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Lagrangian Formulation

In the last lecture we looked at the newton Euler formulation. The basic idea in the newton Euler

formulation is propagation of velocities and accelerations from the base link to the free end and then

we use the Newton’s law and Euler’s equation to compute and . And𝐹 = 𝑚𝑎 τ = 𝐼α + ω×𝐼×ω 
then we propagate these forces backwards to the base.

And to find the joint torque we take the z component of the moment. In this lecture we look at

another way to derive the equations of motion. This is called the Lagrangian formulation.

(Refer Slide Time: 01:13)

The Lagrangian formulation is an energy based formulation, it involves obtaining the kinetic and

potential energy of the rigid body or a system of rigid bodies. We can derive the Lagrangian

formulation from the Newton’s law and Euler’s equation. This involves advanced calculus of variation

and something called as the principle of least action. We will not prove how to derive the Lagrangian

formulation from Newton’s law and Euler’s equation.

(Refer Slide Time: 01:48)



So, as I said the Lagrangian formulation involves evaluation of the kinetic energy and the potential

energy. The kinetic energy of a rigid body i with mass m i and inertia I with respect to some fixed

coordinate system can be written in this form .So, the first term is ; basically we find
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So, and then we take the dot product of this with . So, this is the expression for the 0ω
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kinetic energy of a rigid body i with mass and inertia with respect to or a fixed𝑚
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 0[𝐼]
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coordinate system. The first and the second term from the linear velocity of the center of mass and

angular velocity of the rigid body as I had explained. Again just to reiterate and are the 0𝑉
𝐶
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  0ω
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linear and angular velocities of the center of mass and rigid body i respectively.

The is nothing but the if you recall in the propagation equation we obtained but 0𝑉
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pre-multiplied by a rotation matrix. So, is the velocity of the center of mass described in its own 𝑖𝑉
𝐶

𝑖

coordinate system. Likewise the angular velocity of rigid body i in some fixed 0 coordinate system is

also obtainable from which was again if you recall was involved in the propagation equations. 𝑖ω
𝑖 
 

So, you take and pre-multiplied by and was also nothing but the angular velocity of 𝑖ω
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rigid body i described in its own coordinate system. So, using the above equations we can show that

the kinetic energy of rigid body i instead of writing , we can write . because this is 0𝑉
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basically a scalar which is the magnitude of the velocity.



This is also a scalar which is magnitude of the velocity of the center of mass. So, it does not really

matter whether we are obtaining it from in the 0 coordinate system or in the ith coordinate system

and the same story is instead of obtaining , we can also obtain the kinetic energy
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as half .
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So, as I have mentioned we can use the velocity propagation formulas for serial chains. So, and recall

that the angular velocity of the ith link written in its own coordinate system can be written in terms

of the angular velocity of the i - 1th the previous link, will again written in its own coordinate system

pre-multiplied by this rotation matrix and if it is a rotary joint then we have to add along the zθ̇
𝑖
 

axis.

So, this is what the rotary joint is adding to the next link, the angular velocity of the next link is the

angular velocity of the previous link plus what is happening at the rotary joint. If it is a prismatic joint

then the angular velocity of the i - 1 at link is same as the angular velocity of the ith link. The velocity

of the center of mass of the ith link can be obtained by the . 𝑖𝑉
𝑖

+  𝑖ω
𝑖 
 × 𝑅,  𝑎𝑛𝑑 ℎ𝑒𝑟𝑒 𝑅 𝑚𝑒𝑎𝑛𝑠  𝑖𝑝

𝐶
𝑖

So, this locates the center of mass with respect to the origin of the ith coordinate system or the 𝑖𝑝
𝐶

𝑖

 

origin of the ith rigid body. And we could do this from i = 0 through n and we can obtain the kinetic

energy of all rigid bodies in a serial chain. So, all we need to do is . If you have
1
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2 ω𝐼ω

parallel chains or configurations with loops then no such propagation formulas can be used.



So, in that case we go back to our basic definition of what is velocity which is basically in terms of

derivatives of the position vector or derivatives of the rotation matrix and then we can obtain the

angular velocity of any link in a parallel chain as . This is 0 means it is with respect to the  𝑅[ ] ˙
  𝑅[ ]𝑇

reference coordinate system or the fixed coordinate system.

Likewise we can obtain the velocity of the center of mass of any link in a parallel chain by taking the

time derivative of the position vector of the center of mass and again this position vector of the

centre of mass can be obtained by loop closure equations or by techniques of kinematics for parallel

chains. So, is the position vector of the center of mass of link i. 0𝑝
𝐶

𝑖
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The other element in the Lagrangian formulation is the potential energy of a rigid body or the system

of rigid bodies. So, when we want to compute the potential energy the main assumption is in this

formulation. The potential energy is due to gravity alone, if you have springs or other energy storage

devices we need to modify the potential energy term. So, for example if you have a spring which is a

torsional spring then we have to add one term , where is the spring constant.
1
2 𝑘

𝑖
 θ

𝑖
2  𝑘

So, but most of the time or at least in this lecture we will assume the potential energy is due to

gravity alone. The general expression for potential energy due to gravity is nothing but m g h. Now

instead of writing simply for any link we write it in a mode formal form as dot product of the𝑚 𝑔 ℎ
gravity vector with the vector locating the c g of the link .So, locates the c g of link i, mi is the 0𝑝

𝐶
𝑖

mass of the link i.

