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Lecture-15
Examples of Equations of Motion

In the last 2 lectures we have looked at how to obtain the equations of motion of multi-body

systems using the Newton-Euler formulation and the Lagrangian formulation. In this lecture we

will see several examples of equations of motion derived using the Newton-Euler formulation or

the Lagrangian formulation.

(Refer Slide Time: 00:51)

To recap, till now we have looked at the concept of mass and inertia of a rigid body. I have also

showed you what is the concept of Newton's law and Euler's equation for a rigid body. We have

also obtained the equations of motion or a way to obtain the equations of motion using

Newton-Euler formulation. So, in the Newton-Euler formulation basically we propagate the

position velocity and acceleration in serial chains.

We use Newton's law and Euler equations for a free body and we have obtain joint torques. We

can also obtain the equation of motion using Lagrangian formulation. In the Lagrangian

formulation basically we obtain the kinetic and potential energy then we obtain the equations of



motion from the partial and ordinary derivatives of a function called the Lagrangian, a scalar

function called the Lagrangian.

And then if you have a closed loop system or a system with constraints then we can use

Lagrange multipliers for incorporating the constraints. In this lecture we will show examples of

equations of motion for a rigid body and rigid multi-body systems.

(Refer Slide Time: 02:14)

The first example is a very classical example we are going to consider the spinning top, we have

already considered the scene what a spinning top does when it is not subjected to an external

force earlier on. But now we will look at a spinning top when there is a mg force which is acting

at the center of mass here. So, if you recollect the spinning top can be described by Z-X-Z Euler

angles. So, what is Z-X-Z Euler angles?

We can obtain the , so A is the reference coordinate system and B is a coordinate system𝐵𝐴 𝑅[ ] 

attached to the spinning top as some rotation matrix Z about about Z by , rotation matrix X,θ
1

θ
1

, rotation matrix Z, . So, where is this angle which is also called the precession angle,θ
2

θ
3 

θ
1

θ
2

is the tilt or the mutation angle and is the spin which is the rotation of the top about theθ
3 

Z-axis.



So, if you expand all these things we have looked at these 3 simple rotations Z, X and Z and if

you multiply the matrices in that order we will get a rotation matrix which contains terms like

this. So, 3-3 term is cos , this is sin sin , -cos sin , this is sine sin , . Andθ
2

θ
1

θ
2

θ
1

θ
2

θ
2

θ
3 

𝑠
2

𝑐
3

1-1 term is little bit more complicated but we have seen this earlier it is not completely new.

So, we have 1-1 term as - , the 1-2 term is - - this term is +𝑐
1

𝑐
3

𝑠
1

𝑐
2

𝑠
3

𝑐
1

𝑠
3

𝑠
1

𝑐
2

𝑐
3

𝑠
1

𝑐
3

𝑐
1

𝑐
2

, the 2-2 term is - + . So, this is nothing but obtained from the multiplication of 3𝑠
3

𝑠
1

𝑠
3

𝑐
1

𝑐
2

𝑐
3

simple rotation matrices, once about Z then about X and third about again Z.
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So, once you have this spinning top rotation matrix we can obtain the angular velocity, so we

will find and this is the body fixed angular velocity which is nothing but . Again 𝐴ω
𝐵
𝑏

  
  𝑅[ ]𝑇  𝑅[ ] ˙

we have done this several times but you can again do it once more and after simplification after

extracting from the skew symmetric matrix we will get as . Then -ω
𝑥

𝑠
2

𝑠
3

θ
1
˙ + 𝑐

3
 θ

2
˙ 𝑠

2
𝑐

3
θ

1
˙ 𝑠

3

and then + . θ
2
˙ 𝑐

2
θ

1
˙ θ

3
˙

Once we have this angular velocity we can obtain the kinetic energy. To obtain the kinetic energy

we need to know what are the inertia , so these are denoted by , and . So, in𝐼
𝑥𝑥

,  𝐼
𝑦𝑦

,  𝐼
𝑧𝑧

 𝐼
1

 𝐼
2

 𝐼
3



this example for top is normally equal to and which is not equal to , is about the Z𝐼
1

 𝐼
2

 𝐼
3

 𝐼
3

axis. So, once we have this body fixed inertia matrix we can obtain the kinetic energy which is

.1
2  𝐼

1
 ( θ

2
2̇ +  𝑠

2
2 θ

1
˙ 2

 ) + 1
2   𝐼

3
 θ

3
˙ + 𝑐

2
 θ

1
˙  ( )2

The potential energy for this spinning top is nothing but , is this tilting angle. The𝑚𝑔𝑅𝑐
2

𝑐
2

Lagrangian can be obtained as KE - PE and in this case the 3 generalized coordinates are theta θ
1

, and . And then we can obtain the equations of motion by doing . So,θ
2

θ
3 

𝑑
𝑑𝑡

∂𝐿
∂𝑞

𝑖
˙( ) − ∂𝐿

∂𝑞
𝑖

=  0

there are no external forces which are acting on this top.

