little bit of recapitulation of what was done previously. Then I will show you

some examples of the equation of motion, most of them are what we derived last week. In lecture

2 we will look at the inverse dynamics and simulation of equations of motion there are 2 kinds of

simulation of multi-body system one is called inverse dynamics and one is the simulation of

equations of motion. And in the last lecture in this week we will look at simulation using

computer tools.



(Refer Slide Time: 01:46)

So, lecture 1, introduction and recap and examples of equations of motion.

(Refer Slide Time: 01:53)

So, in overview: In kinematics we do not consider the cause of the motion; we look at the

geometry of motion basically. In dynamics the motion of a rigid body or a multi-body system

due to external forces and or movements are considered. The main assumption is that the

multi-body system contains only rigid bodies; there is no deformation in the bodies which make

up the multi-body system.



The motion of the rigid body are described by ordinary differential equations, also called

equations of motion. So, if the elements of the multi-body system are rigid then we will get

ordinary differential equations. There are 2 method methods to derive the equations of motion

which we had looked at last week. One of them is called as the Newton-Euler formulation and

the other one is the Lagrangian formulation.

In the Newton-Euler we obtained linear and angular velocities and acceleration of rigid bodies of

all the rigid bodies in the multi-body system. We obtain the free-body diagrams and then we use

Newton's law and Euler's equation to derive the equations of motion and in between we had to

eliminate the constraint forces. In the Lagrangian formulation on the other hand we obtain the

kinetic and potential energy of each rigid body obtains the scalar Lagrangian.

And then we take a set of partial and ordinary time derivatives and then we collect all the terms

in a particular manner and we get the equations of motion. Each of these 2 formulations

Newton-Euler and Lagrangian they have their own advantages and disadvantages. So, we had

looked at some of these advantages and disadvantages earlier. So, basically in the Newton-Euler

we need to compute both position velocity and acceleration.

And in Lagrangian formulation we can just stop at velocity because it is an energy based

formulation and we need to only use kinetic and potential energy. One of the disadvantages of

Lagrangian formulation is that the constrained forces at the joints which do not do work, require

some effort to obtain what is the nature of the constrained forces and what do these constraint

forces imply.

(Refer Slide Time: 04:27)



So, let us continue with overview. There are 2 main problems in dynamics of multi-body

systems; the first is called the direct problem. The direct problem we obtain the motion of the

rigid bodies which make up the multi-body system given the applied external forces and

moments. And in the inverse problem we obtain the joint torques and forces required for a

desired motion of the rigid bodies. So, what do we have?

We have the equations of motion, they are basically ordinary differential equations which says

that the torques or the forces are given by some mass times acceleration and so on. So, in the

direct problem the torque and the forces are given to you as a function of time and then we need

to solve the equations of motion to obtain as a function of time. Whereas, in the inverse 𝑞

problem we are given the right hand side, we are given as a function of time, as a function of𝑞 �̇�

time and maybe also as a function of time.�̈�

And then we need to compute the external forces and torques which are required to obtain those

s and as a function of time. So, obviously the direct problem involves the solution of the𝑞 �̇�

ODE’s. So, we have I am giving you we need to find what is a which is straight𝑓 = 𝑚 𝑎 𝑓

forward but then you have to integrate those equations of motion to obtain velocity and position.

This direct problem also is sometimes called simulation, so we simulate the system given the

external forces and moments and show how the multi-body system is moving. The inverse



problem is useful for sizing of actuators and other components and also for advanced model

based control schemes. So, what do we mean by sizing of actuators? So, suppose I give you a

multi-body system and I tell you that these are some of the typical as a function of time, as a𝑞 �̇�

function of time and as a function of time.�̈�

I want the multi-body systems to do. So, I can put it in the equations of motion and then I can

compute the torque required to achieve those as a function of time and and . So, hence by𝑞 �̇� �̈�

doing these computations or doing these work I can tell you how much is the torque required.

And which basically means that I can tell you what is the motors or actuators that you require

such that you can achieve the desired motions.

The same idea is also used in model based control schemes which we will not go into too much

in this course. Anybody who is interested in model based control schemes they can look at some

courses in robotics. In both these problems direct and inverse we are interested in computational

efficiency. Basically the aim is that we want to solve these 2 problems in a way such that it is

scales with the number of links.

