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Lecture-16
Equation of Motion Using Computer Tools

In the next lecture we will look at how to derive these equations of motion using computer

tools. So, this is a little bit of descriptive, if you want to learn how to use computer tools then

you have to sit in front of a computer, just listening to these slides or these lectures are not

enough. But nevertheless we will go through step by step as to how to start or use these

computer tools. So, that we can finally derive the equations of motion.

(Refer Slide Time: 00:59)

The equations of motion for a multi-body mechanical systems can be very complex, we have

seen very, very simple systems of 2R and maybe a disk which is rolling but any mechanical

system which is reasonably big can have many, many parts and hence the equations of motion

can be very complex. Even in the examples which I have showed you there are many terms

and the extensive use of trigonometry algebra, matrix operation and calculus.

We have done derivatives, partial and time derivatives. Even for the simplest possible

multi-body serial chain the planar 2R, if you go back and see the mass matrix the 1, 1 term.

So, the first term in the mass matrix has 6 terms with algebraic and trigonometric operations.

So, think of it if you have a robot with 6 degrees of freedom with many parts you will have

many, many more terms.



And each of these terms will have many algebraic and trigonometric operations. So, we will

have sine and cosine of angles and so on. So, it is imperative that we find some computer

tools which can give you this error free expressions and equations of motion. It is physically

almost impossible to derive by hand or manually the equations of motion of any reasonable

mechanical system.

There are 2 kinds of computer tools which are available; one is what is called as a computer

algebra system or CAS. These systems perform algebra differentiation simplification etcetera

on the symbolic expressions. So, we will not give numbers, we will give symbolic

expressions as some kind of a text and then these computer algebra systems can do addition,

multiplication then differentiation of the symbolic expressions.

So, if you do all these symbolic expressions, for example in the Lagrange formulation where

we do partial derivatives with respect to and so on. We can arrive at the equations𝑞
𝑖
 𝑎𝑛𝑑 𝑞

𝑖
˙

of motion by doing all those expressions symbolically. There is also another kind of computer

tools which are for modeling and simulation of mechanical systems and other systems also.

So, most of these tools come integrated with a CAD tool and basically they will do numerical

solutions of the equations of motion.
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So, we will see some of these expressions or tools later on. So, let us continue. So, an

example of a computer algebra system is Maple. So, we have used Maple extensively in this

course and for various applications to obtain equations of motion and even for rotation

matrices. So, I thought we can just go over very quickly how does Maple work, what are

some of the important elements of Maple.

We can also have examples of modeling and simulation tools for multi-body systems; two of

the well-known ones are ADAMS and Simscape. So, we will start with a brief introduction to

Maple with examples. So, this requires a lot of practice with Maple. So, the purpose of this

talk or this lecture is to tell you how to go about starting Maple and do some very basic

simple operations.

Once you start doing this then you can see it is a very powerful tool which can be used for

many applications. In the next module next week we will look at a brief introduction to

ADAMS and Simscape. The ADAMS and Simscape are basically modeling and simulation

tools where we can model a multi-body mechanical system and then we can ask it to

simulate. Basically we can solve equations of motion for given initial conditions.

And for given parameters of the mechanical system and find how the mechanical system

moves.

(Refer Slide Time: 05:54)

So, let us continue we have Maple. Maple is a symbolic manipulation package available from

Maple soft. So, this is a company, and you can go to this website www.Mapleshopsoft.com



for more details about Maple. It is available in academic and student versions; the current

version of Maple is 2022 and it is available in Windows and Linux. Many products and

modules are given by this Maple soft.

We are only going to look at a small subset which are useful for obtaining expressions related

to kinematics and dynamics of rigid multi-body systems. There are many other modules;

please go to the website here and you can see what all features and what all packages and

what all specialized packages are available from this company. In its most basic form Maple

can perform various mathematical operations which are represented as symbols and strings.

It can simplify expressions using mathematical identities and results to obtain expression in

simplest form. So, for example if you have some appearing somewhere in yourθ + θ 

derivation of equation of motion; it can convert that using trigonometric identities to one. The

output of Maples are also symbols and strings. They are not numbers, they can be numbers

but you can use Maple to obtain expressions of equations of motion and I will show you

examples.

The output can also be evaluated numerically by assigning numbers to the strings and

symbols. So, if you have an output which says and if you give the value of theta ascos 𝑐𝑜𝑠 θ 

some angle, it will evaluate and give you a number. The output can also becos 𝑐𝑜𝑠 θ 

integrated with text and math, graphics and images and other forms of presenting information

it can give you plots of some variable as a function of time and so on.
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In this NPTEL course, as I have mentioned Maple has been used extensively to obtain error

free expressions of linear and angular velocities of rigid bodies and multi-body systems. The

error free equations of motion for examples of serial and parallel chains. So, for example the

planar 2R or even the 4-bar mechanism. The Maple outputs have been integrated with Matlab

to obtain plots and numerical solutions. There are three examples which I am going to show

you of using Maple in this lecture.

First is we obtain the angular velocity of a rigid body B in a reference coordinate system A

for Z-Y-X Euler angles. So, I will show you how we can obtain the rotation matrix; then we

can obtain and then from the skew symmetric matrix we can extract the  𝑅[ ] ˙
  𝑅[ ]𝑇

components of the angular velocity vector. I will also show you how to obtain the equations

of motion for a planar 2R serial chain.

In fact in the examples which I have shown earlier the equations of motion were obtained

using Maple and likewise I will show you how to obtain the equations of motion for a 4-bar

mechanism. So, this is a parallel chain, this is a serial chain and this is some simple

kinematics requirement to obtain angular velocity of a rigid body.

(Refer Slide Time: 10:07)



Just continue little bit of introduction of Maple more. Maple is a symbolic and numeric

computing environment as well as a multi-paradigm programming language. Please go to the

Maple website and you can understand what are some of the really powerful features of

Maple? It covers several areas of technical computing symbolic mathematics, numerical

analysis, data processing visualization and others.

Maple arose from a meeting in late 1980 at the university of Waterloo in Canada. The first

version was available in January 1982. So, it is a fairly old and mature software. Maple

incorporates a dynamically typed imperative style programming language; we will see what it

means. So, basically you will have a command prompt and then if you type and you can ask it

to find out what it means or what it evaluates.