(Refer Slide Time: 06:57)

So, let us compute all these terms in the partial derivatives and ordinary derivatives. So, and∂𝐿
∂θ

1

is 0, there is no theta, only the Lagrangian is function of . The Lagrangian with respect to∂𝐿
∂θ

3
 θ

2

, you will get all these terms. So, you will getθ
2
, ∂𝐿

∂θ
2

.𝐼
1
 θ

1
2 
˙

 2  𝑠
2
 𝑐

2
 −   𝐼

3
 θ

1( )˙  θ
2
 ˙ 𝑠

2
 −   𝐼

3
θ

2( )˙ 𝑠
2
𝑐

2
 +  𝑚𝑔𝑠

2
𝑅



The partial of the . And the is just , is∂𝐿
∂θ

1
˙ 𝑖𝑠 𝐼

1
 θ

1
˙  𝑠

2
2 +   𝐼

3
 𝑐

2
 θ

3
˙  +   𝐼

3
 θ

1
˙  𝑐

2
2 ∂𝐿

∂θ
1
˙ 𝐼

1
 θ

2
˙ ∂𝐿

∂θ
3
˙  𝐼

3
𝑐

2

+ .θ
1
˙  𝐼

3
θ

3
˙
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The again we can compute, so I am writing this by hand but you can always do it using𝑑
𝑑𝑡 ( ∂𝐿

∂θ
1
˙ )

some computer algebra tool. So, it is

.𝐼
1
 θ

1
¨  𝑠

2
2   +  2𝐼

1
θ

1
˙  θ

2
˙ 𝑠

2
𝑐

2
 +   𝐼

3
θ

3 
¨  𝑐

2
   −   𝐼

3
θ

3
˙ 𝑐

2
 θ

2
˙   +   𝐼

3
𝑐

2
2 θ

1
¨   −  2 𝐼

3
θ

1
˙  θ

2
˙ 𝑠

2
𝑐

2
 

The time derivative of this Lagrangian partial of the . And finally the time∂𝐿
∂θ

2
˙ =  𝐼

1
 θ

2
¨  

derivative of . So, we now have all the ingredients𝑑
𝑑𝑡

∂𝐿
∂θ

3
˙( ) =  𝐼

3
 θ

1
¨  𝑐

2
−   𝐼

3
𝑠

2
θ

1
˙  θ

2
˙ +   𝐼

3
θ

3 
¨

to derive the equation of motion, we have the time derivatives.

We also have the partial derivatives of the Lagrangian with respect to and and . So,θ
1

θ
2

θ
3 

remember only is there, partial with respect to is 0, partial with respect to is also 0.θ
2

θ
1

θ
3 
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So, the equation of motion now can be assembled just by following the recipe of the Lagrangian

formulation. So, we can write

, this is the𝑎𝑠 θ
1
¨ ( 𝐼

1
 𝑠

2
2 + 𝐼

3
 𝑐

2
2) + θ

3 
¨  𝐼

3
 𝑐

2
 +  2 (𝐼

1
− 𝐼

3
) θ

1
˙  θ

2
˙  𝑠

2
 𝑐

2
 −   𝐼

3
 𝑠

2
 θ

2
˙  θ

3
˙  =  0

first equation of motion. The second equation of motion

.𝑖𝑠  𝐼
2
θ

2
¨  − 2  𝐼

1
− 𝐼

3( )θ
1
˙ 2

𝑠
2
 𝑐

2
 +   𝐼

3
θ

1
˙ θ

3
˙  𝑠

2
 +  𝑚𝑔𝑠

2
 𝑅 =  0

And the last equation is . So, as you can see the terms  𝐼
3
 θ

1
¨  𝑐

2
 +   𝐼

3
 θ

3 
¨  −   𝐼

3
 𝑠

2
 θ

1
˙   θ

2
˙ = 0

multiplying or or they are like the inertia term, so that is like . The terms which areθ
1
¨ θ

3
¨ θ

2
¨ 𝐼

2
θ

2
¨

quadratic they are like the centripetal and coriolis term. So, we will have this intoθ
1
˙  θ

2
˙ θ

1
˙  θ

2
˙

some sin cos .θ
2

θ
2

Likewise we also have some in the first equation. In the second equation we have also , θ
2
˙ θ

3
˙ θ

1
2̇

remember this coriolis and centripetal term always have quadratic in Q dots, so that is what we

see here. And then in the second equation we also have this gravity term, so this is the term

which is coming from the gravity. And the last equation has or but also .θ
1
¨ θ

3
¨ θ

1
˙  θ

2
˙



So, apparently this is a very complicated set of 3 nonlinear ordinary differential equations, so

there are 3 and there is lot of nonlinearity. We have ; we have and various terms.𝑠
2
2 θ

1
˙  θ

2
˙ 𝑠

2
𝑐

2

So, this is one example which has been looked by many, many researchers in the past, physicists

and mechanics people and lots of people have looked at it. And it turns out this is one of the very

few examples which can be solved we will discuss what we mean by solved.

