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Lecture-15
Examples of Equations of Motion

In the last 2 lectures we have looked at how to obtain the equations of motion of multi-body
systems using the Newton-Euler formulation and the Lagrangian formulation. In this lecture we

will see several examples of equations of motion derived using the Newton-Euler formulation or
the Lagrangian formulation.
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=# Propagation of position, velacity and acceleration in serial chains
= Use of Newton's Law and Euler equations for a free body
= Oblain joint torques

= Equations of motion using the Lagrangian formulation
= Dbtain kinetic and potential energy
= Dbtain equations of motion fram partial and ordinary derivatives
= Use of Laprange multipliers for incorporating constraints
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To recap, till now we have looked at the concept of mass and inertia of a rigid body. I have also
showed you what is the concept of Newton's law and Euler's equation for a rigid body. We have
also obtained the equations of motion or a way to obtain the equations of motion using
Newton-Euler formulation. So, in the Newton-Euler formulation basically we propagate the

position velocity and acceleration in serial chains.

We use Newton's law and Euler equations for a free body and we have obtain joint torques. We
can also obtain the equation of motion using Lagrangian formulation. In the Lagrangian

formulation basically we obtain the kinetic and potential energy then we obtain the equations of



motion from the partial and ordinary derivatives of a function called the Lagrangian, a scalar

function called the Lagrangian.

And then if you have a closed loop system or a system with constraints then we can use
Lagrange multipliers for incorporating the constraints. In this lecture we will show examples of
equations of motion for a rigid body and rigid multi-body systems.
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The first example is a very classical example we are going to consider the spinning top, we have
already considered the scene what a spinning top does when it is not subjected to an external
force earlier on. But now we will look at a spinning top when there is a mg force which is acting
at the center of mass here. So, if you recollect the spinning top can be described by Z-X-Z Euler

angles. So, what is Z-X-Z Euler angles?

We can obtain the BA[R], so A is the reference coordinate system and B is a coordinate system

attached to the spinning top as some rotation matrix Z about 61 about Z by 91, rotation matrix X,
0 > rotation matrix Z, 6 3 So, where 0 L is this angle which is also called the precession angle, 92
is the tilt or the mutation angle and 0 3 is the spin which is the rotation of the top about the

Z-axis.



So, if you expand all these things we have looked at these 3 simple rotations Z, X and Z and if
you multiply the matrices in that order we will get a rotation matrix which contains terms like

this. So, 3-3 term is cos 62, this is sin 61 sin 92, -CoS 91 sin 62, this is sine 92 sin 93, S, Cye And

1-1 term is little bit more complicated but we have seen this earlier it is not completely new.

0, we have 1-1 term a - - is - - i i T
So, $€, C,-S C, S, the 1-2 term is .S, 51czcgthlstermlsslc3 c,c,

S, the 2-2 term is -5, S, + c C,C, So, this is nothing but obtained from the multiplication of 3

simple rotation matrices, once about Z then about X and third about again Z.
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So, once you have this spinning top rotation matrix we can obtain the angular velocity, so we

will find sz and this is the body fixed angular velocity which is nothing but [R]T [R]. Again

we have done this several times but you can again do it once more and after simplification after

extracting from the skew symmetric matrix we will get W ass, s, 91 +c, 92. Then s, Cy 91 -S,

62 and then c, 91+93.

Once we have this angular velocity we can obtain the kinetic energy. To obtain the kinetic energy

we need to know what are the inertia Ixx, Iyy, IZZ , so these are denoted by / o I 5 and [ . So, in



this example for top I ) is normally equal to [ ) and which is not equal to [ - I 3 is about the Z

axis. So, once we have this body fixed inertia matrix we can obtain the kinetic energy which is

L+ P8 y+Lr(e + éz
2 1, (8, +5,8,) 23(3621)'

The potential energy for this spinning top is nothing but ngcz, czis this tilting angle. The

Lagrangian can be obtained as KE - PE and in this case the 3 generalized coordinates are theta 61

, 62 and 63. And then we can obtain the equations of motion by doing %(%) — g—; = 0. So,
q; i
there are no external forces which are acting on this top.
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So, let us compute all these terms in the partial derivatives and ordinary derivatives. So, ;TL and
1
oL . . . . . )
6—63 is 0, there is no theta, only the Lagrangian is function of 6 . The Lagrangian with respect to
92, ;TL, you will get all these terms. So, you will get
2