Maple also has interfaces to other languages C, C#, Fortran, Java, Matlab and various other

languages and it can also in integrate with Microsoft excel.
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So, here is a starting screen of Maple. So, once you download Maple and then if you initiate

Maple. So, then you can get this something like this screen. So, this screen has various

features. First is this menu bar. So, like any other windows operating system you have file,

edit, view, insert, format and various other things. Below that you have this Maple tool bar.

It tells you we will go into little bit more detail, it tells you what are all the things it can do,

then there is on this left side there is a pallet which is basically it gives you all the most

common mathematical operators, symbols and their expression. And we can easily use this

tool bar to do in this workspace, what to do or how to initiate conversation with Maple? So,

for example you can also do it click some start button to start a new file. There are many

others help files which are also available.

(Refer Slide Time: 12:41)



So, the start screen of a new workspace looks like this. So, you have some favorite,

expressions, calculus and so on. And when you start it you will get a prompt which looks like

this. So, in Maple the program is run line after another. So, if you type something here then

when you enter it will execute the line and the output is shown in a blue line just below it and

I will show you examples.

You can give multiple commands and executions can be performed in a single line. So, for

example if you can end one command with this colon or this and you can keep on typing all

the commands one after another. So, a ‘:’ at the end of the command suppresses the output.

So, even though you enter there will be no output which is shown and a ‘;’ not keeping it

blank for a single command shows the output.

To assign any variable we have to say a colon equal to something, we cannot use equal alone

and if you change anything in the previous line every line after it needs to be executed

because it does not know what you have changed in the previous line.

(Refer Slide Time: 14:02)

So, some useful comments about Maple, it is a good practice to include common libraries like

linear algebra or student linear algebra which covers most of the commonly used functions.

The syntax is you initiate this line with code with package name. So, with linear algebra.

Most common calculus trigonometric. greek, linear algebra, vectors and matrices symbols

etcetera are available on the palette on the left.



So, remember I showed you all palette; these are for common trigonometric and calculus and

linear algebra operations. You can use combine and simplify to make the output compact. So,

as I gave you an example if you have you can say simplify and it will give you backθ + θ  

one, it will give some inherent trigonometric identities which are pre-programmed to simplify

those expressions.

Sometimes using subscript and superscript causes issue while differentiating. So, if you want

to differentiate , Maple if you say differentiate it will give you minuscos 𝑐𝑜𝑠 θ cos 𝑐𝑜𝑠 θ 

. So, you need to practice once in our little bit to find out exactly what this issin 𝑠𝑖𝑛 θ 

happening. So, sometimes you need to substitute the variables with which you want to

differentiate.

So, for example syntax is substitute . So, you cannot differentiate maybe𝑥 𝑡( ) =  𝑎,  𝑦 𝑡( ) =  𝑏

x but you can differentiate a and there are some expressions like that. To multiply𝑡( )

matrices and vectors we have to use a dot like this and again these examples will see. For

transpose we can use this ‘^+’ , not like t which is what I have shown in the text or you can

say transpose a variable name.

So, if you have a x and you want to do then we have to use this code plus this ‘^+’. The𝑥𝑇 .  𝑦 

matrices can be differentiated by quite simply, all you say is use

with which you are differentiating each element of the matrix.𝑚𝑎𝑝(𝑑𝑖𝑓𝑓,  𝑀𝑎𝑡𝑟𝑖𝑥𝑁𝑎𝑚𝑒,  𝑡) 

So, t is like time, it could be some other theta. You have to tell this element of the matrix need

to be differentiated with this variable t.

To get the coefficients of any variable in an expression use collect. So, if you have a long

expression and if you want to find out what are what is the coefficient of . Remember inθ
1
¨  

the equations of motion I had and inside the bracket I had and so on.θ
1
¨   𝐼

1
 +  𝐼

2
 +  𝑀

1
 𝑟

1
2 

So, how did I find all the coefficients of ? You can use command like this.θ
1
¨

And we can use very simply rotation matrix in the angle axis form. So, these are some

specialized commands which are useful for this course because we can use these commands

to do some kinematics and find rotation matrices and so on.



(Refer Slide Time: 17:48)

So, let us continue we want to use Maple. So, what is in the palette? So, I hope you can see it

here, we have some a + b, a – b, a by b. So, all these various operations are already there, we

can also find the derivatives and you can find limits and then you can also integrate. So,

Maple allows you or it will evaluate certain integrals which it knows and then you have this

common symbols and then you have variables matrices units and so on.

So, most easy to write variables and expression just by clicking on this. So, you click on these

symbols and it will appear on the worksheet, you can also edit it if you want to. Variable

name cannot have spaces in it, this is something which you know once you start using it you

will find. So, it should be continuous. So, you cannot have a blank b, it will not like it, you

have to write a b.

Both prescripts and postscripts, superscript and subscripts can be used in variable names. So,

you can write and subscript and so on. So, you can see here that there is a to the power b𝑥
1

so, you can write variables name like a to the power b. The values assigned to variables can

be viewed in the variables tab. So, there is a variable tab here and if you say that x is some 2

or 3 or some number then that can be seen here.

(Refer Slide Time: 19:31)



So, let us use Maple to obtain the angular velocities for Z-Y-X Euler angles. So, this is one of

the example which I thought. If you go through it then you can see what exactly we need to

do. So, the first thing is in this prompt we say with with student linear algebra, this is

including the packages linear algebra and student linear algebra. One thing what you can see

is I have written something .𝑅
1
≔𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥( θ

1
𝑡( ),  0 0 1( ))

So, what it means is that I want to rotate about a vector 0 0 1 which is nothing but the z axis

by an angle . So, if you type this in that command prompt in Maple then you will get thisθ
1

matrix. So, you can see

and so on.𝑅
1
 𝑖𝑠 cos 𝑐𝑜𝑠 θ

1
 𝑡( ) −  sin 𝑠𝑖𝑛 θ

1
 𝑡( ) 0,  0 0 1,  sin 𝑠𝑖𝑛 θ

1
 𝑡( ) cos 𝑐𝑜𝑠 θ

1
 𝑡( ) 

This is a simple rotation about the z axis and it is very, very simply you can do it in one step

and it comes out as I said written in blue.

So, this is the output of Maple when you type this command and you can see that this is

nothing but a rotation about the z axis by an angle . Then we can do similarly which isθ
1

𝑅
2

the rotation about y-axis by an angle . So, you will get like this and remember we areθ
2

𝑅
2

going to later on differentiate. So, we want to ensure that and likewise are functionsθ
1

θ
2

θ
3

of time.