And then this gravity vector dot this will give you the potential energy, minus is because the gravity is

normally acting in the downward direction. So, gravity is along vertical direction which is the z-axis



but the gravity is in the opposite direction. The magnitude of this gravity vector is 9.81 meters per

second square and as I said is the location of the center of mass of rigid body i from the 0. 0𝑝
𝐶

𝑖

Or reference potential energy surface. In potential energy often this motion of a reference or a 0

potential energy surface is used to find the value of the potential energy. In this formulation we will

see it really does not matter where you choose this 0 or potential energy surface because whatever it

is it is a constant value and later on we will see in the Lagrangian formulation we have to take the

derivatives of the potential energy.

So, derivatives of some constant quantity will go to 0 and so, we should not really be worried about

what is the reference or the 0 potential energy surface you have chosen.

(Refer Slide Time: 10:40)

So, once we have the kinetic and potential energy we define a scalar quantity called the Lagrangian.

So, this is the symbol for Lagrangian, this , it will be a function of and . So, are the joint𝐿 𝑞 �̇� 𝑞'𝑠
variables or any other generalized coordinates which you use to describe the serial or parallel chain,

s are the derivatives of the generalized coordinates and this Lagrangian is nothing but .�̇�' 𝐾𝐸 −  𝑃𝐸

So, for each link we find and potential energy of ith link. Then we subtract these two and then𝐾𝐸
𝑖

we sum over all the N links which are part of the rigid body chain. So, in this case this N does not

include the fixed base. So, because the base is not moving. So, in serial manipulator with R or P joint

the dimension of is nothing but N which is the number of joints and this is also same as N in this𝑞
example.

In kinematics if you recall this N was the number of links, but we have to add the fixed base. So, in

the planar 3 degree of freedom robot we had 3 moving links but was 4. Here we do not do that.𝑁



So, the equations of motion once you have this Lagrangian is given by . So, let
𝑑
𝑑𝑡

𝑑𝐿
𝑑𝑞

𝑖
˙( ) − 𝑑𝐿

𝑑𝑞
𝑖

 =  𝑄
𝑖

us go over this term by term.

So, this is . So, the Lagrangian will be a function of both the generalized coordinates and also the
𝑑𝐿
𝑑𝑞

𝑖
 

derivatives of the generalized coordinates. Remember the potential energy will contain only some

position vector. So, it will be a function of , but the kinetic energy will be a function of s also. So,𝑞
𝑖

�̇�

we also need to take the partial derivative of this Lagrangian with .𝑞
𝑖

˙

And then time derivative of the whole thing and this term in the left hand side is now equated to

what is called the generalized forces. So, are the externally applied generalized forces and how𝑄
𝑖

many of these things do? We have to do we have to take i = 1 through n. So, where n in this case of

serial robots are the numbers of moving links when only joint torques or forces are present at the

links.

So, there is no other external force which is being applied. The will be nothing but the torque𝑄
𝑖

supplied by the motors at the joints.

(Refer Slide Time: 13:54)

So, after performing the derivatives, the equation of motion of a serial chain takes this form. So, we

find the Lagrangian we take the partial with respect to then we take the partial with respect to𝑞
𝑖

𝑞
𝑖

˙  

and then d /dt of that one and then if you do all these things for i = 1 through n and then simplify

then we can rewrite the equations which you have got in this form. And this is a well-known form;

we have seen this earlier also.



That we get in something called mass matrix . So, this mass matrix is only a function of the𝑀(𝑞)
generalized coordinates q, it is an matrix is and then we have another term which is𝑛× 𝑛 �̇� 𝑛× 1

, is also an matrix and then this matrix into is an vector of𝐶 𝑞, �̇�( ) + 𝐺 𝑞( ) = τ. 𝐶 𝑞, �̇�( ) 𝑛× 𝑛 �̇� 𝑛× 1
centripetal and coriolis terms. This coriolis term and centripetal term contains only quadratic terms.

So, you will have , you will not get or into . So, it is only quadratic terms. The right𝑞
𝑖

˙   𝑞
𝑗

˙  𝑞
𝑖
3 𝑞

𝑖
˙  𝑞

2
˙ 2

 

hand side is an vector of joint forces or torques. This term what is called as the gravity𝑛× 1 𝐺 𝑞( )
term. This is only a function of the position of each link; it is not a function of the derivatives of the

generalized coordinates. The equation of motion of any serial chain can be written in the above form.

This is a very, very important statement. If you give me any serial chain then it can be written in this

form that there will be a mass matrix into then there will be a coriolis centripetal term, then there�̈�
will be a gravity term and which is equated to the torques which are acting at the joints.

(Refer Slide Time: 16:21)

Let us look at some of the properties of the terms in the equations of motion. The most important

property of this mass matrix is that it is always positive definite and symmetric and how do we prove

that? You can show that the total kinetic energy of a serial chain or any serial robot is given by KE is

. So, this is a quadratic form, it is of the form .
1
2 �̇�

𝑇
[𝑀(𝑞)] 𝑞 ̇ 𝑋𝑇𝐴 𝑋

Kinetic energy is always greater than 0 for not equal to 0 and 0 only when is equal to 0,�̇� �̇� 𝑀 𝑞( ) 
positive definite. This implies that. Another way of looking at it is inertia cannot be imaginary along

any component of . So, basically Eigen values of mass matrix must be real and must be�̈� 𝑀 𝑞( ) 𝑀 𝑞( ) 
symmetric. If it were not symmetric then the eigenvalues could be imaginary which it does not make

sense.