So, if I have some effort required for let us say n links, so let us say 5 links and if the number of

links becomes 10 then the effort should only double, it should not become square or cube. So,

there are algorithms which are available for multi-body system which are O N, so that is

basically they are computational complexity is linear in the number of links, sometimes it is

important to have algorithms which are log N complexity, well, N is the number of rigid bodies.

So, this is are possible if you do parallel computing which we are not going to discuss in this

course. And sometimes this parallel computing is required if you have very large number of rigid

bodies. So, there is a problem called protein folding which is very important in many biology and

computational biology areas. So, you have large number of amino acids and proteins in inside the

protein and these amino acids can be modeled as rigid bodies and they are connected together.

And in a protein you can have something like 100 or even up to 500 such rigid bodies. So, we

cannot really worry about if you have an algorithm which is not very good, so we need very



efficient algorithms to solve the motion of such long chains as in a protein. Anybody who is

interested in computational biology you can see this book; this is a very nice book, Klepeis et al.,

published in 2002.

The dynamics of a parallel system, however, is much more complicated and the complication is

basically due to the presence of closed loops. The main complication or the main difference

between a serial chain and a parallel system is that in a serial chain we have only ODE’s, we

have only ordinary differential equations. However, in a parallel system or a parallel chain we

have ordinary differential equations arising from the Lagrangian formulation or any other

formulation.

But we also have loop closure constraint equations which are algebraic. So, what we have is

what are called as differential algebraic equations, and these are much more difficult to solve.

(Refer Slide Time: 10:50)

In the rest of this lecture, we will look at examples of equations of motion of multi-body, rigid

body systems.

(Refer Slide Time: 11:01)



The first example is that of a planar 2R manipulator, this is also sometimes called as a double

pendulum. So, it consists of 2 links, so this is link 1 from here to here and this is linked 2, the

gravity is acting along the fixed y-axis opposite to the fixed y-axis and this is the x axis the z axis

is coming out of the page. The link 1 can be described by a mass , length from here to here,𝑚
1

𝑙
1
 

the location of the CG is at this point it is along the length and this is just for simplification. 𝑟
1

And the z component of the moment of inertia is denoted by , this link can rotate about the z𝐼
1

axis by an angle . The second link is linked 2, it can be described or represented by a mass ,θ
1

𝑚
2

the length , this location of the CG is at a distance from this origin and the moment of𝑙
2

 𝑟
2

inertia about the z axis for this link is . The first link can rotate about the z axis by , the𝐼
2

θ
1

second link has a relative rotation angle .θ
2

So, it is the simplest possible serial chain as I said there are 2 moving bodies, 2 joint variables θ
1

and . There are 2 joints torques which are acting at the first and the second joint respectively;θ
2

these are and . As I said the gravity is along the - axis, , , and , i = 1, 2 denoteτ
1
 τ

2
𝑌

0
𝑚

𝑖
𝑙

𝑖
  𝑟

𝑖
𝐼

𝑖

the mass length CG location and the component of the inertia matrix respectively.𝐼
𝑧𝑧



The motion of this 2R manipulator or the double pendulum is in a plane. So, hence only the 𝐼
𝑧𝑧

component of the inertia is relevant.

(Refer Slide Time: 13:22)

So, let us continue for the planar 2R manipulator, we can obtain the equations of motion. The

equations of motion are 2 non-linear ODE’s, in the standard form they are given us some ,τ
1
 τ

2

= sum matrix into into , it is a 2 by 2 matrix plus a vector which contains , , , 2θ
1
¨ θ

2
¨ θ

1
˙ θ

2
˙ θ

2
˙ 2

.(θ
1

+˙ θ
2
˙ ), θ

1
˙ 2

And another term which contains the gravity, so it is like g , , here means cos( +𝑚
2
𝑟

2
𝑐

12
𝑐

12
θ

1

. So, in the above equations this is a 2 by 2 mass matrix, it is a symmetric positive definiteθ
2
)

matrix. So, this mass matrix is multiplying into . Then this 2 by 1 vector contains quadraticθ
1
¨ θ

2
¨

terms , and these terms represent the centripetal and coriolis terms and then we haveθ
1
˙ 2

θ
2
˙ 2

θ
1
˙ θ

2
˙

this gravity term.