But we can solve this set of 3 nonlinear ordinary differential equations. And let us proceed, let us

see what we people have found out over maybe more than 100 years back people have found this

out.
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So first thing that you can see is this partial of this , let us denote that by is given by this.∂𝐿
∂θ

1
˙  𝑝

θ
1 

So, it is ( . Similarly the partial of this , so it𝐼
1
𝑠

2
2 +   𝐼

3
𝑐

2
2) θ

1
˙ +  𝐼

3
∂𝐿
∂θ

3
˙ =   𝐼

3
( 𝑐

2
 θ

1
˙  +  θ

3
˙ )

turns out this and , so these are basically momentum corresponding to and , so these𝑝
θ

1 

𝑝
θ

2 

 θ
1

θ
3 

2 momentum are conserved.

So, what do we mean by conserved? This quantity remains constant when the top is spinning, so

this complicated expression of ( is remaining constant when the top is𝐼
1
𝑠

2
2 +   𝐼

3
𝑐

2
2) θ

1
˙ + 𝐼

3
 



spinning or even tilting or even processing. So, the in the complicated motion of the top this term

is conserved, likewise , is also conserved and it turns out that this is nothing but 𝐼
3
( 𝑐

2
 θ

1
˙ + θ

3
˙ )

.ω
3

So, remember we computed the in the body fixed angular velocity vector, the Z 𝐴ω
𝐵
𝑏

  

component of that is this , you can go back and see the slide. So, this is also( 𝑐
2
 θ

1
˙ + θ

3
˙ )

conserved and finally like in many other conservative mechanical systems without any damping

the total energy is also conserved. So, kinetic energy + potential energy is also conserved.

So, E which is the sum of the kinetic + potential energy, so this is kinetic energy I have shown

you the example before, this is the potential energy, so this is also constant. So, there are 3 of

these quantities which are constant and they are conserved.

(Refer Slide Time: 15:00)

So, now if you look at this and , we can solve for and in terms of the conserved𝑝
θ

1 

𝑝
θ

3 

θ
1
˙ θ

3
˙

quantities. So, for example , so we can write this expression. Likewise is given θ
1
˙ =

𝑝
θ

1 

− 𝑝
θ

3 

𝑐
2
 

𝐼
1
 𝑠

2
2 θ

3
˙



by , so which is the momentum corresponding to and this is the momentum corresponding𝑝
θ

3 

θ
3 

to . So, .θ
1

𝑝
θ

3 

𝐼
3  

  −
 𝑝 θ

1
 − 𝑝 θ

3 
 𝑐

2( )𝑐
2

𝐼
1
𝑠

2
2

So, we can write expressions for and . And then we can substitute in the expressionθ
1
˙  θ

2
˙ θ

1
˙  θ

2
˙

for the energy, remember energy had all these terms of , and . So, then we can get rid ofθ
1
˙  θ

2
˙ θ

3
˙

and in the expression for energy and write an expression of energy which is the sum of theθ
1
˙ θ

3
˙

kinetic + potential energy only in terms of and . θ
2
˙ θ

2

So, what we will get is So, what have we done?1
2  𝐼

1
θ

2
˙ 2

   +
 𝑝 θ

1
 − 𝑝

θ
3 

𝑐
2( )2

2𝐼
1
 𝑠

2
2 

  +
𝑝

θ
3 
 

2

2𝐼
3

  +  𝑚𝑔 𝑅𝑐
2
.

So, basically E is some conserved quantity; it is a given number, so this right hand side is a

nonlinear ODE for , why? Because these are also constants, these are numbersθ
2

𝑝
θ

1 

𝑎𝑛𝑑 𝑝
θ

3 

 

which are constant during the motion of this top.