It is also positive definite because the inertia can never be negative along in any component of or�̈�
any direction. The coriolis and centripetal term can be obtained from this mass matrix which is M

and we take . So, we take all these elements of this mass matrix and take
∂𝑀

𝑖𝑗
 

∂𝑞
𝑘
 +

∂𝑀
𝑖𝑘

∂𝑞
𝑗

+
∂𝑀

𝑘𝑗

∂𝑞
𝑖

( )𝑞
𝑘
˙

appropriate partial derivatives with respect to q's.

And then you , then before you sum it over you multiply by and then you . So, where
1
2

𝑘=1

𝑛

∑  𝑞
𝑘
˙ 1

2
𝑘=1

𝑛

∑  

does this formula comes from? You can show that this is indeed true; this is sometimes in advance

math it is called as a Christoffel symbol. So, it comes from that notion that you have something which

is positive definite which is mass matrix.

So, it is related to some kind of a metric or a distance in some q space and then with that mass

matrix or with that positive definite metric we can define something called Christoffel symbols and

they are nothing but these components of this centripetal and coriolis terms. The gravity term can be

obtained as partial of potential energy with respect to . Remember gravity is only a function of the𝑞
𝑖

position, it is not a function of .�̇�

(Refer Slide Time: 19:41)

If you have loops as in parallel configurations then we can get this m loop-closure constraint

equations. So, I have some loops, there are m such loops. So, our m loop closure constraint equations

each loop can have more than one loop closure constraint equation. So, let us take the situation

when in a parallel configuration we have m loop closure constraints equations. So, what are these?

These are some and . So, in such a situation the dimension of theη
𝑖
(𝑞) =  0  𝑖 =  1, 2,..  𝑚

generalized coordinates is . So, we have n actuated joint variables typically denoted by theta𝑛 +  𝑚



and m passive joint variables which we will denote by phi and to obtain the equations of motion for a

system with constraints. So, basically we have kinetic energy, potential energy, but then we have

these loop closure constraints for the generalized coordinates.

So, then we can use what is called as a Lagrange multiplier, this is very well known technique, it is

available in many textbooks. So, for example in Goldstein or by Haug that we use this notion of

Lagrange multipliers and then we can derive a new Lagrangian which is called L and notice this bar on

top. So, this is a function of and which is same as the original Lagrangian which is kinetic minus𝑞 �̇�

potential energy minus this .
𝑗=1

𝑚

∑  

So, there are m loop closure equations. So, . So, this is like constrained into some . So, these are𝑛
𝑗

λ
𝑗
 

called as the Lagrange multipliers. So, those of you who have done any optimization course you can

see that when you want to optimize an objective function with some constraints we introduce those

Lagrange multipliers and this is the same idea. So, the Lagrangian we can introduce these Lagrange

multipliers.

And with this loop closure constraints and we form a new Lagrangian and then we can go ahead and

derive the equations of motion.

(Refer Slide Time: 22:15)

So, if these m constraints are holonomic which means only functions of . Then the equations of𝑞

motion are given in this form which is that you find the .
𝑑
𝑑𝑡

𝑑𝐿
𝑑𝑞

𝑖
˙( ) − 𝑑𝐿

𝑑𝑞
𝑖

 =  τ
𝑖

+
𝑗=1

𝑚

∑ λ
𝑗

∂η
𝑗
(𝑞)

∂𝑞
𝑖

 



And now . So, remember there were theta actuated joint variables which we 𝑖 𝑤 =  1, 2, 3,..  𝑛 +  𝑚
denote by theta and there are n of those and then there are phi's which are the passive joint

variables which are not actuated and they were m of those. So, in matrix form these equations can

be written in this form. Again, we have a + .[𝑀(𝑞)] �̈�  𝐶 𝑞, �̇�( ) + 𝐺 𝑞( )

This is same as the joint torques, but now we have another matrix which is . So, what is[ψ(𝑞)]𝑇 λ
? comes from here, partial derivatives of loop closure constraints with . So, nj with qi weψ(𝑞) ψ(𝑞) 𝑞

𝑖

will get a matrix which is this psi and then this can be written as . So, in this equation we[ψ(𝑞)]𝑇 λ
have s which are the lagrange multiplier.λ

They are m of these Lagrange multipliers coming from the m constraint equations and then this

constraint matrix psi of s obtained from the partial derivatives of the m constraint equations with𝑞
𝑖

respect to qi. So, if you do this and rewrite we can see that this could be written in this form.

(Refer Slide Time: 24:35)

So, the s are unknown as of now, we need to derive the s in order to find the equations of motion.λ λ
So, the s have been introduced by us. So, we need to find what the s are. So, to obtain the s weλ λ λ
twice differentiate the m constraint equations with respect to t. So, once if you differentiate

you will get some = 0. Then if you differentiate that again then you will getη
𝑖

𝑞( ) =  0 ψ(𝑞) �̇�

[ψ 𝑞( )] �̈� + [ψ̇(𝑞)] �̇� =  0.