So, . this is the x axis. So, I want to find out what is𝑅
3
≔𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥( θ

3
𝑡( ),  1 0 0 ( ))

the resultant rotation matrix after Z-Y-X. So, we multiply it in the order which we have done



these rotations. So, first Z then Y then X you multiply and then you will get this little bit long

expressions. But if you just carefully see what it is telling you is for example this element

which is the element is - .𝑟
31

sin 𝑠𝑖𝑛 θ
2
 𝑡( )

This one is . So, this𝑐𝑜𝑠 𝑡( )  𝑐𝑜𝑠θ
3

𝑡( ),   𝑡ℎ𝑖𝑠 𝑜𝑛𝑒 𝑖𝑠 𝑐𝑜𝑠  𝑐𝑜𝑠  𝑡( ) − 𝑠𝑖𝑛   𝑐𝑜𝑠  𝑡( ) +  𝑠𝑜 𝑜𝑛

is the first column vector which is the x b in the a coordinate system. This is the y b in the a

coordinate system and this is the z b in the a coordinate system and you can go back to your

notes and see that this is exactly what we had written in the text when we were looking at

Euler angles.

So, as you can see with these three steps and one more which is here I can find the rotation

matrix corresponding to Z-Y-X Euler rotations.

(Refer Slide Time: 22:51)

Then let us take steps to find out the angular velocity. So, I want to do actually   𝑅[ ] ˙
  𝑅[ ]𝑇

because I want to find the space fixed angular velocity vector corresponding to Z-Y-X Euler

rotations. So, what you can see is we need to type omega s which is the skew symmetric

matrix is . So, when you say it is trying to do𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦( 𝑚𝑎𝑝  𝑑𝑖𝑓𝑓,  𝑅,  𝑡( ).  𝑅+) 𝑑𝑖𝑓𝑓,  𝑅,  𝑡

.𝑅̇

And then when you say this ‘^+’ So, remember transpose corresponds to a plus, so when you

type it will go back and see what was R earlier and then it will do transpose of that𝑅𝑇  𝑅+



matrix and then this is and this simplify is to write it in a compact form. So, wherever𝑅̇

possible it will try to simplify using trigonometric identities and any other if something is 0 it

will make it 0.

So, remember in a skew symmetric matrix the diagonal term should be 0 and it will

automatically make it 0. So, how does it know this is skew symmetric matrix? It will

basically after doing simplification it will see that these elements are 0 and hence we can find

what is this skew symmetric matrix. So, you can see the diagonal terms are 0, the off diagonal

terms are .𝑎
𝑖𝑗

=  −  𝑎
𝑗𝑖

So, for example this term is and this is , this is the way is represented. So,sin 𝑠𝑖𝑛 θ
2
 θ

3
˙ θ

3
˙

this is - . So, this quantity is , this is and these two𝑑
𝑑𝑡  θ

1
𝑡( ) θ

1
˙ −  sin 𝑠𝑖𝑛 θ

2
  (θ

3
)˙  +  θ

1
˙

terms as . Likewise we can find all other terms. So, as you can see we obtain𝑎
𝑖𝑗

=  −  𝑎
𝑗𝑖

clearly little bit different than how you write with hand but all the terms are there.

So, this is , , - sin , if you look at let us say another this point, this is - , thisθ
3
˙ θ

1
˙ θ

2
cos 𝑐𝑜𝑠 θ

2
 

is + this is . So, this matrix comes out when you do these steps inθ
3
˙  cos 𝑐𝑜𝑠 θ

1
 θ

2
˙ sin 𝑠𝑖𝑛 θ

1
 

Maple. Then we can see that this is the skew symmetric matrix, this is minus and this is plus,

this is minus and this is plus and so on. It has all the rules of a skew symmetric matrix.

So, we can extract from the skew symmetric matrix the space fixed angular velocity vector

which is the x component is 3, 2 which is this 1 here then 1, 3 and then 2, 1. So, this is the z

component. So, we can obtain all these components and then as soon as you type this it will

come out and show you that these are the components of the angular velocity vector. So, in

our nodes we have called this .Ω
𝑅

 

So, this is right multiplication we started with . is identity then we took the derivatives𝑅̇𝑅𝑇

and so on. So, here in this slide it is being called as and you can see is soΩ
𝑆
 ω

𝑥
 cos 𝑐𝑜𝑠 θ

2
 

- . So, you can go back and verify because these expressions areθ
3
˙  cos 𝑐𝑜𝑠 θ

1
 θ

2
 ˙ sin 𝑠𝑖𝑛 θ

1
 

given earlier in the text that this is indeed the x component of the angular velocity vector.



And then if you want to see whether it can be written in a more compact form you can say

simplify which is the body fixed angular velocity vector also we want to find out  𝑅[ ]𝑇  𝑅[ ] ˙

and then again we can find this these are the components of and the body fixed  𝑅[ ]𝑇  𝑅[ ] ˙

angular velocity vector is again the (3, 2), (1, 3) and (2, 1) components of this skew

symmetric matrix.

So, again you can see that we can get the angular velocity vector components either in the

space fixed which is or in the body fixed which is in this form. So, the summary of this isΩ
𝑆
 

we can start with a rotation matrix which is nothing but rotations about z, y and x then we do

this differentiation of this rotation matrix and then we type these commands and we get the

angular velocity in either space fixed or body fixed angular velocities.

(Refer Slide Time: 28:36)

Let us continue we want to show you how to obtain the equations of motion of a planar 2R

manipulator. So, this will take a little bit more time, but nevertheless it is a good way to see

the power of Maple and how we can get error free equations of motion. So, again we start

with some packages which is linear algebra and student linear algebra. First thing is we say

what is the location of the CG of each link.