So, we have this very, very complicated nonlinear ODE only in terms of , it is still pretty bad,θ
2

why? Because we have and then we have this , it is not a simple , so it𝑐
2
2 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑠

2
2  θ

2
˙ 2

 θ
2
˙

is a non-linear ODE in and .θ
2

 θ
2
˙ 2

(Refer Slide Time: 17:25)



But it turns out and this is what people have found out after lot of effort and people have studied

spinning tops extensively. That we can make this substitution let us cal , is𝑙
1
 −  𝑢2 =  𝑠

2
2 𝑠

2

what? Sine then . So, we substitute what is and what isθ
2
2 𝑢̇ =  − 𝑠

2
 θ

2
˙  ,  θ

2
˙ 2

=  𝑢̇
2

 1 − 𝑢2  θ
2
˙ 𝑠

2
2 

and various other terms.And then we will get this expression which is

. So, what do we have
𝑢

 
2˙

2 =
2𝐸𝐼

3
− 𝑝

θ
3 

2  

2𝐼
1
 𝐼

3
− 𝑚𝑔𝑅 

𝐼
1
 𝑢( ) 1 − 𝑢2( ) − 1

2

 𝑝 θ
1
 − 𝑝

θ
3 

𝑢( ) 

𝐼
1
 

⎛

⎝

⎞

⎠

2

=− 𝑉(𝑢)

here? That this term is basically a cubic function of u, so how do we get cubic? Because you𝑢
 
2˙  

can see there is a u here and a here, so the maximum power of u on the right hand side is u𝑢2 

cube.

So, let us denote this right hand side as , so what is ? . So, it turns out that we can− 𝑉(𝑢) 𝑢̇ 𝑑𝑢
𝑑𝑡

now solve for dt not du. So, this is , s can go to this side, so we will have 2 into minus sum
𝑢

 
2˙

2 𝑂
2

V which is a function of u, so So, we will get this expression which is . So,𝑢
 
2˙  . 𝑑𝑡 = ±  𝑑𝑢

−2𝑉 𝑢( )

what have we done?



We have obtained du by dt = some expression involving which is a cubic function of u,− 𝑉 𝑢( )

so these are called elliptic functions. So, those of you who have seen or heard solutions involving

elliptic functions these are very, very complex ways of giving solutions to a differential equation.

So, although we cannot really write analytical expressions for elliptic function but nevertheless

we can bring the solution of du by dt in terms of or we can solve t in terms of u as elliptic

functions.

Importantly, we can plot for values of E, . So, although I said initially that this isθ
2

𝑝
θ

1 

𝑎𝑛𝑑 𝑝
θ

3 

the solution of the non-linear ODEs but this is not really a solution. Because these elliptic

functions we do not know there are no analytical ways of finding these elliptic functions. So, if

you have a quadratic.

So, I can write an expression for solution of a quadratic equation in terms of the coefficients of

the quadratic, elliptic functions are not that simple. Nevertheless these are known, there are some

things called elliptic functions and if you can write an expression in terms of elliptic functions

then it is sort of like solution and then we can plot. So, this is one of the very few examples of

non-linear ODEs or equations of motion which gives non-linear ordinary differential equations

which can be at least written finally in terms of elliptic functions.
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This example is a modification of a simple pendulum, the modification is as follows. So, we

have a bob which is connected not by a wire or a rope but with the spring. So, as you can see

there is gravity acting downwards, so this bob can move in some path which is sort of like an arc

of a circle but it can also go up and down. So, there are 2 variables which need to be𝑟 𝑎𝑛𝑑 θ

used to describe the motion of this bob.

So, this here is the position of the bob along this direction, this free length of the spring is𝑟

given by , the mass of the bob is and the angle from the vertical of this line which is sort of𝑙 𝑚

the center line of this spring is . So, the kinetic energy of this bob can be now written inθ(𝑡)

terms of . So, is because the bob can go up and down and also it can have a1
2 𝑚( 𝑟̇

2
 +  𝑟2 θ̇

2
) 𝑟̇

2
 

velocity which is .𝑟2 θ̇
2

The potential energy of this system is and also the energy which is stored in the− 𝑚𝑔𝑟 𝑐𝑜𝑠θ

spring which is . So, note this is r, the free length is , so the force which is acting1
2  𝑘 𝑟 −  𝑙( )2 𝑙

due to the spring is and of course there is gravity , that is and𝑘 𝑟 −  𝑙( ) 𝑚𝑔 𝑚𝑔𝑟 𝑠𝑖𝑛θ

and which is acting in this direction. And we have which is acting in this𝑚𝑔𝑟 𝑐𝑜𝑠θ 𝑟2 θ̇
2
 2𝑟̇ θ̇

direction.

So, we have the kinetic energy and we have the potential energy, the Lagrangian then is kinetic -

potential energy in this case we are denoting kinetic energy with T and the potential energy with

V. The potential energy is function of both as well as , so the𝑟 θ

. So, once we have this Lagrangian we𝐿 = 1
2  𝑚(𝑟̇

2
+  𝑟2 θ̇

2
) +  𝑚𝑔𝑟 𝑐𝑜𝑠 θ − 1

2  𝑘 𝑟 − 𝑙( )2 

can obtain the equations of motion.