So, these equations were derived in the last week and I have also showed you how we can derive

these equations in an error-free manner using Maple. As mentioned earlier and because we are

using the Lagrangian formulation to derive these equations, friction and dissipative terms are not



there in this equation. If I want to add friction and dissipative terms to these equations, we have

to do it in an adhoc manner.

So, we have to add some friction term after this, so the friction term will be like maybe (𝑐
1

+ 𝑐
2
_

, if you assume that the friction is constant plus some term which is like viscous friction.θ
1
˙

Similarly we can have some other for the second equation but that has to be added(𝑐
1

+ 𝑐
2
) θ

2
˙

manually in an adhoc manner. The Lagrangian formulation does not automatically give you the

friction and dissipative terms and we have discussed this earlier. The Lagrangian formulation is

for conservative systems not for dissipative systems.

(Refer Slide Time: 15:59)

Similarly, for this closed loop simplest possible mechanism which is a 4 bar mechanism, we can

derive the equations of motion. Remember, it is a 1 degree of freedom closed loop mechanism,

there are 3 moving bodies 1, 2 and 3, we have only 1 actuation, so that is the torque and it isτ
1
 

rotating . The other 3 angles , and , they are passive, there is only one singleθ
1

ϕ
1

ϕ
2

ϕ
3

actuating torque.

So, similar to this previous example for each link we have , , and and again is the z𝑚
1

𝑙
1

𝑟
1

𝐼
1

𝑖
1

component because this is a planar motion. For link 2 we have , , and and for link 3 it𝑚
2

𝑙
2

 𝑟
2

𝐼
2
 



is these angles are given in this form because we are assuming that we are𝑚
3
,  𝑙

3
,  𝑟

3
 𝑎𝑛𝑑 𝐼

3
 

using relative angles. So, is relative to this and is relative to the direction, this is theθ
1

𝑥
1

ϕ
2

direction of the link and the next link is this.

So, if you assume or if you take the convention that counterclockwise is positive will be likeϕ
2

this, will be like this not this smaller angle. It does not matter eventually if you stick to aϕ
3

consistent configuration convention then you will get everything will be fine. And again there is

a gravity which is acting in this direction and the location of the CG is along the link similar to

the previous case.

So, the geometry and inertial parameters of the rigid bodies are , , and for i = 1, 2 and 3,𝑚
1

𝑙
1

 𝑟
1

𝐼
1
 

so there are 3 links. And again component of the inertia matrix for each body is relevant,𝐼
𝑧𝑧

𝐼
𝑥𝑥

and is not relevant because the motion is in the one plane.𝐼
𝑦𝑦

(Refer Slide Time: 18:19)

So, we have to derive the equation of motion, we break this 4-bar mechanism at , so we break𝑂
3

it here. And as a result once you break it you will have a 2R chain a serial chain and a 1R chain,

very simple. We have done this earlier also when we looked at the kinematics of a 4-bar



mechanism. So, the equations of motion can be very simply derived for this 2R chain and this 1R

chain.

So, this kinetic energy of the planar 2R is very, very similar to what we did earlier few minutes

back. So, all we need to do is has to be replaced by , so this is a 2R chain and where theθ
2

ϕ
2

variables are and instead of we have . And this is a single link with 1 degree of freedomθ
1

θ
2

ϕ
2

which is to 1 rotation. So, the kinetic energy of the 1R is + .ϕ
1

1
3 𝑚

3
 𝑟

3
2 ϕ

1
2˙ 1

2 𝐼
3

ϕ
1
2˙

So, this is like and this is like . So, the center of mass is somewhere here at a1
2 𝐼 ω2 1

2  𝑚𝑉
𝑐
2  

distance , so the velocity will be , so the kinetic energy will be and of course𝑟
3

𝑟
3

ϕ
1

˙ 1
3 𝑚

3
 𝑟

3
2 ϕ

1
2˙

, where I is the z component of this link about the CG. So, the total kinetic energy will be1
2 𝐼

3
ϕ

1
2˙

the sum of the kinetic energy of this 2R chain and + 1R chain.