Where is an matrix containing the time derivatives of each of the elements of[ψ̇(𝑞)] 𝑚×( 𝑛 +  𝑚) 
this constraint matrix So, now since the mass matrix is always invertible. So, we can rewrite =ψ 𝑞( ).  �̈�

. Where is this coming from? This is coming from the equations𝑀−1 τ − 𝐶[ ]�̇� − 𝐺 ( ) +  𝑀−1 [ψ]𝑇λ
of motion.



The equations of motion where . So, we pre-multiplied both sides𝑀[ ]�̈� = τ − 𝐶[ ]�̇� − 𝐺 ( ) +  [ψ]𝑇λ
by and always exist, because the mass matrix is positive definite and symmetric and always𝑀−1 𝑀−1 
invertible. So, once we have this we can substitute this back into this constraint equation which�̈� �̈�
we have differentiated twice and then you can see that you will be left with only .λ

And if you do some simplification you will get in this complicated form which is someλ

with the - sign and finally we can− ( ψ[ ]𝑀−1[ψ]𝑇)
−1

{[ψ̇(𝑞)] �̇� + ψ[ ]𝑀
−1

τ − 𝐶[ ]�̇� − 𝐺 ( )} 
substitute this back into this equation and we can get equations of motion.λ

The form of the equation of motion is like this we have

quite complicated, but if you do and sit 𝑀[ ]�̈� = 𝑓 − [ψ]𝑇 ( ψ[ ]𝑀−1[ψ]𝑇)
−1

{ ψ[ ]𝑀−1𝑓 + [ψ̇ 𝑞( )] �̇�}
down and write it down you will get this because what is happening we can substitute here. So, youλ
will get some this whole thing which is this minus term and so on.𝑀−1 [ψ]𝑇 

It is not very hard and then we have this another term which is . So,{ ψ[ ]𝑀−1𝑓 + [ψ̇ 𝑞( )] �̇� [ψ̇(𝑞)] �̇� 
is coming from here and then , this is , is this . We already have someψ[ ]𝑀−1𝑓 𝑓  𝑓 τ − 𝐶[ ]�̇� − 𝐺 ( )

So, we will get this term and where denotes . So, let us see what𝑀−1 ψ[ ]𝑀−1𝑓 𝑓 τ − 𝐶[ ]�̇� − 𝐺 ( )
has happened. So, we have done lot of algebra and lot of simplification to arrive at an equation of

motion which is of the form .[𝑀] 𝑞 ̈ = (τ − [𝐶] 𝑞 ̇ − 𝐺 )

Plus this whole big term which comes from the constraint matrix. So, intuitively you can see that if

we did not have loop closure equations, if it was a serial chain we did not have to bother about this

Lagrange multipliers, we did not have to bother about this constraint matrix, then this part will not

be there. So, you will be left with which is the same as what we[𝑀] 𝑞 ̈ = (τ − [𝐶] 𝑞 ̇ − 𝐺 )
obtained for the serial chain.

But because of the presence of loop closure constraint equations and constraint matrices psi we will

get this complicated term, we will see some examples of this later on how we can use these loop

closure constraint equations and obtain this constraint matrix and then obtain this equations of

motion.

(Refer Slide Time: 29:22)



So, let us look at some of the properties of these equations of motion. First thing is that the mass

matrix M is now . So, n at the actuated joints which is theta, m are the passive(𝑛 +  𝑚)×( 𝑛 +  𝑚)
joints which comes from the m loop closure constraint equations, even then it is a positive definite

and symmetric matrix. The centripetal coriolis terms and the gravity terms are (𝑛 +  𝑚)×1

In the case of serial robots or serial chains we had mass matrix, the centripetal coriolis term𝑛× 𝑛
was , but now we have to take into account the m loop closure constraint equation. So, hence𝑛× 1
the dimensions get modified in both of these terms. The terms as units of torque or force.[ψ(𝑞)]𝑇 λ
So, these are called also constrained forces and torques.

Why have these units of torque? Because if you just go back one more slide you can see that it was

. So, tau has units of torque or force. So, hence this will also be similar units. Thisτ + [ψ(𝑞)]𝑇 λ
constraint forces one of the interesting property is that the work done by the constraint forces is 0.

So, how do I find out what is the work done by this constraint forces?

So, it is nothing but some force times velocity. So, we have that is the work done by ψ 𝑞( )[ ]𝑇 λ [ ]
𝑇
 �̇�

these constraint forces and that we can simplify. So, a into b whole transpose is b transpose a

transpose. So, which is , but we know this =0 because comes from λ𝑇 ψ 𝑞( )[ ]  �̇� ψ 𝑞( )[ ]  �̇� ψ 𝑞( )[ ]  �̇� 
taking the first derivative of the loop closure constraint equation.

So, since if this is 0 then the work done whole thing is also 0. It is useful to obtain constrained forces

and torques for mechanical design of joints and rigid bodies. So, although they do not appear to add

to the work done or to the kinetic energy of the system but we still need to know what are these

constraint forces. The whole idea is similar to what we had looked at in the newton Euler

formulation.