11 Oi 2 s,C, = I3 (61) 6.252 - 13(.62)5202 + mgszR.



1 1

: oL_ . C2 : C2 oL . . 9L .
The partial of the = isl, 9152+ Ic, 93 + I Glcz.Andthe P 1SJust1192, ae.315 Ic,

61+I363.
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The — (—) again we can compute, so [ am writing this by hand but you can always do it using
1

some computer algebra tool. So, it is
1.6s + 210 6sc + 16.c. — 10.c.8 +Ic9 — 210 0.s.c
1172 1712722 373 2 3732 2 371 222"
The time derivative of this Lagrangian partial of the ;TL =1 ) 9"2 . And finally the time

2

o d oL | _ S . :
derivative of —- ( 2. ) = I3 61 c, 135261 62 + I 9 . So, we now have all the ingredients

to derive the equation of motion, we have the time derivatives.

We also have the partial derivatives of the Lagrangian with respect to 61 and 62 and 63. So,
remember only 6 5 is there, partial with respect to 6 L is 0, partial with respect to 0 3 is also 0.
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So, the equation of motion now can be assembled just by following the recipe of the Lagrangian

formulation. So, we can write
- ) 5 - .o .o o

a561(1132+13c2) +6313c2 + 2(11—13)916252c2 — 13526293 = 0, this is the

first equation of motion. The second equation of motion

' . .2 oo

is 1,0, —2(1, —1,)8 s,c, + 1.00,s + mgs R = 0.

And the last equation is I3 91 c, + I3 93 — I3 s, 61 62 = 0. So, as you can see the terms

multiplying ) L or 9"3 or 9"2 they are like the inertia term, so that is like / 29"2. The terms which are

quadratic él éz they are like the centripetal and coriolis term. So, we will have this 61 éz into

some sin 92 cos 62.

Likewise we also have some 92 63 in the first equation. In the second equation we have also 91,

remember this coriolis and centripetal term always have quadratic in Q dots, so that is what we

see here. And then in the second equation we also have this gravity term, so this is the term

which is coming from the gravity. And the last equation has ) L or Gugbut also 0 L 0 5



So, apparently this is a very complicated set of 3 nonlinear ordinary differential equations, so

. . . 2 N .
there are 3 and there is lot of nonlinearity. We have s 55 We have 0 ) 0 ,5,¢C, and various terms.

So, this is one example which has been looked by many, many researchers in the past, physicists
and mechanics people and lots of people have looked at it. And it turns out this is one of the very

few examples which can be solved we will discuss what we mean by solved.

But we can solve this set of 3 nonlinear ordinary differential equations. And let us proceed, let us

see what we people have found out over maybe more than 100 years back people have found this

out.
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So first thing that you can see is this partial of this% , let us denote that by p o is given by this.

1 1

. 2 20 o . . . AL _ : ' .
So, it is ( Ls, + 13c2) 61 + 1, Similarly the partial of th1s¥ = 13( c, 61 + 63), S0 it

3

turns out this p o and p g 250 these are basically momentum corresponding to 6 ) and 0 5> SO these
1 2

2 momentum are conserved.

So, what do we mean by conserved? This quantity remains constant when the top is spinning, so

: : : 2 20 o : - :
this complicated expression of ( [ .s_ + 1302) 61 + I3 is remaining constant when the top is

12



spinning or even tilting or even processing. So, the in the complicated motion of the top this term
is conserved, likewise [ 3( c, 61 + 93), is also conserved and it turns out that this is nothing but
w,.

3

So, remember we computed the Awg in the body fixed angular velocity vector, the Z

component of that is this (c2 él + 63), you can go back and see the slide. So, this is also

conserved and finally like in many other conservative mechanical systems without any damping

the total energy is also conserved. So, kinetic energy + potential energy is also conserved.