So, is the position vector of the first link center of mass or center of gravity and if you 0𝑝
𝐶1 

can see in your notes that this is nothing but r and r , we have to saycos 𝑐𝑜𝑠 θ
1
 sin 𝑠𝑖𝑛 θ

1
 



explicitly that is a function of time because later on we will take the derivatives. So, asθ
1

soon as you type this and since there is you are not suppressing the output you will get this

vector that is given by sin and the z component is 0. 0𝑝
𝐶1 

𝑟
1

cos 𝑐𝑜𝑠 θ
1
 𝑡( ) 𝑟

1
θ

1
𝑡( )

Likewise the location of the CG of the second link which is after the first link is

. So, again you can see it is and so on𝑙
1
 𝑐

1
+  𝑟

2
 𝑐

12
 ,  𝑙

1
 𝑠

1
 +  𝑟

2
 𝑠

12
𝑙

1
 𝑐

1
𝑡( ) +  𝑟

2
 𝑐

12
𝑡( ) 

and as soon as you type this you will get the position vector. So, these are consistent with

what is mentioned in the nodes and this is very easy. So, you have to give this input. So, you

need to know that this is the x component.𝑟
1

cos 𝑐𝑜𝑠 θ
1
 𝑡( )

And is the y component but that is very simple we are not doing very, very𝑟
1

sin 𝑠𝑖𝑛 θ
1
 𝑡( )

tricky things. From the figure you can see what is the position vector of the center of mass of

each link.

(Refer Slide Time: 30:47)

Then we can find the velocity of the center of mass and as I said we differentiate which 0𝑝
𝐶1 

is the position vector with respect to time and this map this means that you want to

differentiate this position vector and when you differentiate you can see the output is

. So, this is like into sin . So, x coordinate was , y− 𝑟
1

𝑑
𝑑𝑡 θ

1
(𝑡) θ

1
 ˙ θ

1
𝑡( ) 𝑟

1
cos 𝑐𝑜𝑠 θ

1
 𝑡( )

coordinate was .𝑟
1

sin 𝑠𝑖𝑛 θ
1
 𝑡( )



So, it does this differentiation of symbolically and it will give you .𝑟
1

𝑑θ
1
(𝑡)

𝑑𝑡 𝑠𝑖𝑛 θ
1

𝑡( ) 

written in this form. Similarly, the y component was the derivative of . So,𝑟
1

sin 𝑠𝑖𝑛 θ
1
 𝑡( )

you will get and likewise we can find the velocity of the CG of𝑟
1

𝑑
𝑑𝑡 θ

1
𝑡( ) cos 𝑐𝑜𝑠 θ

1
  𝑡( )

second link again by taking the derivative of with respect to time, this tells you that you 0𝑝
𝐶2 

are taking the derivatives with respect to time.

And again you will get various terms. So, remember it was that was the x𝑙
1
 𝑐

1
 +  𝑟

2
 𝑐

12

coordinate of the center of mass of the second link. So, when you take the derivative it will be

then , you can see even these brackets− 𝑙
1

𝑑
𝑑𝑡 θ

1
(𝑡)𝑠𝑖𝑛 θ

1
𝑡( ) −  𝑟

2
𝑑
𝑑𝑡 θ

1
𝑡( ) + 𝑑

𝑑𝑡 θ
2

𝑡( ) ( )
come up nicely. So, you know exactly this is what is and and then we have (θ

1
˙  θ

2
˙  sin 𝑠𝑖𝑛 θ

1
 

+ .θ
1

𝑡( ) θ
2

𝑡( ) )

The y component is similarly derivative of sine. So, you will get cos and then and so on.θ
1
˙  

So, you can find the velocity of the CG of the first link and the second link using Maple.

Again these are error free, the way it is written this computer tool, it is not going to make

mistakes. So, it will not going to put some different sign here by mistake.
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The kinetic energy now can be obtained because we know the linear velocity of the center of

mass of each link. So, what is the kinetic energy? It is nothing but . So, this𝑚
1
   0𝑉

𝐶1
𝑇

 
 0𝑉

𝐶1 

transpose means basically it is like . So, dot is like . So, if you have 0𝑉
𝐶1
˙

 
 0𝑉

𝐶1 
 0𝑉

𝐶1
𝑇

 
 0𝑉

𝐶1 

vector vector I can write it as . So, that is what is exactly being done here.𝐴̇ 𝐵. 𝐴𝑇𝐵

So, this is 1
2 (𝑚

1
   0𝑉

𝐶1
𝑇

 
 0𝑉

𝐶1 
+ 𝑚

2
   0𝑉

𝐶2
𝑇

 

. So, this is which is the moment of 0𝑉
𝐶2  

+ 𝐼
1

𝑑
𝑑𝑡 θ

1
𝑡( )( )2

+ 𝐼
2

𝑑
𝑑𝑡 θ

1
𝑡( ) + 𝑑

𝑑𝑡 θ
2

𝑡( )( )2
 )   𝐼

1

inertia of the first link and we are only interested in the z component that we need to make

sure that we are doing a planar example. So, only the z component will appear. So, you type

this and the Maple will give you this output.

So, this output is a little bit different than how you write it by hand, but basically you see that

this whole thing is divided by 2. So, you have basically something like and then𝐼
1
 +  𝐼

2
 θ

1
˙

square half. So, this half is coming here like this and then you have this into some termθ
2
˙  

which is dependent on . Remember in the kinetic energy there was one term whichcos 𝑐𝑜𝑠 θ
2
 

was function of and the rest were constant.θ
2

So, that is what this term will come. We can also find out the other terms. So, this is for the

second link, this is and then this half will appear because it is like half mθ
2
˙ 2

( 𝑚
2
 𝑟

2
2  +  𝐼

2
)

v square. So, is like V and . So, this half will come here. This is the output of𝑟
2
θ

2
˙ 1

2  𝑚𝑉2 

Maple. So, it looks a little different than how you would write by hand or do it manually, but

nevertheless this is correct if you just see little carefully.

The potential energy can also be obtained by dot this position vector, remember that is𝑚
1
𝑔

the way we defined the position vector, it is like mgh. So, instead of h we have a dot product

with g vector which is along the y direction into this. So, we will get



, because the second CG is𝑚
1
 𝑔 𝑟

1
 sin 𝑠𝑖𝑛 θ +  𝑚

2
 𝑔 (𝑙

1
 sin 𝑠𝑖𝑛 θ

1
  +  𝑟

2
 θ

1
  +  θ

2
))

after end of the first link which is and then you have this .𝑙
1
 𝑐

1
 𝑎𝑛𝑑 𝑙

2
𝑠

1
,  𝑙

1
 𝑠

1
 𝑎𝑛𝑑 𝑙

1
 𝑐

1
𝑟

2

You go along the second link by a distance . So, we can find the potential energy and then𝑟
2

we find the Lagrangian which is KE - PE and again as soon as you type this it will give you

this long expression. So, is this correct? Yes because you need to go through a little bit

carefully and see that this taken the kinetic energy here which is this long term and then it has

taken this potential energy and it is subtracted.