Not only we need what is the torque due to the motor but we also need to know what are the

reaction torques. In this Lagrange formulation we the same reaction torques and forces appear as

constrained forces and torques not exactly the same numerically because in the newton Euler

formulation the constraints forces were along . So, remember .𝑥,  𝑦,  𝑧 𝑓
𝑥
,  𝑓

𝑦
,  𝑓

𝑧
 𝑎𝑛𝑑 𝑛

𝑥
, 𝑛

𝑦
,  𝑛

𝑧

Here the constraint forces are along the generalized coordinate’s q, but nevertheless the q's and the

cartesian coordinates and orientation can be related. So, most multi-body dynamics software

packages for example ADAMS, compute and provide the constrained forces and torques. So, this

ADAMS is 2002, but there are now newer versions of ADAMS and we will see one such newer version

later on. But the feature in ADAMS or any other multi-body dynamics software packages you can

obtain the constraint forces and torques.
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In mobile robots and few other mechanical systems, sometimes the constraints are non-holonomic.

So, what do we mean by non-holonomic? They are not only functions of the generalized coordinates

q, they could be function of and we cannot get rid of the . So, they are non-integrable. So, in the�̇� �̇�
example of that rolling disk thin disk I showed you that the constraints are in terms of the velocity at

the point of contact being 0.

And hence the constraint contains both q and and we could not get rid of the by integration,�̇� �̇�
sometimes the constraints can also be explicit functions of time. So, in such systems we can also use

the Lagrangian formulation. So, the general constraints in what is called as the Pfaffian form is

So, was similar to what we obtained by taking the derivatives ofϕ 𝑡( ) =  ψ 𝑞( )[ ]  �̇� =  0.  ψ 𝑞( )[ ]  �̇�
the loop closure equations.

So, sometimes the constraints could be directly in the form and non-integrable and thisψ 𝑞( )[ ]  �̇�
term is showing the explicit function of time. So, we can have constraints which have as a explicit



function of time and then involves q and . So, we can differentiate this constraint to get�̇�
which is coming from this term using chain rule and .ψ[ ]�̈� + [ψ̇] �̇� ϕ̇ (𝑡) =  0

Then the equation of motion can be modified and we can obtain the equation of motion if the

constraints are given in this Pfaffian form. That it is given by

again this whole complicated term but𝑀[ ]�̈� = 𝑓 − [ψ]𝑇 ( ψ[ ]𝑀−1[ψ]𝑇)
−1

{ ψ[ ]𝑀−1𝑓 + [ψ̇ 𝑞( )] �̇�}
now we have terms which are and then this was earlier also there.ϕ̇ (𝑡)  ψ 𝑞( )[ ]  �̇�

And is also now can be obtained in to include the effect of . So, will now containλ ϕ (𝑡) λ ϕ̇ (𝑡) 
previously this term was not there. So, as I said these are non-holonomic constraints, they are

non-integrable functions of and , they restrict the space of but not the space of .𝑞 �̇� �̇� 𝑞
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Let us now look at an example, we want to derive the equations of motion of a planar 2R

manipulator. We have done this earlier, we have looked at these system two rigid bodies connected

by 2 rotary joints, we used a long time back how to obtain using Euler’s equation and Newton’s law.

Then we also derive these equations of motions for this system using the newton Euler formulation.

Now I want to show you that we can derive the equations of motion of this 2R system using the

Lagrangian formulation. So, it is the same as the example done for Newton Euler formulation, we

have two moving bodies, two joint variables and , two joint torques and which are actingθ
1

θ
2

τ
1

τ
2

in this form counter clockwise positive. The first link has .𝑚
1
,  𝐼

1
,  𝑟

1
 𝑎𝑛𝑑 𝑙

1

So, m is the mass, is the z component of the inertia, locates the CG of this link 1 and is the𝐼 𝑟 𝑙
1

length of this link and the same story with the second link. There is a gravity which is acting in the - y



direction and these are denote the mass length CG location and the z component of the𝑚 𝐼,  𝑟
inertia matrix. This is a planar example. So, only is relevant.𝐼

𝑧𝑧

(Refer Slide Time: 38:34)

So, we can use the propagation formulas to find the linear and angular velocities. So, because it is

valid for this serial chain also. So, with 0 as a fixed coordinate system and that is fixed. So, hence the

angular velocity and the linear velocity is 0. So, for we can find which is 0 0 , 0𝑖 =  1  1ω
1 

θ
1
˙  1𝑉

1 
=

and the linear velocity of the centre of mass is given by sum So, this is quite obvious.( 0 𝑟
1
 θ

1
˙  0).

So, the first link is rotated mean . So, the CG is located at a distance . So, that is and it will beθ
1

𝑟
1

𝑟θ
1
˙

along the y direction which is what is shown here. For we can show that the angular velocity𝑖 =  2
is + along the z axis. The velocity of the origin of the second link is given by , 0.θ

1
˙ θ

2
˙ 𝑙

1
𝑠

2
θ

1
˙ 𝑙

1
𝑐

2
θ

1
˙ ,

This is nothing new, all of these were done when we did the Newton Euler formulation.