So, E which is the sum of the kinetic + potential energy, so this is kinetic energy I have shown
you the example before, this is the potential energy, so this is also constant. So, there are 3 of
these quantities which are constant and they are conserved.
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-

EXAMPLE - SPINNING TOP i}

/ i o ‘ \ T i '.,;:» wone= il AV A s | e e

I = It |’ Lef Ll 5 th VN H [L=R ¥ 1 AL ,J,I,» i,f

L .J I |.'l,-'fr-_.- . .I'J';." ' .

R e D Q:

c‘-. e ( _"r-'.'| - J L2 _l i _':,’ @ % gwﬁ ‘t‘
h=\ 14 vz ), it 1, { ghSTR

. J - "-"_,{ | 92 Mm &m
e oo (BA2) S Ny
F-A17 / [ & “; )+ g NS

21,52 A,
Ahshitawa Ghosal [lISc) ) D-;n.a'n"nr..‘.& Contral of Mer.li'a.m:al Systems NPTEL, 2022

So, now if you look at this p 0 and p g » We can solve for 61 and 63 in terms of the conserved
1 3

Py =P, €
o, 6,2

quantities. So, for example 91 = ———— so we can write this expression. Likewise 93 is given
I s
12



by p g > SO which is the momentum corresponding to 93 and this is the momentum corresponding
3

Py (pe —p0 c)c

3 1 3 °2)"2

toel. So, - >
3 Is,

So, we can write expressions for 6, and © . And then we can substitute 0 L 9, in the expression
for the energy, remember energy had all these terms of ) o ) 5 and 0 5 So, then we can get rid of
61 and 93 in the expression for energy and write an expression of energy which is the sum of the

kinetic + potential energy only in terms of éz and 92.

2
‘ g .2 PO —p,c, P
So, what we will getis—-1 0 + . +
2 172 21 s 21,
12

3

+ mg Rcz. So, what have we done?

So, basically E is some conserved quantity; it is a given number, so this right hand side is a

nonlinear ODE for 6 - why? Because p o and p 0 these are also constants, these are numbers
1 3

which are constant during the motion of this top.

So, we have this very, very complicated nonlinear ODE only in terms of 6 2 it is still pretty bad,

.2 .
2 .. 2 . .. . .
why? Because we have ¢ 5 divided by s 5 and then we have this 0 , »itisnota simple 0 ,» SO it

.2
1s a non-linear ODE in 0 5 and O 5
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But it turns out and this is what people have found out after lot of effort and people have studied

spinning tops extensively. That we can make this substitution let us call1 — U = 5,5, 18

. 2 : C ' . LA .2
what? Sine 62 thenu= —s_0_,0 = —— . So, we substitute what is 62 and what is s,

and various other terms.And then we will get this expression which is

2
2 2EI —p’
u 3 Py 2
= L MR, (1 —u )— - : =— V(u). So, what do we have
1

2 21113 I1

here? That u  this term is basically a cubic function of u, so how do we get cubic? Because you

. 2 . . Sy
can see there is a u here and a u here, so the maximum power of u on the right hand side is u

cube.

So, let us denote this right hand side as — V(u), so what is u? %. So, it turns out that we can

'2

now solve for dt not du. So, this is — sO can go to this side, so we will have 2 into minus sum
V which is a function of u, so u .So, we will get this expression which is dt = + %. So,

what have we done?



We have obtained du by dt = some expression involving — V(u)which is a cubic function of u,
so these are called elliptic functions. So, those of you who have seen or heard solutions involving
elliptic functions these are very, very complex ways of giving solutions to a differential equation.
So, although we cannot really write analytical expressions for elliptic function but nevertheless
we can bring the solution of du by dt in terms of or we can solve t in terms of u as elliptic

functions.

Importantly, we can plot 92 for values of E, p o and p o So, although I said initially that this is
1

3
the solution of the non-linear ODEs but this is not really a solution. Because these elliptic
functions we do not know there are no analytical ways of finding these elliptic functions. So, if

you have a quadratic.