So, it looks. So, we can find the Lagrangian and importantly it is in a symbolic form. So, we

should be able to take the partial derivatives and time derivatives of various terms whenever

required because it knows that is a function of time, these are not functions ofθ
2

𝐼
1
 𝑟

2
 𝑚

2

time, they are constants.
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So, we define a substitution for the variables making it easy to differentiate with respect to

the variables because we say that we want to differentiate with respect to , and also withθ
1

θ
2

and . So, we define these new variables Then we can say thatθ
1
˙ θ

2
˙ 𝑑 θ

1
,  𝑑 θ

2
 𝑎𝑛𝑑 θ

1
 𝑎𝑛𝑑 θ

2
.  

these are like you can switch the order and say that is basically this new variable .𝑑
𝑑𝑡  θ

1
 𝑑 θ

1



And is this variable and we obtain , we are substituting to get the variables 𝑑 θ
2

𝑑
𝑑𝑡 θ

2
∂𝐿
∂θ

𝑖
˙

independent of time. So, when you do partial derivatives you are taking derivative with

respect to . itself is a function of time. So, we do not want to confuse Maple into thinkingθ̇ θ̇  

that you should do it like a chain rule.

First with respect to and then again d theta by dt and things like that. So, we will take thisθ
𝑖

˙

partial derivatives with respect to the theta I dot and then later on if when required we will

differentiate with time and then we will convert it back to actual functions of time. So, what

do we do? We assign two variables temp 1 and temp 2. So, temp 1 is this long expression.

Remember this was part of the kinetic energy, temp 2 is this also reasonably long expression

and then we will take these partial and time derivatives.
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So, the first equation is implementation of . So, this is the partial of the𝑑
𝑑𝑡

∂𝐿
∂θ

𝑖
˙( ) − ∂𝐿

∂θ
𝑖

=  0

Lagrangian with theta I, this is the partial of the and then the time derivative of this. So,∂𝐿
∂θ

𝑖
˙  

what you can see is we are taking this r time which was defined earlier and L and we are

going to differentiate with respect to here because this is the first equation.θ
1

Similarly here we are going to differentiate temp 1 which was there with time and then if you

simplify this whole expression you will get terms like this. So, the first equation is



+ . So, this is like then this is like m_2 . So,cos 𝑐𝑜𝑠 (θ
1
 θ

2
) 𝑚

2
 𝑟

2
 𝑔 𝑚

2
 𝑟

2
 𝑔 𝑐

12
2 𝑐

2
  𝑙

1
 𝑟

2

this is also a term in the equations of motion if you go back and see then you will have

.𝑚
2
(𝑙

1
2 +  𝑟

2
2) 

And this is and this is whole everything is multiplied by . Likewise we𝑚
1
 𝑟

1
2 𝐼

1
 +  𝐼

2
 𝑑2

𝑑𝑡2 θ
1

will get terms which are other terms. So, for example you will get something like

. So, once you start using it you will see that this is parts of the(𝑙
1
 𝑚

2
 +  𝑚

1
 𝑟

1
)𝑔 cos 𝑐𝑜𝑠 θ 

equation but not in the most simplified form. Similarly the equation 2 we take the derivative

with respect to partial then we take the derivative of this with respect to time and then weθ
2

again simplify.

So, the equation 2 contains and that is correct,(𝑚
2
 𝑙

1
 𝑟

2
 cos 𝑐𝑜𝑠 θ

2
  +  𝐼

2
 +  𝑚

2
 𝑟

2
2)  θ

1
¨  

this one is very easy to see. The m22 element the second element in the second equation, so

m22 that is . So, these equations you can obtain using Maple by simply(𝑚
2
 𝑟

2
2 +  𝐼

2
) θ

1
¨

basically taking the required derivatives, , .∂𝐿
∂θ

𝑖

𝑑
𝑑𝑡

∂𝐿
∂θ

𝑖
˙( )

This part and then of course you have to simplify. So, you need to get used to it try it a few

times and then you will see that it does make sense, it is not the way we write it by hand

because we would write it like , but here Maple is giving the output the string or𝑚
2
 𝑙

1
 𝑟

2
 𝑐

2

the text output is in some sense in the opposite way. So, this is more or less.

This is maybe the way you would write it by hand also, maybe you would write it as

because this is the use of the parallel axis theorem from CG you are going to𝐼
2

+ 𝑚
2
 𝑟

2
2 

some other point. Next once we have these two equations we want to write it in the standard

form which is M mass matrix into coriolis centripetal term plus gravity term and then weθ
𝑖

¨  

will say this is equal to .τ
1
 𝑎𝑛𝑑 τ

2



So, how do I find the element of the mass matrix? So, what you can see is if you type

coefficient 1 of equation 1 which is this long expression and then you see what are the

coefficients of . So, basically what is the coefficients of in equation 1? So, if you𝑑2𝑟

𝑑𝑡2  θ
1
( 𝑡) θ

𝑖
 ¨

type this it will search and collect all the coefficients which are multiplying .θ
1
¨

Similarly this is the coefficient of in equation 1, this is equation 1 and the mass matrixθ
2
¨  

element this one is the coefficient of in equation 2 which is this and this is elementθ
1
¨  𝑚

22

which is the coefficient of in equation 2 straight forward. So, then you type this and thenθ
2
¨

Maple will give you this and here you can see that it is looks.

So, the first element is this long term which .𝑚
11

𝑖𝑠 𝐼
1
 +  𝐼

2
 +  𝑚

1
  𝑟

1
2 +  𝑚

2
 𝑟

2
2 +  𝑚

2
 𝑙

1
2

So, Maple automatically will combine these two and then you have

element is and you can2 cos 𝑐𝑜𝑠 θ
2
  𝑚

2
 𝑙

1
 𝑟

2
,  𝑡ℎ𝑒 1 2 𝐼

2
 +  𝑚

2
 𝑟

2
2 +  𝑚

2
 𝑙

1
 𝑟

2
cos 𝑐𝑜𝑠 θ

2
 

see this is a symmetric matrix. So, 1 2 is same as 2 1 and the 2 2 element is this.

