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Welcome to this next lecture on sound and structural vibration last class we ended up 

saying we will study this paper, or we will derive some paper results from this paper 

Response of Ribbed Panels to Reverberant Acoustic Fields by Maidanik its a 1962, JASA 

paper. So, let us see we need a Fourier transform pair definition. Fourier transform pair. 

So, initially let us see 1D, for the 1D case the forward transform. 

 

I am doing the space version. So, it is called the wavenumber transform also but name 

does not matter from space to wavenumber. So, this is the spatial function I take a 

transform and I will use 𝑖 and 𝑗 freely interchangeably as the square root of minus 1  

𝐹(𝑘) = ∫ 𝑓(𝑥) 𝑒−𝑗𝑘𝑥 𝑑𝑥 ,
∞

−∞

 

that is the forward transform. Then the inverse is 

𝑓(𝑥) =
1

2𝜋
∫ 𝐹(𝑘)
∞

−∞

𝑒𝑗𝑘𝑥 𝑑𝑘 . 

 

So, we will just set up our convention through the delta function. So, let us see. So, this 

now if I try to get back using circular arguments. So, I have  



𝑓(𝑥) =
1

2𝜋
∫ [∫ 𝑓(𝑥1) 𝑒

−𝑗𝑘𝑥1  𝑑𝑥1

∞

−∞

]
∞

−∞

𝑒𝑗𝑘𝑥  𝑑𝑘 . 

 

So, if I take −∞ to ∞ here then 

𝑓(𝑥) = ∫ [∫
1

2𝜋
 𝑒−𝑗𝑘(𝑥1−𝑥) 𝑑𝑘

∞

−∞

]
∞

−∞

𝑓(𝑥1)𝑑𝑥1. 

So, note this here that I have 𝑓(𝑥1)𝑑𝑥1 here I have 𝑓(𝑥) here and an integral over infinite 

domain. So, this has to be the delta function ok. So, this has to be the delta function this 

part Dirac’s delta function. 
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Which means  

1

2𝜋
∫ 𝑒−𝑗𝑘(𝑥1−𝑥) 𝑑𝑘 = 𝛿(𝑥1 − 𝑥) .
∞

−∞

 

So, this is the this is how you define delta then the Fourier transform pair must be defined 

as it was that is the idea. If we use this definition for delta function then the way we define 

forward inverse transform conform to this definition. 

 

Let us look at 2D now 2D Fourier transform we have the forward 

𝐹(𝑘𝑥, 𝑘𝑦) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞

 . 

And the inverse let us say we define as 

𝑓(𝑥, 𝑦) =
1

(2𝜋)2
∫ ∫ 𝐹(𝑘𝑥 , 𝑘𝑦) 𝑒

𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦
∞

−∞

 
∞

−∞

𝑑𝑘𝑥  𝑑𝑘𝑦 . 

 

Now again we will try to get back to 𝑓(𝑥, 𝑦). So, I have 



𝑓(𝑥, 𝑦) =
1

(2𝜋)2
∫ ∫ [∫ ∫ 𝑓(𝑥1, 𝑦1)𝑒

−𝑗𝑘𝑥𝑥1𝑒−𝑗𝑘𝑦𝑦1  𝑑𝑥1 𝑑𝑦1

∞

−∞

∞

−∞

] 𝑒𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦
∞

−∞

 
∞

−∞

𝑑𝑘𝑥  𝑑𝑘𝑦 . 

 

So, now we will do whatever we did last time 

𝑓(𝑥, 𝑦) = ∫ ∫ [
1

(2𝜋)2
∫ ∫ 𝑒−𝑗𝑘𝑥(𝑥1−𝑥)𝑒−𝑗𝑘𝑦(𝑦1−𝑦) 𝑑𝑘𝑥 𝑑𝑘𝑦

∞

−∞

∞

−∞

] 𝑓(𝑥1, 𝑦1) 𝑑𝑥1 𝑑𝑦1

∞

−∞

 .
∞

−∞

 

 

So, again what happens here we have 𝑓(𝑥, 𝑦) here 𝑓(𝑥1, 𝑦1) here and an integral over an 

infinite domain.  

 

So, what is inside here must be a delta function double delta function ok. So, what is inside 

here? 

1

(2𝜋)2
∫ ∫ 𝑒−𝑗𝑘𝑥(𝑥1−𝑥)𝑒−𝑗𝑘𝑦(𝑦1−𝑦) 𝑑𝑘𝑥  𝑑𝑘𝑦

∞

−∞

∞

−∞

= 𝛿(𝑥1 − 𝑥)𝛿(𝑦1 − 𝑦) . 