In this case there are no external forces, so we can write .𝑑
𝑑𝑡

∂𝐿
∂𝑟

 
˙( ) − ∂𝐿

∂𝑟
 

= 0  𝑜𝑟 𝑑
𝑑𝑡

∂𝐿
∂𝑟

 
˙( ) = ∂𝐿

∂𝑟
 

So, if you do this then you will get . We can also𝑚𝑟̈ =  𝑚𝑟 θ̇
2
 +  𝑚𝑔θ𝑐𝑜𝑠θ −  𝑘( 𝑟 −  𝑙)

derive the partial derivative with respect to , . θ̇ 𝑑
𝑑𝑡

∂𝐿
∂θ

𝑖
˙( ) − ∂𝐿

∂θ
𝑖

So, then the second differential equation that we will get is So, we𝑚𝑟θ̈ =− 2𝑚𝑟̇ θ̇
 

−  𝑚𝑔𝑠𝑖𝑛θ 

have these 2 equations of motion very, very easily derived from the Lagrangian formulation. And

the Lagrangian formulation inherently you compute the kinetic energy, you compute the potential

energy and then you find T - V. So, this is a nice and simple extension of a simple pendulum,

where I can show how to accommodate things like a spring.

(Refer Slide Time: 26:02)

Let us continue this is an example of a planar four-bar echanism. This is the simplest possible

one-degree of freedom closed loop mechanism. So, there is loop, so I can start from this fixed

end which is either and then go to this second joint which is then go to the third which is𝑂
𝐿

𝑂
2

and then come back to what? But this is also fixed, both of these form single loop. So, there𝑂
3

are 3 moving bodies link 1, link 2 and link 3, is the actuated because this mechanism has onlyθ
1

one degree of freedom.



So, we can have only one joint which is actuated, so the othe joints which is𝑟
3

ϕ
2
,  ϕ

3
 𝑎𝑛𝑑  ϕ

1
 

are passes. So, the geometry and inertial parameters of the rigid bodies are again denoted by

mass, inertia, z component of the inertia because everything is planar, length , so I is the𝑙
𝑖
 𝑎𝑛𝑑 𝐼

𝑖

z component of the inertia, so it is likewise , , , and so on.𝑚
2
,  𝑙

2
,  𝑟

2
,   𝐼

2
𝑚

2
𝑙

1
𝑟

1
𝐼

1

And then there is a gravity acting and we are going to assume that the CG of each link is located

at starting from here, it is located at starting from here and it is located at . So, it is along𝑟
1

𝑟
2

𝑟
3

the link, these are just simplifying assumptions it does not make any difference whether this is𝑟
2

somewhere with both an X and a Y coordinate.
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So, we break this four-bar at , so we have a plana R and a planar 1R system. 2R mean 2𝑂
3

  2 𝑠

links connected by 2 rotary joints and this other one is a planar 1R which is nothing like but

similar to a pendulum. So, the kinetic energy of this 2R is very similar to what we have derived

earlier, all we need to do is replace by . So, in the place of the plana R we have ,θ
2

ϕ
2

𝑟 2 θ
1

θ
2

now we have and .θ
1

ϕ
2



The kinetic energy of the 1R is also nothing but a simple pendulum, so which is

, so what is the total kinetic energy? It is the kinetic energy of this 21
2 𝑚

3
 𝑟

3
2  ϕ

1
˙ 2

  + 1
2   𝐼

3
  ϕ

1
˙ 2

 

moving links which is this 2R chain and then one moving link which is the 1R chain. The

potential energy is also nothing but the potential energy of this 2link chain which we have

derived earlier, except now we do not have we have And also this one length chain whichθ
2

ϕ
2
 .

is nothing but which is the last output angle.𝑚
1
𝑔𝑟

1
 𝑠𝑖𝑛θ

1
,  𝑟 𝑠𝑖𝑛 ϕ

1
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The Lagrangian for the planar 2 R + the planar 1 R mechanism is nothing but sum of all these

kinetic energies. So, it is . So, this is coming from the 1R1
2  𝐼

1
θ

1
˙ 2

+ 1
2 𝐼

2
 θ

1
˙ + ϕ

1
˙( )2

+ 1
2  𝐼

3
 ϕ

1
˙ 2

chain or from the simple pendulum, these 2 are coming from the 2R chain. And then we have of

course , this is coming from that 1R chain.1
2 𝑚

1
𝑟

1
θ

1
˙ 2

+ 1
2  𝑚

3
 𝑟

3
ϕ

1
˙ 2

 

And then and are coming from the planar 2R chain and the gravity terms are coming from𝑚
1

𝑚
2

the 2R chain and and is the last chain, 1R chain. For this four-bar we have 2 constraint𝑚
1

𝑚
2

𝑚
3

equations we have seen this earlier. So, basically the x coordinate of the place where we are

going to break is given by and the y component is𝑙
1
𝑐𝑜𝑠 θ

1
+  𝑙

2
 𝑐𝑜𝑠 (θ

1
+ ϕ

2
) =  𝑙

0
 𝑙

3
 𝑐𝑜𝑠 ϕ

1

given by 𝑙
1
𝑠𝑖𝑛 θ

1
+  𝑙

2
sin 𝑠𝑖𝑛 (θ

1
+ ϕ

2
) =  𝑙

3
sin 𝑠𝑖𝑛  ϕ

1
 .