So, if you go back and see the notes or if you go back and see the lectures where we derive

the equations of motion that this is indeed exactly the terms which you will get written

slightly differently but nevertheless these are exactly the terms that you will get for the mass

matrix.
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How do we obtain the coriolis term and the gravity term? We will use this nice interesting

formula for the coriolis term, this was shown in the lecture that you take the +1
2

𝑘=1

2

∑ (
∂𝑀

𝑖𝑗

∂θ
𝑘

.
∂𝑀

𝑖𝑘

∂θ
𝑗

−
∂𝑀

𝑘𝑗

∂θ
𝑖

) θ
𝑘
 ̇   

In this case there are only two of them. So, ij will be the variables which are not summed

over. okay So, indices which are not summed over and you will get and so on. So,𝐶
11

,  𝐶
12

this is the matrix corresponding to the coriolis and centripetal term. How about gravity? We

know what is the potential energy, we derived what is the expression for the potential energy.

So, the first ith term in the gravity will .∂𝑃𝐸
∂θ

𝑖
 

And once you do all these things and then you type this command which is M. So, we are

going to do some temporary things which is and this is the mass matrixθ
1
𝑖𝑠 𝑞

1
,  θ

2
 𝑖𝑠 𝑞

2
 

because we want to take the derivatives of the elements of the mass matrix we type a few

terms like this and you can find that the coefficients of the elements of the coriolis will𝐶
𝑖𝑗

 

come out.

So, is this, is this, is this and is 0 and the gravity terms are nothing but the𝐶
11

𝐶
12

𝐶
21

𝐶
22

 

derivatives of the potential energy and with respect to and and again we will get theseθ
1

θ
2

terms. So, you can see yourself, open the other notes and then you can see that these are



indeed the terms corresponding to the gravity and these are indeed the term corresponding to

the coriolis and centripetal term.

(Refer Slide Time: 47:51)

So, let us continue, I also want to show you how we can obtain the equations of motion of a

planar 4-bar mechanism. So, again basically we start with some packages linear algebra and

student linear algebra. Then we write down the position of the center of mass of each one of

these links. So, 1, 2 and 3 and again you can see that the third link is you go along the x axis

by and this is . So, these are the position vectors for the 3𝑙
0

𝑟
3

cos 𝑐𝑜𝑠 ϕ
1
  𝑎𝑛𝑑 𝑟

3
sin 𝑠𝑖𝑛 ϕ

1
 

position of the CGs of three of these links.
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The velocity of the center of mass of the center of gravity can be obtained by taking the

derivatives of this position vectors with time and again you will get and so– 𝑟
1
 θ

1
˙ sin 𝑠𝑖𝑛 θ

1
 

on. Similarly the velocity of CG of the second link can be obtained by taking the derivative of

with time and again we will get all these terms. So, we will have . 0𝑝
𝐶2

 θ
1
˙

But you will also get , because remember the position vector of the end of the CG of theϕ
2

˙

second link has and , whereas the position vector of the last link the output link isθ
1

ϕ
2

contains only and when you take the derivative you will haveϕ
1

.−  𝑟
3
ϕ

1
˙ sin 𝑠𝑖𝑛 ϕ

1
  ,    𝑟

3
ϕ

1
˙ cos 𝑐𝑜𝑠 ϕ

1
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Once we have the linear velocity of the center of mass of link 1, link 2 and length 3 we can

find the kinetic energy of link 1 which is

  1
2 (𝑚

1
   0𝑉

𝐶1
𝑇

 
  0𝑉

𝐶1 
+ 𝑚

2
   0𝑉

𝐶2
𝑇

 
  0𝑉

𝐶2  
+ 𝑚

3
   0𝑉

𝐶3
𝑇

 
  0𝑉

𝐶3  
+ 𝐼

1
𝑑
𝑑𝑡 θ

1
𝑡( )( )2

+ 𝐼
2

𝑑
𝑑𝑡 θ

1
𝑡( ) + 𝑑

𝑑𝑡 ϕ
2

𝑡( )( )2
+

. So, once you type this in Maple you will get the expression for the kinetic energy which

looks like this.

The potential energy of each of this link can also be obtained by taking the dot product of the

gravity vector with the position of the CG the vector and remember this one is plus means

here transpose and dot means multiplying these two vectors. So, likewise this is



roughly speaking. Ofcourse we will have sine and cosine of the angles𝑚
2
𝑔ℎ +  𝑚

3
𝑔ℎ θ

1

and then and and also, we have sin and then we have and so ϕ
3

ϕ
1

θ
1

𝑟
2

sin 𝑠𝑖𝑛 (θ
1
 + ϕ

2
) 

on.

The sine component is the height from the zero potential energy surfaces. Once we have the

kinetic and the potential energy we can obtain the Lagrangian which is now a function of ,θ
1

and also the derivatives of this. So, the kinetic energy contains the derivatives ofϕ
2
 𝑎𝑛𝑑 ϕ

1

, . And the potential energy is a function of only , .θ
1

ϕ
2
 𝑎𝑛𝑑 ϕ

1
θ

1
ϕ

2
 𝑎𝑛𝑑 ϕ

1
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Similar to this case when we did for the 2R we define intermediate variables s time and r time

which are basically to say that is a function of time, is a function of time, isθ
1

θ
1

ϕ
1

𝑑θ
1

basically but it is assigned a new variable because when we take the partial derivativeθ
1
˙ 𝑑θ

1

of this Lagrangian with respect to this is the easy way to do it or this is the simplest way toθ
1
˙

do it.