And the velocity of the center of mass is the ( 0 0), we have assumed that the 2𝑉
2 

+  2ω
2 

× 𝑟
2

center of mass is along the link along the local x axis.
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So, the total kinetic energy is nothing but . So, one term from will give this. _1 , then
1
2 𝑚 𝑉2 𝑉2 𝐼 θ

1
˙ 2

+ . So, this is the kinetic energy due to the rotation of the first link. This is the kinetic𝐼
2
( θ

1
˙ θ

2
˙ 2

)

energy due to the rotation of the second link and then we also have this kinetic energy of the second

link . So, into velocity of the center of mass of the second link square of that.  𝑉
𝐶

2

2

 

𝑚
2

And if you simplify this and we have done this earlier you will get one term which is , there is𝑙
1
2 θ

1
˙ 2

also + 2 ( + . So, we have done this earlier this is nothing new and it is𝑟
2
2  θ

1
˙ +  θ

2
˙( )2

𝑙
1

𝑟
2

𝑐
2

θ
1
˙ θ

1
˙ θ

2
)˙

very simple conceptually. We are doing the kinetic energy of the first link plus the kinetic energy of

the second link.

And we know what is the angular velocity of first link and we know what is the angular velocity of the

second link and similarly what is happening to the linear velocity of the center of mass of first link

and the linear velocity of the center of mass of the second link. So, for rigid body 1 we have these 2

terms. For rigid body 2 we have these 2 terms the second, third and the fourth term.

The total potential energy is nothing but of the first link and again if you go back and see what𝑚 𝑔 ℎ
is the height from the reference which is the x axis, it is into . So, we have𝑟

1
sin 𝑠𝑖𝑛 θ

1
 𝑚

1
𝑔 𝑟

1

. The second link the distance from again the horizontal is + . So, the Lagrangiansin 𝑠𝑖𝑛 θ
1
 𝑙

1
𝑠

1
𝑟

2
𝑠

12

for the planar 2R manipulated is given by kinetic minus potential energy. In this case I am using theta

to denote the generalized coordinates.



The generalized coordinates are and . So, this Lagrangian is a function of , and . So,θ
1

θ
2

θ
1

θ
2

θ
1
˙ θ

2
˙

you can see , . Similarly there is a here, this is , this is + .θ
1
˙ θ

2
˙ θ

1
sin 𝑠𝑖𝑛 θ

1
 θ

1
 θ

2
)
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So, the partial derivatives of this Lagrangian with respect to theta i can be very easily obtained, you

take the partial derivatives and you will get one term which is - .𝑚
1
𝑔 𝑟

1
𝑐

1
−  𝑚

2
𝑔 (𝑙

1
𝑐

1
+  𝑟

2
𝑐

12
)

The partial derivatives with respect to will be a little bit more complicated. We will of course haveθ
2

this gravity part which is , but we also have terms which are coming from into and𝑚
2

𝑔 𝑟
2

𝑐
12

𝑐
2

θ
1
˙

then + .(θ
1
˙ θ

2
˙ )

So, in the kinetic energy there was a term which contained into whole multiplying + . So,𝑐
2

θ
1
˙ θ

1
˙ θ

2
˙

when you take the partial derivatives of cosine you will end up with – . So, this term will also come.𝑠
2

The partial derivative of this Lagrangian with respect to and can also be obtained. So, theθ
1
˙ θ

2
˙

partial with respect to will contain + + and so on.θ
1
˙ 𝐼

1
𝐼

2
𝑚

1
𝑟

1
2

And then into , there will be a term as I said which contains and then of course there isθ
1
˙ 𝑚

2
𝑙

1
𝑟

2
𝑐

2

this other term when you take partial with respect to which is + and so on into . Theθ
1
˙ 𝐼

2
𝑚

2
𝑟

2
2 θ

2
˙

partial of Lagrangian with respect to is little bit simpler, but nevertheless we have a term which isθ
2
˙

and then of course( + .𝑙
2

𝑚
2

𝑟
2
2 + 𝑚

2
 𝑙

1
 𝑟

2
 𝑐

2
 ) θ

1
˙



And( + ) . So, this is very, very mechanical. So, once I know what is the linear velocity of𝐼
2

𝑚
2

𝑟
2
2 θ

2
˙

the center of mass of each link and the angular velocity of each link I can find the kinetic energy and

then if I know where is the center of mass with respect to a reference. So, I know the height. So, I can

find out like mgh and I know the potential energy then I combine both of them as which𝐾𝐸 −  𝑃𝐸
is the Lagrangian.

And then mechanically take these 4 partial derivatives one with respect to , second with respect toθ
1

then with respect to and then with respect to and then we have to take the time derivativesθ
2

θ
1
˙ θ

2
˙

of these two quantities which is what the Lagrangian formulation says you have to do.
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So, we take the time derivative of this Lagrangian partial Lagrangian with respect to and when youθ
1
˙

take the time derivatives you will get some terms which are containing , but then we also haveθ
1
¨

time derivatives of . So, you will again get some into sine . So, which is what these terms are.𝑐
2

θ
2
˙ θ

2

So, the time derivatives of is this plus into this into this and then we have some (2θ
1
¨ θ

2
¨ 𝑚

2
𝑙

1
𝑟

2
𝑠

2
θ

2
˙

+ .θ
1
˙ θ

2
˙ )

So, there is some terms which are like into something and into something, but then you will getθ
1
¨ θ

2
¨

some terms which is or . The time derivative of the second part which is Lagrangian with2 θ
1
˙ θ

2
˙ θ

2
˙ 2

respect to , partial Lagrangian with respect to . Again you will see some terms which are intoθ
2
˙ θ

2
˙ θ

1
¨

something.



into something, but then you will also have a term which is . So, then we collect this term,θ
2
¨ θ

1
˙ θ

2
˙

this term and that the partial of Lagrangian with respect to , partial of Lagrangian with respect toθ
1

, collect all of these terms according to the recipe given in the Lagrangian formulation and simplify.θ
2

And once you do all that I have skipping a few steps.