So, we have the Lagrangian, we have the constraint equations and then we can perform the

partial derivatives with respect to and . So, what is here? is , and and is the𝑞 𝑞̇ 𝑞 𝑞 θ
1

ϕ
2
  ϕ

1
𝑞̇

time derivatives of those.
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So, if you do all these work, lot of work and again I will show you a way to do it using a

computer tool, we will get what a 3 by 3 mass matrix. So, again you can see that the mass matrix

has some and so on. So, these terms are exactly the same as what we 𝐼
2

+  𝑚
2
𝑟

2
2 +  𝐼

1
+  𝑚

2
𝑙

1
2

obtained for the planar 2R chain except instead of we have now . The 1, 2 elements is againθ
2

ϕ
2

the same as what we obtained for the planar 2R chain.

So, 2, 1 element is again what we have obtained from the planar 2R chain, this is .𝐼
2

+  𝑚
2
𝑟

2
2

You can go back to your notes and see that these are exactly the same this 2, 3 and 4, these 4

elements are exactly the same as what we have obtained for the planar 2R chain. This last

this 0, 0 is the effect of the last link which we have broken.0,  0 , 𝑚
3
𝑟

3
2 +   𝐼

3
 𝑎𝑛𝑑

So, the 3 by 3 coriolis and centripetal term can also be found out, this will now be again similar

to these terms are very similar to the planar 2R chain and then this is the other part. So, we have



again and so on, and the gravity vector is also here. So, we do not have in the coriolisϕ
2

˙ ,  θ
1
˙   ϕ

1
˙

centripetal term because that is just a simple rotation and there is no in that term. ω× 𝑉
𝑟𝑒𝑙
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So, the equation of motion for the planar 2R and 1R mechanism can be written down. We just

collect all the terms which contains which is this, collect all the terms which containsθ
1
¨

gravity, which is this, collect all the coriolis and centripetal term which are these, this one and

this one and collect all the terms which contains . So, this is from the 2R chain.ϕ
2

¨

Likewise for we have this gravity term, we have something into and then thisτ
2

θ
1
¨   𝐼

2
+  𝑚

2
𝑟

2
2 

is the centripetal coriolis term. And then we have another equation which is simply the single

link 1R chain or this 1R mechanism which is is given by .τ
3

𝑚
3
𝑔𝑟

3
𝑐𝑜𝑠 ϕ

1
+ (𝑚

3
𝑟

3
2 +  𝐼

3
) ϕ

1
¨

So, these are 3 nonlinear ordinary differential equations, we have not yet taken the constraints

into account and that is obvious.

You can see that the third equation is not yet coupled to these 2; we have broken the joint at .𝑂
3

So, when you break it at then we have just 2 individual serial chain systems, we have a 2R𝑂
3



mechanism or a 2R serial chain and 1R mechanism. So, these equations will be now coupled

when we go back and use the constraint equations.
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So, the constraint matrixes in this case are the derivatives of the loop closure constraint

equations, we will get a 2 by 3 constraint matrix. So, remember it was eta j of q and then we take

the partial of with respect to so we will get all these terms, so it is a 2 by 3. The first term isη
𝑗
 𝑞

𝑖
,

this, so this is the and then this is the second term and this is the third term. To obtain thisη
1

derivative of the constraint equations we take this , so we take the derivative, so weψ 𝑞̇ =  0

will get .ψ𝑞̈ + ψ̇ 𝑞̇ =  0

Then we obtained from the equations of motion, again very, very standard you can go back to𝑞̈ 

the notes and see. So, we can write is some . So, this is psi𝑞̈ 𝑀−1 τ − 𝐶[ ]𝑞̇ − 𝐺 ( ) +  𝑀−1 [ψ]𝑇λ

is the Lagrange multiplies, m is the mass matrix. So, we substitute in this expression here andλ 𝑞̈

solve for and then we substitute back to the equations of motion and we will getλ λ

and this.[𝑀] 𝑞̈ = 𝑓 − ψ[ ]𝑇(  ψ[ ]𝑀−1[ ψ]𝑇)
−1

 