 

So, therefore this part just this part here is 4𝜋2 taken up into this delta function ok.  

∫ ∫ 𝑒−𝑗𝑘𝑥(𝑥1−𝑥)𝑒−𝑗𝑘𝑦(𝑦1−𝑦) 𝑑𝑘𝑥  𝑑𝑘𝑦

∞

−∞

∞

−∞

= 4𝜋2𝛿(𝑥1 − 𝑥)𝛿(𝑦1 − 𝑦). 

 

So, that part the reason I am saying is that if you use this definition somewhere if this 

definition is used somewhere. 

 

Then the corresponding forward and inverse Fourier transform pair must be this. That is 

why I am stressing this. Now let us see here. So, we are going to derive as I said the main 

central integral of Maidanik. So, the geometry is this I have a plate placed in the 𝑥𝑦 plane. 

Let us say my origin is here and this dimension is 𝑎 and this dimension is 𝑏 it is placed in 

a baffle. 

 

We know so, that communication with backside is prevented then there are individual 

modes individual modes on the panel ok. So, this direction is mode number is 𝑚 the 𝑦 

direction the mode number is 𝑛. So, the 𝑘𝑝𝑥 modal wavenumber in the 𝑥 direction for the 

plate or panel is 
𝑚𝜋

𝑎
. Similarly, the modal wavenumber in the 𝑦 direction is 

𝑛𝜋

𝑏
 ok, 𝑚 is the 

number of half cycles of the mode in the 𝑥 direction and 𝑛 is the number of half cycles on 

the plate in the 𝑦 direction. 

 



And the plate for now is simply supported. So, that the mode shapes are sin
𝑚𝜋𝑥

𝑎
 sin

𝑛𝜋𝑦

𝑏
.  

(Refer Slide Time: 15:20) 

 

So, now somewhere in the paper we have a power definition sound radiated from the panel . 

So, if you consider this to be the panel ok. So, the sound radiated is pressure seen by the 

panel multiplied by the velocity of the panel ok and the panel vibrates has nonzero 

displacement only on the plate not on the baffles. So, baffle is rigid. So, outside of 𝑎 and 

𝑏 outside of zero to 𝑎 and zero to 𝑏 there is no displacement ok. So, a pressure times 

velocity over the panel will give you the power ok.  

 

So, we will use this definition the power is given by  

𝑝(𝜔) =
1

2
 𝑅𝑒 [∫ ∫ 𝑝(𝑥, 𝑦, 0)𝑣∗(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝑏

0

𝑎

0

] . 

 

Now the 𝑉 velocity of the panel  

𝑉(𝑥, 𝑦) =
1

4𝜋2
∫ ∫ 𝑉(𝑘𝑥 , 𝑘𝑦) 𝑒

𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦 𝑑𝑘𝑥  𝑑𝑘𝑦

∞

−∞

∞

−∞

. 

 

This is the inverse double Fourier transform inverse and then the pressure 

𝑝(𝑥, 𝑦, 𝑧) =
1

4𝜋2
∫ ∫

𝜌𝑎𝑐𝑘𝑎 𝑉(𝑘𝑥, 𝑘𝑦)

√𝑘𝑎
2 − 𝑘𝑝

2 

 𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦−𝑖𝑘𝑧𝑧 𝑑𝑘𝑥 𝑑𝑘𝑦

∞

−∞

∞

−∞

 , 

 



𝜌𝑎   is the density of the acoustic medium, 𝑐 is the speed of sound in the medium and 𝑘𝑎 is 

the wavenumber in the acoustic medium. If you remember that in 1D panel also we had a 

similar expression pressure 𝑥 and 𝑦 direction was given by 
𝜌𝑐𝑘

√𝑘2−𝑘𝑥
2
 𝑉(𝑘𝑥). 

We had this expression pressure in 𝑘𝑥 at 𝑘𝑥 wavenumber if you recall in the 1D case. So, 

this is just an extension to 2D ok. Next hence the acoustic power I will need space here. 

Let us see thus the acoustic power is given by if I put this these two back in there in the 

equation above. 

 

So, that 

𝑝(𝜔)

=
𝜌𝑎𝑐𝑘𝑎
32 𝜋4

 𝑅𝑒 

[
 
 
 

∫ ∫

{
 

 

∫ ∫
 𝑉(𝑘𝑥, 𝑘𝑦)

√𝑘𝑎
2 − 𝑘𝑝

2 

 𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦 𝑑𝑘𝑥 𝑑𝑘𝑦

∞

−∞

∞

−∞

}
 

 𝑏

0

𝑎

0

{∫ ∫ 𝑉∗(𝑘𝑟 , 𝑘𝑠) 𝑒
−𝑖𝑘𝑟𝑥−𝑖𝑘𝑠𝑦 𝑑𝑘𝑟 𝑑𝑘𝑠

∞

−∞

∞

−∞

}  𝑑𝑥 𝑑𝑦

]
 
 
 

. 