So, this first 4 terms very similar to what we have derived earlier is for the 2R chain and this last

one is for the 1R chain and as before we see that there are terms which are like +1
2 𝑚

1
𝑟

1
θ

1
˙( )2

+ because now we are replacing by . And also we have a term which is𝐼
1
θ

1
2̇ 𝐼

2
θ

1
˙ + ϕ

2
˙  ( )2

θ
2

ϕ
2

cos which depends on cos , previously in the 2R example we had cos .ϕ
2

ϕ
2

θ
2

So, as I said all we need to do is whatever the equations we have obtained for the 2R we replace

by . The potential energy is also a scalar and it is nothing but the potential energy of this 2Rθ
2

ϕ
2

chain + 1R chain. So, this will be like g sin , we have assuming that this is the 0 potential𝑚
1

 𝑟
1

θ
1

energy surface, so the CG of this link 1 is at a distance , so the height is sin , so we will 𝑟
1

 𝑟
1

θ
1

get g. 𝑟
1

θ
1

𝑖𝑛𝑡𝑜 𝑚
1



The height of this link 2 is sin + sin + and what is the height of this third link? It𝑙
1

θ
1

𝑟
2

(θ
1

ϕ
2
)

is sin . So, we can very easily compute what are the potential energies of 2R and 1R then𝑟
3

ϕ
1

we just add them.

(Refer Slide Time: 21:56)

And once you add them and do the Lagrangian formulation we can obtain the equations of

motion and this was discussed last week also. So, I showed you how we can obtain all the terms

in the equation of motion using Maple and that is exactly what has been done here. So, we have

used Maple to derive the kinetic energy, the potential energy and then assemble them together

and we obtain 3 equations of motion.

So, there is a which is given by functions of sum and and then all this and thenτ
1
 𝐼

2
 𝑚

2
  𝑟

2
2 θ

1
¨ 𝐼

1

and , exactly the same as earlier. And similarly one which is given by ( + and𝑚
2
 𝑙

1
2 τ

2
𝐼

2 
𝑚

2
𝑟

2
2) θ

1
¨

then and then some gravity term. Here also you can see that there is a gravity term which isθ
1
2̇

cos ( + g, so here it is written slightly differently, the g is taken out.𝑚
2
 𝑟

2
θ

1
ϕ

2
)

And the third equation is g cos +( + . So, we can derive the equations of𝑚
3

𝑟
3

ϕ
1

𝑚
3
𝑟

3
2 𝐼

3
) ϕ

1
¨

motion of this system which is planar 2R + 1R because remember we have broken it. So, these



are 3 non-linear ordinary differential equations. The important thing is the third equation in it is

current form here is nowhere connected to the first 2 equations. So, you see here is there, isτ
3
 ϕ

1

there and is here, we know there is only one independent variable because it is a 1 degree ofϕ
1

¨

freedom system.

So, we need to somehow bring in the constraints now and then all these 3 equations will become

coupled. So, right now the third equation is not related to the other 2 but once you bring in the

constraint equations it will become coupled. So, here it is broken, so as you can see, so the

equation for this and the equation for this somehow, we have to go back and couple them

together.

(Refer Slide Time: 24:21)

So, how do I obtain this coupling? We go back and look at the constraint equation. So, what are

the constraint equations? It is x = cos + cos( + = + cos , this is seen earlier.𝑙
1

θ
1

𝑙
2

θ
1

ϕ
2
) 𝑙

0
𝑙

3
ϕ

1

y component is of that point where we are broken is sin + sin ( + = sin . And𝑙
1

θ
1

𝑙
2

θ
1

ϕ
2
) 𝑙

3
ϕ

1

we can differentiate these equations and then we get this 2 by 3 constraint matrix.

So, when you differentiate the first one you will get - sin , so partial differential with respect𝑙
1

θ
1

to then partial derivative with respect to of and the partial derivative with respect to .θ
1

θ
2

ϕ
2

ϕ
1



So, the first partial derivative, so once you take it on this side will become sin and then thisϕ
1

one will be -sin partial derivative with respect to we will get - cos .ϕ
1

ϕ
1

𝑙
3

ϕ
1

So, this is a 2 by 3 matrix, we can obtain the derivative of this matrix and write the constraint

equations. So, this is psi into = 0 when you take the derivative, we have . And�̇� ψ�̈� + ψ̇ �̇� =  0

this again we have discussed earlier, so we introduced Lagrange multipliers for this loop closure

constraint equations then we get an equation of motion which looks like =�̈�

we substitute back in the constraint equations.𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 ( ) +   𝑀−1[ψ]𝑇λ �̈�

And solve for and then obtain the equations of motion, so this has been done earlier. So, this isλ 

just a review, I have shown you what we can do using Maple and we can obtain all these terms

and then we can obtain this equations of motion. So, in this figure just to go back and see the

steps, I have broken this joint at joint 3, so then the X coordinate of this point here this cos +𝑙
1

θ
1

cos( + , so this is the x coordinate here.𝑙
2

θ
1

ϕ
2
)

This will be equal to + cos component along the x axis, so both of these 2 will be equal.𝑙
0

𝑙
3

ϕ
1

So, for Y we have sin which is the vertical height and then this is sin( + that𝑙
1
 θ

1
𝑙

2
θ

1
ϕ

2
)

should be equal to sin . So, these are the 2 loop closure constraint equations when we break𝑙
3

ϕ
1

it at joint 3. And then again we take the partial derivatives and find the constraint matrix then we

take the derivative of we get .ψ̇ �̇� = 0 ψ�̈� + ψ̇ �̇� =  0

And then mechanically very, very straightforward it will lot of effort but nevertheless it is a very,

very mechanical way of deriving the equations of motion. So, hence we obtain the equations of

motion and for this 4-bar mechanism in this form which is [𝑀] �̈� = 𝑓 − ψ[ ]𝑇(  ψ[ ]𝑀−1[ ψ]𝑇)
−1

and then . ψ[ ]𝑀−1𝑓 + ψ[ ]˙ �̇�
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The last example or recapitulation of equation of motion is that of a thin disk. So, we have a thin

disk which is originally in the XZ plane and then there is a rotation which is called theθ
1

heading. So, rotation about Z A axis then the next rotation is about which is about the movedθ
2

x axis and then the final spin which is which is about the moved y axis. So, basically we haveθ
3 

generalized coordinates for this problem as x, y, z, , , .θ
1

θ
2

θ
3

x, y, z is the center of this disk, so this is the location of this point with respect to , so that𝑂
𝐵

𝑂
𝐴

is the vector x, y, z. And because there are these 3 rotations which are happening about Z axis,

then X axis, then Y axis, so we can use this Euler angle formula, Euler angle rotations about Z,,X

and Y and obtain a rotation matrix of this disk with respect to the A coordinate system, so this is

given by and we will have this 3 by 3 rotation matrix.𝐵𝐴 𝑅[ ]  

And as expected it will contain sin , sin , cos , cos and cos and sin in someθ
1

θ
2

θ
1

θ
2

θ
3 

θ
3 

particular order. And again in the last week in the Maple example I have shown you how to

derive this rotation matrix, we have done it much, much earlier in this course also but using

Maple we can find the rotation matrix about Z, then the subsequent rotation about X and then the

third rotation about Y.



We multiply these 3 rotations in the order of they are occurring and we will get this rotation

matrix. So, once we have this rotation matrix we can do as shown again using this  𝑅[ ] ˙
  𝑅[ ]𝑇

example of Maple last week I can find out the skew symmetric matrix . Then from this  𝑅[ ] ˙
  𝑅[ ]𝑇

skew symmetric matrix extract the x, y and z component of the angular velocity vector.

So, this is angular velocity of this B coordinate system; with respect to the A coordinateω
𝐵

system and this is the space fixed angular velocity vector. So, and so on,   ω
𝑥

= 𝑐
1
 θ

2
˙ −  𝑠

1
𝑐

2
θ

3
˙

. So, we have all these angular velocity vectors which we can compute onceω
𝑧

=  θ
1
˙  +  𝑠

2
 θ

3
˙

we know what is the rotation matrix.

Then finally we impose the condition that the velocity of this point c which is the point of

contact with respect to the A coordinate system with respect to the reference coordinate system is

0. So, this disk cannot slide in this direction, it can only roll about this dotted line, it cannot slide

perpendicular to the dotted line, that is not allowed. We are solving the problem of a thin disk

which is rolling without slipping.

(Refer Slide Time: 32:13)



So, this = 0 will give rise to these 3 equations which is nothing but which is the 𝐴𝑉
𝐶 

 �̇� ,  �̇�,  �̇� 

velocity of this point will be related to , , and of course , and so on, by these 3θ
1
˙ θ

2
˙ θ

3
˙ θ

1
θ

2

expressions. So, how did I get this? Very easy, so we obtain the velocity of this point plus ω×𝑟 

will be the velocity of this point c and then we set that equal to 0.