So, I can write an expression for solution of a quadratic equation in terms of the coefficients of
the quadratic, elliptic functions are not that simple. Nevertheless these are known, there are some
things called elliptic functions and if you can write an expression in terms of elliptic functions
then it is sort of like solution and then we can plot. So, this is one of the very few examples of
non-linear ODEs or equations of motion which gives non-linear ordinary differential equations
which can be at least written finally in terms of elliptic functions.
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{
Spring pendulum "‘i}

HPTEL, 5

Two variales r and 8 therefore there are
twe equation of mations + Spring fs massless
+ Spring frec length =1

+ Position of bah =1

+ Bobmuss=m

+ Anple with vertical = 8(t)

Kinetic Energy (T) = %rlnfr"' + it

FPotentlal enargy (V(r.8]) = —mgreosd + ;Frir -Ip

Lagrangian Formulation :
N T i
T=¥ =om(P? + i) 4 mgroosh — - k(r - I

d (au} _a : /
arharS ~ar e ALY
= mif = mrt? + mgeost - kr - 1) R .
yrsind
o (r]J.J _ i ]
: drvd e i - 3
= :I—f{rnf“ﬁ] = —imgrsing vl

amrf = =2mid - mgsing R

hahitava Ghosal [l15c] Dynamics & Control of Mechanical Systems NPTEL, 2022



This example is a modification of a simple pendulum, the modification is as follows. So, we
have a bob which is connected not by a wire or a rope but with the spring. So, as you can see
there is gravity acting downwards, so this bob can move in some path which is sort of like an arc
of a circle but it can also go up and down. So, there are 2 variables r and 6 which need to be

used to describe the motion of this bob.

So, this r here is the position of the bob along this direction, this free length of the spring is
given by [, the mass of the bob is m and the angle from the vertical of this line which is sort of

the center line of this spring is 6(t). So, the kinetic energy of this bob can be now written in

2 .2 .2
2 ) .
terms of %m( r + r 0 ).So,r isbecause the bob can go up and down and also it can have a

.2
velocity which is 6 .

The potential energy of this system is — mgr cos6 and also the energy which is stored in the

spring which is% k(r — l)2 . So, note this is r, the free length is [, so the force which is acting

due to the spring is k (r — l)and of course there is gravity mg, that is mgr sin® and

.2 ..
mgr cosO and r 0 which is acting in this direction. And we have 2r 6 which is acting in this

direction.

So, we have the kinetic energy and we have the potential energy, the Lagrangian then is kinetic -
potential energy in this case we are denoting kinetic energy with T and the potential energy with

V. The potential energy 1is function of both r as well as 6, so the

2

2 :
L= % m(r + 8 ) + mgrcos® — % k(r - l)2 . So, once we have this Lagrangian we

can obtain the equations of motion.



. . d d [ oL L
In this case there are no external forces, so we can write ———|———= 0 or —|—|=—.
dt or dt \ or or

, .2
So, if you do this then you will get mr = mr8 + mg06cos® — k(r — [). We can also

: . o . Vo d [ oL oL
derive the partial derivative with respect to 0, E(a_e'_) ~ 0,

So, then the second differential equation that we will get is mre =— 2mr® — mgsin® So, we
have these 2 equations of motion very, very easily derived from the Lagrangian formulation. And
the Lagrangian formulation inherently you compute the kinetic energy, you compute the potential
energy and then you find T - V. So, this is a nice and simple extension of a simple pendulum,
where I can show how to accommodate things like a spring.
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Let us continue this is an example of a planar four-bar echanism. This is the simplest possible

one-degree of freedom closed loop mechanism. So, there is loop, so I can start from this fixed

end which is either OL and then go to this second joint which is O 5 then go to the third which is
0 3 and then come back to what? But this is also fixed, both of these form single loop. So, there
are 3 moving bodies link 1, link 2 and link 3, 61 is the actuated because this mechanism has only

one degree of freedom.



So, we can have only one joint which is actuated, so the other3 joints which is c|)2, c|)3 and c|)1

are passes. So, the geometry and inertial parameters of the rigid bodies are again denoted by

mass, inertia, z component of the inertia because everything is planar, length li and | ;SO I is the

z component of the inertia, so it is m 5 L, r - 1 5 likewisem_,l ,r » I L and so on.

2’ 22

And then there is a gravity acting and we are going to assume that the CG of each link is located

atr, starting from here, it is located at T, starting from here and it is located at T, So, it is along
the link, these are just simplifying assumptions it does not make any difference whether this r 5 is

somewhere with both an X and a Y coordinate.
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So, we break this four-bar at O 5 SO we have a plana 2R and a planar IR system. 2R means 2

links connected by 2 rotary joints and this other one is a planar 1R which is nothing like but
similar to a pendulum. So, the kinetic energy of this 2R is very similar to what we have derived

earlier, all we need to do is replace 6, by ¢, So, in the place of the planar 2R we have 6,6,

now we have 91 and c|)2.