So, we have done this earlier I am just repeating it once more for this four-bar mechanism. So, in

the case of the four-bar mechanism is 2 by 3, how about mass matrix? It is 3 by 3, there are 3ψ



variables , and and so on. So, what will be this ? It will be a 3 by 1 vector. So,θ
1

ϕ
2

 ϕ
1
 𝐶[ ]𝑞̇

again this f is nothing but and the generalized coordinates for this four-barτ − 𝐶[ ]𝑞̇ − 𝐺 

mechanism is , and .θ
1

ϕ
2

ϕ
1
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Let us take one more example. This is an interesting example of a thin disk which is rolling on

the ground with no slip, this we have discussed earlier this is an example of non-holonomic

constraint. So, we have this disc initially in the X-Z plane, so there is a heading angle which is θ
1

which is rotation about the Z-axis. Then there is a tilt rotation above the moved X-axis andθ
2

then there is a spin which is the rotation about the moved Y axis.θ
3 

So, the generalized coordinates for this problem is x,y,z which is the center of this disk. And then

, , so which is this one here, which is this tilt and which is the rotation of the orθ
1

θ
2

θ
3 

θ
1

θ
2

θ
3 

the spin of this disk. So, if you have this kind of angles which is , and then the rotationθ
1

θ
2

θ
3 

matrix should contain Z-X-Y. So, out of this , , if you want to actually obtain the rotationθ
1

θ
2

θ
3 

matrix we have to use Z-X-Y Euler angles.



And this rotation matrix which is , so B is this coordinate system which is attached to the𝐵𝐴 𝑅[ ] 

moving disc or the rolling disc and A is a reference coordinate system. can be written in𝐵𝐴 𝑅[ ] 

terms of , and as sine and cosine of these angles. So, we have seen this when we didθ
1

θ
2

θ
3 

Euler angles. So, is nothing but cos , is nothing but cos , is sin and so on.𝑐
1

θ
1

𝑐
3

θ
3 

𝑠
1

θ
1

So, we can obtain the rotation matrix in terms of Z-X-Y rotations about 3 distinct axis using the

Euler angle idea and then we have this rotation matrix. The angular velocity of the disk can be

obtained by . So, I am skipping many steps, we can take the time derivative of each  𝑅[ ] ˙
  𝑅[ ]𝑇

one of these elements. So, will become , we have to use chain𝑐
1

𝑐
3

− 𝑠
1
 θ

1
˙  𝑐

3
 +  𝑐

1
 (− 𝑠

3
) θ

3
˙

rule and we have to find the derivatives of each one of these terms.

So, this is , so means and then we do that will be a skew symmetric matrix𝑟
11

  𝑅[ ] ˙
𝑟

11
˙   𝑅[ ] ˙

  𝑅[ ]𝑇

from which we can extract the X, Y and the Z component of the angular velocity vector. The X,

Y and Z component of the angular velocity vector are given like this. So, we will have

and and .𝑐
1
θ

2
˙ −  𝑠

1
𝑐

2
θ

3( )˙ 𝑠
1
θ

2
 ˙ 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 ω

𝑦
 𝑎𝑛𝑑 𝑐

1
𝑐

2
θ

3
˙ ω

𝑧
 𝑖𝑠 θ

1
˙  𝑠

2
 θ

3
˙

Again it is a lot of effort but then nowadays nobody does this manually. So, there are computer

tools which we will discuss little later called Maple which can be used to perform not only the

rotations about Z-X-Y and the multiplication of those matrices in that order but also do

and find the angular velocity components. If you have rolling without slip then the  𝑅[ ] ˙
  𝑅[ ]𝑇

velocity of this point of contact with respect to the A coordinate system should be 0.

So, there is no slip here. So, there is no translation velocity between a point on the ground and a

coincident point on the disk, this is the condition for rolling without slip.
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So, continuing with the example of a thin disk rolling without slipping on a horizontal plane. So,

we have this disk which is rolling without slipping on this X-Y plane. The constraint that the

velocity at the point of contact is 0 which is the constraint which implies it is rolling without

slipping can be written in terms of which is the coordinates X-Y-Z are the coordinates of𝑥̇,  𝑦̇,  𝑧̇

the center of the disk.