So, velocity of this point contains , is what we had derived in the last slide it has�̇�,  �̇�,  �̇� ω

it contains , , and the angles also and then we simplify and we will get theseω
𝑥
,  ω

𝑦
,  ω

𝑧
 ,  θ

1
˙ θ

2
˙ θ

3
˙

3 constraint equations. Strictly speaking there is a holonomic constraint also involved which is

that this point of contact is always in the X-Y plane so basically this disk cannot leave this plane.

So, Z coordinate of this point of contact must be 0, so if you do this = 0 that is 𝐴𝑉
𝐶 

 

automatically satisfied, so we do not really have to worry about that there is 1 holonomic and 2

non-holonomic constraints, we are taking all of them into account by these 3 constraint

equations. So, as I said the velocity of the center of the disk is , the inertia matrix of𝑂
𝐵

 �̇�,  �̇�,  �̇� 

the disk is , so the disk is in the X-Z plane.𝐼
𝑥𝑥

So, = is , the inertia about the Y-axis , these are available in any𝐼
𝑥𝑥

𝐼
𝑧𝑧

1
4  𝑚 𝑟2  𝑖𝑠 1

2  𝑚 𝑟2

standard textbook for a thin disk. The kinetic energy can be written as of the center of1
2  𝑚 𝑉2,  𝑉

mass of this disk + . And if you do the simplifications you will get this expression for1
4  𝐼 ω2

kinetic energy which is and then you will have some terms which is , this is1
8  𝑚 𝑟2 𝑥2̇,  𝑦2˙ ,  𝑧2̇

very clear.

So, this 4 and 8 will cancel and and will cancel, so you will have , ,𝑟2 𝑟2 1
2  𝑚 �̇�

2 1
2  𝑚 �̇�

2 1
2  𝑚 �̇�

2
 

that is very straightforward, . The part will be a little bit more complicated and you1
2 𝑚 𝑉

𝑐
2 𝐼 ω2



will get this. So, this is written in a compact form that is why this is taken outside and1
8 𝑚𝑟2

then you have( + 2 + 2 + 4 sin , so this can be derived.θ
2
˙ 2

θ
1
˙ 2

θ
3
˙ 2

θ
2

θ
1
˙ θ

3
˙ − 𝑐

2
2 θ

1
2̇)

Once you know these elements of the inertia matrix and also what is the . The potential energyω

is this is also sort of clear. If you can see that this is the disk , so𝑚𝑔𝑟 cos 𝑐𝑜𝑠 θ
2
  ,  𝑟 𝑟 cos 𝑐𝑜𝑠 θ

2
  

is how much is the height above this X-Y plane, so we will get We can obtain𝑚𝑔𝑟 cos 𝑐𝑜𝑠 θ
2
  .  

the Lagrangian which is kinetic minus potential energy.
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And then we can continue and derive the equations of motion and then we can take into account

these non-holonomic constraints of no slip. We can differentiate these constraints standard

approach, we get . So, this is like , so we can reorganize this. So,ψ[ ]�̈� + [ψ]˙  �̇� =  0 ψ �̇� =  0

here is a 6 by 1 vector, so this is will be 3 by 6 and will be appropriately you can find the𝑞 ψ ψ �̇�

dimension.

So, then the equation of motion again using the approach which we have discussed now several

times with constraints is = , where at the Lagrange�̈� 𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 ( ) +   [ψ]𝑇λ λ  

multiplies, there are 3 of them because of these 3 constraints. And then we can find the



expression for the Lagrange multiplier which is

.(  ψ[ ]𝑀−1[ ψ]𝑇)
−1

  ( [ψ]˙  �̇� + ψ[ ]𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 ( ))

Same story, whatever we have done earlier. We can compute the Lagrange multiplies, substitute

back in this second order ODE and obtain the equations of motion.
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So, in summary we can derive the equations of motion of a multi-body system using the

Lagrangian formulation. We can obtain error free equations of motion using symbolic computers

algebra systems such as Maple. And in this lecture I have shown you the equations of motion of

a planar 2R serial chain. The equations of motion of a planar 4-bar closed-loop mechanism and

also the equation of motion of a pure rolling of a thin disk.

So, this one there are no constraints, this one there are loop closure constraints which are

holonomic constraints. And in the case of this pure rolling of a thin disk we also have

non-holonomic constraints involving derivatives of the generalized coordinates.