You can show that the equation of motion is is into something + into something and thenτ
1

θ
1
¨ θ

2
¨

you will get this + 2 and then we have this gravity terms which are coming from𝑚
2

𝑙
1

𝑟
2

𝑠
2
θ

2
˙ 2

θ
1
˙ θ

2
˙

the partial of the potential energy with respect to and . So, we will get one term here gravity,θ
1

θ
2

another term here.

And for the second equation again we will have into something + into something and thenθ
1
¨ θ

2
¨ θ

1
˙ 2

and . So, if you go back and open your notes and see what we did for the Newton Euler𝑚
2

𝑟
2

𝑔 𝑐
12

formulation equations are exactly same. So, there is absolutely no difference between the equations

of motion which you obtained from Newton Euler or from this Lagrangian.
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So, if you rewrite in the standard form you will get which is a vecto cros vector is someτ
1

τ
2

𝑟
2

𝑠
1

matrix into into plus this coriolis centripetal term plus this gravity term. So, in this equation thisθ
1
¨ θ

2
¨

2 by 2 matrix is called the mass matrix as before this 2 by 1 vector which is quadratic in , andθ
1
˙ 2

θ
2
˙ 2

is called the centripetal and coriolis term.θ
1
˙ θ

2
˙



And the last term which is a function of only and is called the gravity term. The Lagrangianθ
1

θ
2

formulation does not include any friction or dissipative term. The Lagrangian is for only conservative

system, historically Lagrange was a mathematician in the 1700s and he was studying the motion of

the planets. So, hence he derived a way to derive the equations of motion but there is no question of

adding friction. So, because this Lagrangian formulation inherently is only for conservative systems.
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So, let us take some example. So, we have this very well-known example of a simple pendulum, we

have looked at this earlier. So, we have a gravity vector like this there is an x and y axis, this is the

origin and this is this link and a mass with end point . We will see what this and other things𝑥,  𝑦 𝑙 θ̇
come and we have this gravity which is mg. So, we recap that the choice of generalized coordinate is

non-unique.

So, we could consider which is the generalized coordinates as which is the cartesian𝑞  𝑥,  𝑦
coordinates of the mass of the bob, the gravity is in the - Y direction. But if you choose as your𝑥,  𝑦
generalized coordinates then inherently there is a constraint which is what that the distance of this

point from the origin is governed by . L is the length, this length here.𝑥,  𝑦 𝑥2 + 𝑦2 − 𝑙2 =  0

If you take the double derivative of this function , you will get𝑓( 𝑥,  𝑦) =  0

, it is not at all very hard. So, the first derivative will be𝑥 �̈�  +  𝑦 �̈� +  �̇�
2
 +  �̇�

2
 =  0

. If you take the derivative again you will get this again using chain rule, the2 𝑥 �̇� +  2 𝑦�̇�  =  0

kinetic energy of this mass is nothing but .
1
2  𝑚 (�̇�

2
 +  �̇�

2
)

So, this is a massless rod of length l. So, the kinetic energy is only , the potential energy is
1
2 𝑚𝑉2

. So, we take some reference here. So, this is𝑚𝑔𝑙(1 −  cos 𝑐𝑜𝑠 θ)
 
 𝑚𝑔𝑙(1 −  cos 𝑐𝑜𝑠 θ)

 
 



whatever is the height above that reference. The Lagrangian is nothing but kinetic minus potential

energy and just by following the Lagrangian formulation we can obtain the equations of motion of

this simple pendulum.

And what are the equations of motion, sort of obvious we have and𝑚�̈� = λ (2𝑥)
. Remember there are no forces or any torques which are acting the only𝑚�̈� =− 𝑚𝑔 + λ (2𝑦)

external force is due to gravity. So, hence and this is acting along the y direction. So, we will have

some component of this external force gravity in the direction and this and comes𝑦 λ (2𝑥) λ (2𝑦)
from the derivative of this.

So, as I said you will get . So, that we need to multiply by because2 𝑥 �̇� +  2 𝑦�̇� 2 𝑥 𝑎𝑛𝑑 2 𝑦 λ
remember the constraints are . So, we will get these two terms.[ψ(𝑞)]𝑇 λ
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So, let us continue. So, I have two equations of motion one of them is and the other�̈� = λ (2𝑥/𝑚)
one is . So, let us substitute this and into this and we solve for . Basically�̈� =− 𝑔 + λ (2𝑦/𝑚) �̈� �̈� λ 
similar to what I showed you what we do when we have loop closure constraints. In this case the

constraints are double and this is the second derivative of the constraints.𝑥2 + 𝑦2 − 𝑙2 =  0 

So, if you substitute and and so on into this expression, we will getλ ( 2𝑥
𝑚 ) −  𝑔