And likewise we have another variable which is again as used in the case of the𝑟_𝑡𝑖𝑚𝑒 

planar 2R we find it is useful to introduce these two variables. Then once we obtain the

Lagrangian we can take the derivative with respect to not again we are substituting to get𝑞
𝑖

˙

the variables independent of time. We want to itself is a function of time.∂𝐿
∂𝑞

𝑖
˙ ,  𝑞

𝑖
˙  



Inherently a function of time but we do not want to differentiate with respect to time, we want

to do . Then later on we can always go back and substitute and find it as an explicit∂𝐿
∂𝑞

𝑖
˙  

function of time. So, we have this two variables temp 1 and temp 2. Temp 1 is basically

and temp 2 is a .𝑑
𝑑𝑡

∂𝐿
∂𝑞

1
˙( ) − ∂𝐿

∂𝑞
1

𝑑
𝑑𝑡

∂𝐿
∂ϕ

2
˙( ) − ∂𝐿

∂ϕ
2

So, hence if you do these derivatives then you can show that temp 1 will give these terms,

these are some parts of the equation of motion, this is only the partial derivatives with respect

to , this is the partial derivative with respect to and then similarly this is the partial𝑞
𝑖

˙ ϕ
2

˙  

derivative with respect to . So, we will get these three terms.ϕ
1

˙

And we have assigned this temp 1, temp 2, temp 3 because later on we have to take the time

derivative of each of these terms. Remember 𝑑
𝑑𝑡

∂𝐿
∂𝑞

𝑖
˙( ) − ∂𝐿

∂𝑞
𝑖

=  0
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So, we obtain the and hence we get three equations, one is equation 1 then we𝑑
𝑑𝑡

∂𝐿
∂𝑞

𝑖
˙( ) − ∂𝐿

∂𝑞
𝑖

 

have equation 2 and then we have equation 3. So, these are the terms of the left hand side of



the equations of motion. So, as you can see we have some and then we(𝑚
3
 𝑟

3
2 +  𝐼

3
) ϕ

1
¨  

have this gravity term which is .𝑚
3
 𝑔 𝑟

3
cos 𝑐𝑜𝑠 ϕ

1
 

So, this is for the output link. The output link has no connection with and yet, we willθ
1

ϕ
2

connect and using the constraint equations. So, we now have equation 1 whichθ
1
, ϕ

2
ϕ

1

contains all the terms which we are interested in which is , and also the coriolis andθ
1
¨ ϕ

2
¨

centripetal terms. So, you can see here there is a .ϕ
2
2˙

And likewise for equation 2 we have which is + plus we have this coriolis term which isθ
1
¨ ϕ

2
¨

and of course the gravity terms. Once we have these three equations equation 1, equationθ
1
˙ 2

2 equations 3. So, this is nothing but the left hand side. So, we will later on equate it to the

external torques but before we do that we can collect the terms in the mass matrix.

In this case the mass matrix is 3 by 3 because we have 3 variables, we have , andθ
1

ϕ
2

ϕ
1

and just like before we collect the coefficients of equation 1 which are into what isθ
1
¨  

multiplying the and likewise we find the coefficient of from equation 1 and coefficientθ
1
¨  ϕ

2
¨

of from equation 1. So, this will be the first row of the mass matrix.ϕ
1

¨  

The second row will be given by this and the third row will contain the coefficient of inθ
1
¨  

equation 3, in equation 3 and in equation 3. So, once we do these steps we can seeϕ
2

¨ ϕ
1

¨  

what the mass matrix looks like. It is very similar to the planar 2R. So, the top 2 by 2 so

are exactly the same as the terms in the mass matrix in the plane 2R𝑚
11

,  𝑚
12

,  𝑚
21

,  𝑚
22

 

Why because we have broken the 4-bar mechanism into a 2R mechanism, planar 2R chain

and a single 1R chain. So, the 2R part looks exactly like this except we do not have , in theθ
2



planar 2R we have and . Now we have and . In the planar 2R the mass matrix wasθ
1

θ
2

θ
1

ϕ
2

a function of , we had and so on. So, here we have 2 cos .θ
2

cos 𝑐𝑜𝑠 θ
2
 ϕ

2

The interesting part is here. The third column is 0 0 and the third row is 0 0 with this 3𝑚
3
𝑟

3
2

3 element being . So, what you can see is this third column and the third row𝑚
3
 𝑟

3
2 + 𝐼

3

except this term everything is 0 and there is no relationship with and . This willθ
1

ϕ
2

multiply plus whatever is the centripetal and coriolis term. There is actually no coriolisϕ
1

¨  

term plus gravity term for the third equation.

So, in the third equation you can see So, this is nothing(𝑚
3
 𝑟

3
2 + 𝐼

3
) ϕ

1
¨ +  𝑚

3
 𝑔 𝑟

3
𝑐𝑜𝑠 ϕ

1
.  

but a pendulum with link, a single link which is being rotated at the angle with angle .𝑟
1

𝑟 ϕ
1

So, the mass matrix does not have any relationship between the top 2 by 2 and the last 3 by 3,

3 comma 3 elements.

(Refer Slide Time: 59:40)

This will come once we obtain the constraint equations, but before we go to constraint

equation let me again show you how we can compute the coriolis and centripetal term and the

gravity term. So, the gravity term is again the partial derivatives of the potential energy with



respect to , here is , and and similarly we have all these partial derivatives of the𝑞
𝑖

𝑞
𝑖

θ
1

ϕ
2

ϕ
1

elements of the mass matrix + .
𝑘=1

3

∑ (
∂𝑀

𝑖𝑗

∂θ
𝑘

∂𝑀
𝑖𝑘

∂θ
𝑗

−
∂𝑀

𝑘𝑗

∂θ
𝑖

)

Because now there are three of these elements, q's are three dimensional. So, once we have

this we can obtain what are the elements of the coriolis and centripetal matrix or terms which

is given by C and that we obtain by substituting and𝑞[1] (𝑡) θ
1
𝑞[2] (𝑡) 𝑎𝑠 ϕ

2
 𝑞[3] (𝑡) 𝑎𝑠 ϕ

1

then we look at this stamp which is some way to capture what is the derivatives of this mass

matrices.

So, once we do all that we can see that the coriolis matrix there is one

. So, this part is 0, because you can see this 0 because the𝐶
11

 𝑡𝑒𝑟𝑚,  𝐶
12

 𝑡𝑒𝑟𝑚,  𝐶
13

= 0

coriolis term for the out output link is constant. So, is constant. So, derivative of𝑚
33

𝑚
33

with everything will go to 0. The gravity term likewise is a partial derivative of the𝑚
33

 

potential energy with respect to .𝑞
𝑖

Again you will get some mg and then for the third or the output link we wiil havecos 𝑐𝑜𝑠 θ 

. So, this will be then you will have some + and the y component will𝑚
3
 𝑔 𝑟

3
𝑐𝑜𝑠 ϕ

1
θ

1
θ

1
ϕ

2

be . So, we can find the mass matrix, we can find the coriolis matrix𝑚
2
 𝑟

2
 𝑔 𝑐𝑜𝑠⁡(θ

1
 +  ϕ

2
)

and we can find the gravity terms. So, this is a vector, this is a 3 by 1 vector. Coriolis is a 𝐶
𝑖𝑗