The kinetic energy of the 1R is also nothing but a simple pendulum, so which is

1 g -2 2

-m,r, ¢, + % I 5 cl) , » S0 what is the total kinetic energy? It is the kinetic energy of this 2

moving links which is this 2R chain and then one moving link which is the IR chain. The
potential energy is also nothing but the potential energy of this 2link chain which we have

derived earlier, except now we do not have 6 , We have ¢ 5 .And also this one length chain which
is nothing but m 97, sin® T sin . which is the last output angle.
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The Lagrangian for the planar 2 R + the planar 1 R mechanism is nothing but sum of all these
.2 . - \2 .2
o . L. 1 1 1 . :
kinetic energies. So, it is - 1161 + 712( 61 + cl)l) + = I3 (1)1 . So, this is coming from the 1R
chain or from the simple pendulum, these 2 are coming from the 2R chain. And then we have of
2

courseLmrel +im r .
27111 2 3 371

2
, this is coming from that 1R chain.

And then m, and m, are coming from the planar 2R chain and the gravity terms are coming from
the 2R chain m L and m ) and m 3 is the last chain, 1R chain. For this four-bar we have 2 constraint

equations we have seen this earlier. So, basically the x coordinate of the place where we are

going to break is given by llcos 91 + l2 cos (61 + cl)z) = l0 l3 cos cl)1 and the y component is

given by llsin 61 + l2 sin sin (91 + ¢2) = 13 sin sin q>1.



So, we have the Lagrangian, we have the constraint equations and then we can perform the
partial derivatives with respect to g and q . So, what is q here? q is 0 ° [0) 5 and ¢ L and q is the

time derivatives of those.
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So, if you do all these work, lot of work and again I will show you a way to do it using a

computer tool, we will get what a 3 by 3 mass matrix. So, again you can see that the mass matrix
has some [ , T mzrz + 1 . T mzli and so on. So, these terms are exactly the same as what we
obtained for the planar 2R chain except instead of 62 we have now ¢2. The 1, 2 elements is again
the same as what we obtained for the planar 2R chain.

So, 2, 1 element is again what we have obtained from the planar 2R chain, this is [ 5 + m zrz.

You can go back to your notes and see that these are exactly the same this 2, 3 and 4, these 4

elements are exactly the same as what we have obtained for the planar 2R chain. This last

0,0, m3r§ + I 3 and this 0, 0 is the effect of the last link which we have broken.

So, the 3 by 3 coriolis and centripetal term can also be found out, this will now be again similar

to these terms are very similar to the planar 2R chain and then this is the other part. So, we have



again c|)2, 61 and so on, and the gravity vector is also here. So, we do not have c|)1 in the coriolis
centripetal term because that is just a simple rotation and there is no wX Vre l in that term.
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dshitava Ghosal [115c] Dynarnics & Control of Mechanical Systems WPTEL, 2022

So, the equation of motion for the planar 2R and 1R mechanism can be written down. We just

collect all the terms which contains ) L which is this, collect all the terms which contains

gravity, which is this, collect all the coriolis and centripetal term which are these, this one and

this one and collect all the terms which contains c|) . So, this is from the 2R chain.

Likewise for T, we have this gravity term, we have something into 9"1 I , T mzrz and then this
is the centripetal coriolis term. And then we have another equation which is simply the single
link 1R chain or this 1R mechanism which is T, is given by m.gr,cos [0} .t (m3T3 + 13) q>1 .

So, these are 3 nonlinear ordinary differential equations, we have not yet taken the constraints

into account and that is obvious.

You can see that the third equation is not yet coupled to these 2; we have broken the joint at O .