. So, this is what you will get. So, to interpret what does this2 λ/𝑚( )𝑙2 = 𝑦 𝑔 − ( �̇�
2

+  �̇�
2
) λ λ

mean in this problem or in this case of this simple pendulum. So, we can see here that we can also

define this and by using this length .𝑥 𝑦 𝑙 θ



So, we can set is some this is coordinate which is this perpendicular distance that is𝑥 𝑙 sin 𝑠𝑖𝑛 θ  𝑥 𝑙
and then the component which is in the negative direction is - . So, we cansin 𝑠𝑖𝑛 θ  𝑦 𝑙 cos 𝑐𝑜𝑠 θ

 
 

set these two by introducing a variable which is from the vertical and this length . So, if youθ 𝑙
substitute and and then and everything into this expression here.𝑥 𝑦 �̇�  𝑎𝑛𝑑 �̇�

You will get (2 ) = - . So, will be what? It will be something like.λ 𝑙 𝑚𝑙 θ̇
2

− 𝑚𝑔 cos 𝑐𝑜𝑠 θ
 
  �̇�

2
+  �̇�

2( ) 

So and then if you simplify and then if you do some simple algebra you will get this expression,  𝑙2  θ̇
2
 

which is (2 ) = - . So, this is what is shown in this figure here.λ 𝑙 𝑚𝑙 θ̇
2

− 𝑚𝑔 cos 𝑐𝑜𝑠 θ
 
 

So, we have this is , the direction of motion of this mass is . So, this is like the tangential𝑚𝑔 𝑙θ̇

velocity, this is the velocity of the mass instantaneously. Due to this velocity we have some 𝑚𝑙 θ̇
2

which is acting outwards and also which is acting this. So, those of you who𝑚𝑔 cos 𝑐𝑜𝑠 θ
 
 

remember your basic mechanics you can see that this and is nothing but the𝑚𝑔 cos 𝑐𝑜𝑠 θ
 
 𝑚𝑙 θ̇

2

tension in this rope or wire.

So, both of these terms have units of force and they are along the wire that is important. So, hence

this is the tension in the wire. So, in Newton Euler formulation we could have found this2 𝑙 λ 𝑇
tension by seeing that there is an mg here, there is an here and then there is𝑚𝑔 cos 𝑐𝑜𝑠 θ

 
 

something else and then there are all these and so on. Here it is a little bit more𝑚𝑔 sin 𝑠𝑖𝑛 θ  
complicated because we need to find what is the Lagrange multiplier.

And then this Lagrange multiplier is related to this tension in the wire. So, this is like a constraint

force and again remember tension in the wire is an internal force it is not doing any work it is a

constraint force but we can still find out what is this constraint force. So, the purpose of this example

is that I could have chosen a different generalized coordinates in this case for this pendulum.𝑥,  𝑦

And then we have this constraint which is and then due to that constraint just by𝑥2 + 𝑦2 = 𝑙2 
following the Lagrangian formulation we can find an expression for the Lagrange multiplier and that

Lagrange multiplier is related to the constraint forces. In this case there is a nice interpretation of

what exactly is the constraint force; it is nothing but the tension in the wire.

So, the velocity of the mass is in this direction , it is tangent to the motion and hence the work𝑙 θ̇
done by this constraint tension in the wire is also because these two are always perpendicular to0
each other. Again everything is consistent with whatever I showed you mathematically earlier. I

showed you that that part the work done by was 0.[ψ(𝑞)]𝑇 λ [ψ(𝑞)]𝑇 λ



Here also we know for a simple pendulum we have studied this in many places that there is

something called the tension in the wire and that is perpendicular to the direction of motion and

hence the work done by this force is 0.
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So, in summary the equations of motion for a serial or a parallel configuration and multi-body system

even with non-holonomic constraints can be obtained using the Lagrangian formulation. The

equations of motion obtained using the gradient formulation does not contain friction or any other

dissipative term. The Lagrangian formulation is for conservative systems only.

However in any mechanical systems we have friction and how do you accommodate that we just add

it in an ad-hoc manner. So, originally we have tau is + , we just add a friction[𝑀(𝑞)] �̈�  𝐶 𝑞, �̇�( ) + 𝐺 𝑞( )
term. So, this friction could be a function of and . So, if you just write it like this then you can𝑞  𝑞 ̇
think that this centripetal coriolis term and this friction term looks more or less similar but that is not

true.

This is quadratic, this friction could be quadratic but it is very different from the centripetal coriolis

term, this is a dissipative term. Typically this friction term is some constant times some function of ,�̇�
most of the time linear function of . So, this friction for will be( + ) or . So, one part�̇� τ

1
𝑐

1
𝑐

2
�̇� θ

1
˙

which is called Coulomb friction, one part which is called viscous damping.

This is a typical model for friction and note that this friction, this is quadratic this is typically not

quadratic. The other disadvantage of Lagrangian formulation is that this equation of motion does not

contain the effect of flexibility, backlash and other un-modeled dynamics. So, people are worried

about what is happening to the energy which is going into the flexibility.



So, if there is a deformation. So, something called strain energy might be happening, we can have

backlash between the gears which are there in the motors. So, we cannot model all these effects in

Lagrangian formulation.