 

3 by 3 matrix and mass matrix is of course 3 by 3.
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Now let us look at the constraint equations. So, what do we have? We have two constraint

equations; remember for a 4-bar mechanism when we break at the joint 3. So, we can find the

position vector of the joint 3 which is + + and this will be𝑙
1

cos 𝑐𝑜𝑠 θ
1
 𝑙

2
cos 𝑐𝑜𝑠 θ

1
 ϕ

2

equal to the vector going from the other direction which is + cos t. So, one of the𝑙
0

𝑙
3

ϕ
1

constraint equation is + + - - cos = 0.𝑙
1

cos 𝑐𝑜𝑠 θ
1
 𝑙

2
θ

1
 ϕ

2
) 𝑙

0
𝑙

3
ϕ

1

This is what is given here. So, we define one constraint. Then the second constraint is the y

component which is sin + + this will be equal to sin and so you𝑙
1

θ
1

𝑙
2

sin 𝑠𝑖𝑛 (θ
1
 ϕ

2
) 𝑙

3
ϕ

1

can take this on the one side and this is equal to 0. So, constraint 1 = 0, constraint 2 = 0.

These are the two constraint equations. In the earlier part of this week I had said . So,η
𝑖
(𝑞)

this is . and this is .η
1
(𝑞) η

2
(𝑞)

So, there are only two constraint equations. So, then we can differentiate this constraint

equation and find the constraint matrix. So, the constraint matrix is given by and how do Iψ

find out? We find the derivative of this constraint equation 1 with time, the derivative of the

constraint equation 2 with time and then we say that these are and we𝑑𝑐𝑜𝑛𝑠𝑡𝑟
 
1  𝑑𝑐𝑜𝑛𝑠𝑡𝑟

 
2

get some terms.

This will contain , then it will contain and so on because we are taking the derivative ofθ
1
˙ ϕ

2
˙

this constraint equation .So, we will have to use chain rule. So, will become -𝑙
1

cos 𝑐𝑜𝑠 θ
1
 𝑙

1



and then also one more term with . So, this is what you will get so we find thesin 𝑠𝑖𝑛 θ
1
 θ

1
˙

derivative of this constraint equation and label them as .𝑑𝑐𝑜𝑛𝑠𝑡𝑟
 
1  𝑑𝑐𝑜𝑛𝑠𝑡𝑟

 
2

So, the coefficients of the the constraint matrix can be obtained by finding the[ψ]

coefficients of from . Similarly, the coefficient of in the secondθ
1
˙  𝑑𝑐𝑜𝑛𝑠𝑡𝑟

 
1 θ

1
 ˙ 𝑑𝑐𝑜𝑛𝑠𝑡𝑟

 
2 

derivative of the constraint equation and likewise the coefficient of from the first equation,ϕ
2

˙

from the second equation and then from the first equation and from the secondϕ
2

˙ ϕ
1

˙ ϕ
1

˙

equation.

So, we will get a as 2 by 3. So, there are two rows and three columns and these are the[ψ]

terms. So, this is one term, this is the second term and this is the third term. So, we get the psi

matrix which is a 2 by 3 matrix, we also need to find the derivative of the psi matrix which is

denoted by and how do I find the derivative of the matrix? We use this command𝑑𝑝𝑠𝑖

. 𝑚𝑎𝑝(𝑑𝑖𝑓𝑓,  𝑝𝑠𝑖, 𝑡)

So, basically we take the derivative of each element of this matrix with time and then we

label it as . So, here again we will get the derivatives of each one of these terms and𝑑𝑝𝑠𝑖

these are given here. So, we can take a look at one of the terms. Let us say sin t). So,𝑙
3

ϕ
1
(

what will be the derivative of this? It will be cos (t), this simple chain rule.𝑙
3
ϕ

1
˙ ϕ

1

So, the derivative of - cos (t), is into sin (t), So, we can find each of these𝑙
3

ϕ
1

𝑙
3
ϕ

1
˙ ϕ

1

elements the derivatives and arrange them. So, the dimension of is also 2 by 3.ψ̇
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So, once we have found out all these things we can use the elements of the Jacobian of the

constraint matrix, we can find the equations of motion and then we can derive the equations

of motion. One thing which we can do is we can convert whatever we have obtained to

Matlab because eventually we have to solve these equations of motion in Matlab. Maple also

allows you to solve equations of motion.

But Matlab is more better known, it has better GUI and it you can get plots and other things

very easily. So, we can convert whatever Maple is producing all the symbols and expressions

into Matlab by using a package called code generation and basically we use the syntax

Matlab variable name, result name and output name. So, we can give these variable names

and we can get a Matlab code which we can run in Matlab.

You can also convert the output of Maple to LaTex, Python and C. LaTex is for type setting.

So, it will look nicer. So, we can obtain what exactly the equation of motion looks like in the

slides. The whole works sheet can also be exported to different formats like PDF, word,

HTML, LaTex and so on. If you want more material on how to use Maple you can please go

to this site and then there is a very nice way of instruction tutorial on Maple.
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So, in summary Maple can be used to obtain error free mathematical expressions. So, I can

find out the elements of the mass matrix, the elements of the coriolis term, the elements of the

gravity term, the elements of the constraint matrix, the derivative of the constraint matrix and

so on. Then we can form the equations of motion and solve the equations of motion in Matlab

or some other software which allows you to use numerical numbers or numerical tools like

ODE, solvers and so on which can solve this differential equations of motion.

So, what I have shown you is one of the computer algebra system which is well known Maple

it is used reasonably extensively. There are other computer algebra systems which are also

available, there is another very well known CAS system which is called mathematica, it is

available from this company called Wolfram and this if you want if you are interested in

mathematica please go to this website wolfram.com slash mathematica.

Matlab also gives you its own computer algebra system, this is slightly less well-known and

less powerful than either Maple or mathematica but nevertheless you can use the computed

algebra system from Matlab. For simple examples like the plane 2R or the angular velocity

vector or even the 4-bar mechanism we can obtain everything from the computer algebra

system given by Matlab.

So, in this NPTEL course you have access to Matlab and all its tool boxes. So, it is a good

idea if you have time to try out the computer algebra system from Matlab, more details about

the computer algebra system from Matlab is available in this website.