And we can find out the velocity of this point from , we know what is , from𝑥̇,  𝑦̇,  𝑧̇ + ω× 𝑟 ω

is in terms of , , and also the time derivatives , and . So, if you say  𝑅[ ] ˙
  𝑅[ ]𝑇, ω θ

1
θ

2
θ

3 
θ

1
˙  θ

2
˙ θ

3
˙

that A, B, C is 0 we will get this .𝑥̇ =  𝑟 𝑐𝑜𝑠 θ
1
  θ

3
˙  +  𝑟 𝑠𝑖𝑛 θ

1
θ

2
˙  +  𝑟 𝑐𝑜𝑠 θ

1
 𝑠𝑖𝑛 θ

2
 θ

1
˙

Likewise . Again is the𝑦̇ =  𝑟 𝑠
1
 θ

3
˙ +  𝑟 𝑠

1
 𝑠

2
 θ

1
˙  −  𝑟 𝑐

1
 𝑐

2
  θ

2
˙  𝑎𝑛𝑑 𝑧̇ =  −  𝑟 𝑠

2
  θ

2
˙ θ

1

heading angle, it is the rotation about z axis of this disk, is the tilt which is the rotation aboutθ
2

the moved x axis and spin or is the rotation about the y axis. So, there are 2 constraints one isθ
3 

the components of the velocity in this X-Y plane is 0, there is also another inherent constraint

which is that this coin or this disk does not leave this X-Y plane, so the Z is constant.



And this holonomic constraint is automatically satisfied when you say the velocity of the point of

contact all 3 components are 0. The velocity of the center of the disk is denoted by as𝑂
𝐵

𝑥̇,  𝑦̇,  𝑧̇ 

I have mentioned earlier. The inertia matrix of the disk in the body fixed coordinate system can

be easily obtained, this is the standard formulas which are available in many textbooks so the 𝐼
𝑥𝑥

which is x axis and z which is this so X-Z plane is the plane of this disk both are equal to 1
4  𝑚𝑟2.

And the which is perpendicular to this disk is . The kinetic energy of this disk can be𝐼
𝑦𝑦

 1
2  𝑚𝑟2

obtained by finding what is , so a of the center of disk square. So,1
2  𝐼 ω2  + 1

2  𝑚𝑣𝑐
2
 1

2  𝑚𝑣

that is and then this is and remember was .1
2  𝑚 ( 𝑥̇

2
 + 𝑦̇

2
 + 𝑧̇

2
) 1

2  𝐼 ω2 ω   𝑅[ ] ˙
  𝑅[ ]𝑇

And we know what is R? It is Z-X-Y rotation matrix. So, the kinetic energy can be written in

terms of . 1
8( )𝑚𝑟2(θ

2
˙ 2

+ 2θ
1
˙ 2

+ 2θ
3
˙ 2

+ 4𝑠
2
θ

1
˙ θ

3
˙ − 𝑐

2
2θ

1
˙ 2

+ 4

𝑟2 ( 𝑥̇
2
 + 𝑦̇

2
 + 𝑧̇

2
) )

So, this actually is written such that it is nice compact form which will fit in the slide but you can

see here this 4 and 8 will become half, this will go away. So, it is𝑟2 1
2  𝑚 ( 𝑥̇

2
 + 𝑦̇

2
 + 𝑧̇

2
)

which makes sense. The potential energy is so again if you see a little bit when it is𝑚𝑔𝑟 𝑐𝑜𝑠 θ
2
,

vertical and it is tilting by , so then the height above this ground is and hence theθ
2

𝑟 𝑐𝑜𝑠 θ
2
 

potential energy is . The Lagrangian can be obtained which is given by KE - PE.𝑚𝑔𝑟 𝑐𝑜𝑠 θ
2
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So, once the Lagrangian is obtained we can do the partial derivatives with respect to 𝑞 𝑎𝑛𝑑 𝑞 ̇

and time derivative with respect to T and we can obtain the equations of motion. But we also

have these non-holonomic constraints which are basically that there is no slip at the point of

contact. So, as I said we obtained that by obtaining the velocity of the point of contact with

as the velocity of the origin + and then we equate that to 0 and we will get these 3𝑥̇,  𝑦̇,  𝑧̇ ω× 𝑟 

expressions.

So, we can take the derivative of these non-holonomic constraints. So, first we need to write it in

and then we can take . So, basically we take the derivatives of theseψ̇ 𝑞̇ =  0 ψ𝑞̈ + ψ̇ 𝑞̇ =  0

constraints. And then the equations of motion can be written as is some𝑞̈

and where can be solved as this.𝑀−1 τ − 𝐶[ ]𝑞̇ − 𝐺 ( ) +   [ψ]𝑇λ λ

So, very standard way of deriving the equations of motion of this pure rolling of this thin disk

subjected to these non-holonomic constraints of no slip. So, I am not going to write down all the

terms because they are very big, they will not fit into the slide but later on I will show you what

computer tools called Maple which can be used to obtain each one of these terms which go into

the equations of motion.
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So, in summary I have shown you the equations of motion obtained using Lagrangian

formulation. We can obtain these error free equations of motion using symbolic computer

algebra systems such as Maple. Equation of motion for a planar 2R chain was derived, for a

4-bar mechanism was derived and also for the rolling of a thin disk was derived.