So, when you break it at 03 then we have just 2 individual serial chain systems, we have a 2R



mechanism or a 2R serial chain and 1R mechanism. So, these equations will be now coupled
when we go back and use the constraint equations.
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So, the constraint matrixes in this case are the derivatives of the loop closure constraint
equations, we will get a 2 by 3 constraint matrix. So, remember it was eta j of q and then we take

the partial of n, with respect to q,sowe will get all these terms, so it is a 2 by 3. The first term is

this, so this is the n 1and then this is the second term and this is the third term. To obtain this

derivative of the constraint equations we take this Y g = 0, so we take the derivative, so we

will get Yig + Yrq = 0.

Then we obtained q from the equations of motion, again very, very standard you can go back to
the notes and see. So, we can write q is some M_l(r — [C]q. — G) + M [l]J]TA. So, this is psi

A is the Lagrange multiplies, m is the mass matrix. So, we substitute g in this expression here and

solve for A and then we substitute A back to the equations of motion and we will get

-1

Mlg=f—[W]'( [WIM [W]) and this.

So, we have done this earlier I am just repeating it once more for this four-bar mechanism. So, in

the case of the four-bar mechanism s is 2 by 3, how about mass matrix? It is 3 by 3, there are 3



variables 91, c|)2 and q;l and so on. So, what will be this [C]ci? It will be a 3 by 1 vector. So,

again this f is nothing but T — [C]q — G and the generalized coordinates for this four-bar

mechanism is 61, (1)2 and ¢1'
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o Generalized cocediantes q = (x.y.2,8,.6:.8)
o Rotation matrix of dusk in { A}
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# Angular velocity of disk
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7= ¥ =¥ rotations about moving axis
@ Rolling without slip = *V =0
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Let us take one more example. This is an interesting example of a thin disk which is rolling on
the ground with no slip, this we have discussed earlier this is an example of non-holonomic

constraint. So, we have this disc initially in the X-Z plane, so there is a heading angle which is 0 L
which is rotation about the Z-axis. Then there is a tilt rotation 0 5 above the moved X-axis and

then there is a spin which is the rotation 63 about the moved Y axis.

So, the generalized coordinates for this problem is x,y,z which is the center of this disk. And then

0 E 0 5 0 5> SO 0 L which is this one here, 0 5 which is this tilt and 6 3 which is the rotation of the or
the spin of this disk. So, if you have this kind of angles which is 61, 62 and 63 then the rotation
matrix should contain Z-X-Y. So, out of this 6 » 92, 93 if you want to actually obtain the rotation

matrix we have to use Z-X-Y Euler angles.



And this rotation matrix which is BA[R], so B is this coordinate system which is attached to the

moving disc or the rolling disc and A is a reference coordinate system. BA[R] can be written in

terms of 61, 62 and 93 as sine and cosine of these angles. So, we have seen this when we did

Euler angles. So, c, is nothing but cos 61, C, is nothing but cos 93 » S, 1s sin 91 and so on.

So, we can obtain the rotation matrix in terms of Z-X-Y rotations about 3 distinct axis using the
Euler angle idea and then we have this rotation matrix. The angular velocity of the disk can be
obtained by [R] [R] . So, I am skipping many steps, we can take the time derivative of each
one of these elements. So, ¢, C, will become — s, 91 c, + ¢ (- 53) 93, we have to use chain

rule and we have to find the derivatives of each one of these terms.

So, this is T S0 [R] means r'1 ) and then we do [R] [R]Tthat will be a skew symmetric matrix

from which we can extract the X, Y and the Z component of the angular velocity vector. The X,

Y and Z component of the angular velocity vector are given like this. So, we will have
cO — sc (9 ) and s O whichisw andc.c.0. andw isO s 0.
12 12\"3 12 y 123 z 0 17273
Again it is a lot of effort but then nowadays nobody does this manually. So, there are computer

tools which we will discuss little later called Maple which can be used to perform not only the

rotations about Z-X-Y and the multiplication of those matrices in that order but also do

[R] [R]T and find the angular velocity components. If you have rolling without slip then the

velocity of this point of contact with respect to the A coordinate system should be 0.

So, there is no slip here. So, there is no translation velocity between a point on the ground and a
coincident point on the disk, this is the condition for rolling without slip.
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So, continuing with the example of a thin disk rolling without slipping on a horizontal plane. So,
we have this disk which is rolling without slipping on this X-Y plane. The constraint that the

velocity at the point of contact is 0 which is the constraint which implies it is rolling without

slipping can be written in terms of x, y, z which is the coordinates X-Y-Z are the coordinates of

the center of the disk.

And we can find out the velocity of this point from 3&, }}, Z+ oXT , we know what is w, from
[R] [R]T, w 1is in terms of 0 ;98,0 3 and also the time derivatives 0 o 0 5 and 0 5 So, if you say

thatA,B,CisOwewillgetthis:é = rcose1 ég + rsineléz + rcosGlsinezél.

Likewise y = r5163+ 7‘515261 - rc.c, Gzandz= - Ts, 92. Again 91 is the

heading angle, it is the rotation about z axis of this disk, 92 is the tilt which is the rotation about

the moved x axis and spin or 63 is the rotation about the y axis. So, there are 2 constraints one is

the components of the velocity in this X-Y plane is 0, there is also another inherent constraint

which is that this coin or this disk does not leave this X-Y plane, so the Z is constant.



And this holonomic constraint is automatically satisfied when you say the velocity of the point of
contact all 3 components are 0. The velocity of the center of the disk OB is denoted by 9&, ).1, Zas

I have mentioned earlier. The inertia matrix of the disk in the body fixed coordinate system can

be easily obtained, this is the standard formulas which are available in many textbooks so the I

which is x axis and z which is this so X-Z plane is the plane of this disk both are equal to % mr’.

And the Iyy which is perpendicular to this disk is % mr’. The kinetic energy of this disk can be

2

. . ) 2 :
obtained by finding what is % lw + % mvc , so a L

>~ mv of the center of disk square. So,

W) .2 2 :
that is % m(x +y + z) and then thisis % I ®’ and o remember was [R] [R]T.

And we know what is R? It is Z-X-Y rotation matrix. So, the kinetic energy can be written in

2 2 2 2

terms of (L)mr(6. + 26, + 26, + 4566, — c6. + (% +y +z
erms o (8)mr(2+ . T 3+5213—621+r2(x +y +2z)).

So, this actually is written such that it is nice compact form which will fit in the slide but you can

2 .2 .2
see here this 4 and 8 will become half, this 7’ will go away. So, it is % m(x +y +2z)

which makes sense. The potential energy is mgr cos 92, so again if you see a little bit when it is
vertical and it is tilting by 0 5> SO then the height above this ground is 7 cos 0 5 and hence the
potential energy is mgr cos 6 . The Lagrangian can be obtained which is given by KE - PE.
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Aashitava Ghosal [l15c] Dynarnics & Control of Mechanical Systems

So, once the Lagrangian is obtained we can do the partial derivatives with respect to g and q’
and time derivative with respect to T and we can obtain the equations of motion. But we also
have these non-holonomic constraints which are basically that there is no slip at the point of

contact. So, as I said we obtained that by obtaining the velocity of the point of contact with

X, y, z as the velocity of the origin + wX r and then we equate that to 0 and we will get these 3

expressions.

So, we can take the derivative of these non-holonomic constraints. So, first we need to write it in
Y g = Oand then we can take g + Y g = 0. So, basically we take the derivatives of these
constraints. And then the equations of motion can be written as g is some

M_l(r — [C]d -G ) + [L|J]T7\ and where A can be solved as this.

So, very standard way of deriving the equations of motion of this pure rolling of this thin disk
subjected to these non-holonomic constraints of no slip. So, I am not going to write down all the
terms because they are very big, they will not fit into the slide but later on I will show you what
computer tools called Maple which can be used to obtain each one of these terms which go into
the equations of motion.
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@ Equations of maotion obtained using Lagrangian formulation,
o Error free equations of motion obtained using symbalic computer algebra
system such as h.1:||'|]u.“rrrf
o Equations of motion of a planar 2R serial chain,
@ Equations of motion of a planar 4-bar closed-loop mechanism
@ Equations of mation for a rolling thin disk,
fshitava Ghosal [I15) Dynamics & Contral of Mechanical Systems NPTEL, 2022

So, in summary I have shown you the equations of motion obtained using Lagrangian
formulation. We can obtain these error free equations of motion using symbolic computer
algebra systems such as Maple. Equation of motion for a planar 2R chain was derived, for a

4-bar mechanism was derived and also for the rolling of a thin disk was derived.