 

 So, one thing I will say here that the nature of 𝑉(𝑘𝑥, 𝑘𝑦) is such that it has been derived 

from a 𝑣(𝑥, 𝑦) which is not equal to zero only on the panel outside it is 0 such is the nature 

of 𝑉(𝑘𝑥, 𝑘𝑦). And therefore, this spatial integral over 0 to 𝑎 and 0 to 𝑏 this spatial integral 

can be replaced with an infinite integral because this 𝑣(𝑥, 𝑦) is zero outside anyway this 

and this are tied in such a manner that 𝑉(𝑘𝑥, 𝑘𝑦) arrives from 𝑣(𝑥, 𝑦) which is zero outside 

the panel.  

 

So, this integral here can be replaced by infinite plus minus infinity which is what I will 

do ok. So, if we do that ok. So, if we do that suppose I have replaced them with minus 

infinity to infinity. Now let us see where 𝑥 and 𝑦 exist in the integrals. So, I have 𝑥 here I 

have 𝑦 here I have 𝑥 here I have 𝑦 here and this is the 𝑑𝑥 𝑑𝑦 integral that is the only place 

I have 𝑥𝑦 and 𝑑𝑥 𝑑𝑦 and this integral I have replaced by infinite limits. 

 

We now look at just the 𝑥𝑦 integral. So, that is 

∫ ∫ 𝑒𝑖𝑥(𝑘𝑥−𝑘𝑟)𝑒𝑖𝑦(𝑘𝑦−𝑘𝑠) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞

= 4𝜋2𝛿(𝑘𝑥 − 𝑘𝑟)𝛿(𝑘𝑦 − 𝑘𝑠). 

 

So, the delta function which will force 𝑘𝑥 and 𝑘𝑟 and 𝑘𝑦 to be equal to 𝑘𝑠, now if this result 

is brought in into this integral above then if 𝑘𝑥 is force to 𝑘𝑟 and 𝑘𝑦 is force to 𝑘𝑠 then the 



remaining double integrals on 𝑘𝑟 𝑘𝑠 and 𝑘𝑥 𝑘𝑦  will collapse to one integral. So, we will see 

that now.  
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So, we get 

𝑝(𝜔) =
𝜌𝑎𝑐𝑘𝑎
8 𝜋2

 𝑅𝑒

[
 
 
 

∫ ∫
 |𝑉(𝑘𝑥, 𝑘𝑦)|

2

√𝑘𝑎
2 − 𝑘𝑝

2 

  𝑑𝑘𝑥 𝑑𝑘𝑦

∞

−∞

∞

−∞

]
 
 
 

 . 

 

Now here this is one stage we have arrived at now the mode shape assumed is on a 

simply supported panel and therefore my  

𝑣(𝑥, 𝑦) = 𝑉0  sin
𝑚𝜋𝑥

𝑎
 sin

𝑛𝜋𝑦

𝑏
 . 

 

 And this is assumed as real this is assumed as real then the transform is given by 

𝑉(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝑉0  sin
𝑚𝜋𝑥

𝑎
 sin

𝑛𝜋𝑦

𝑏
  𝑒−𝑗𝑘𝑥𝑥−𝑗𝑘𝑦𝑦 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 . 

 

So, what I have done is I have shortened the presentation a little bit. So, there should be a 

heavy side function actually which says that my panel vibrates only between 0 to 𝑎 and 0 

to 𝑏 then this infinite integral and the heavy side will give us what we want ok. 

 

Now the complex part is only here this is the complex part ok. So, this becomes 

𝜌𝑎𝑐𝑘𝑎
8 𝜋2

 𝑅𝑒

[
 
 
 

∫ ∫ 𝑉(𝑥, 𝑦)𝑉(𝑥1, 𝑦1) 𝑑𝑥 𝑑𝑦 𝑑𝑥1 𝑑𝑦1∫ ∫ 𝑒−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦
𝑒𝑖𝑘𝑥𝑥1+𝑖𝑘𝑦𝑦1

√𝑘𝑎
2 − 𝑘𝑥

2 − 𝑘𝑦
2

∞

−∞

∞

−∞

𝑏

0

𝑎

0

 𝑑𝑘𝑥  𝑑𝑘𝑦

]
 
 
 

. 

 



Now this whole part is real this whole section this whole portion these are all real ok. So, 

the real here can be shifted inwards real here can be shifted inwards. So, we get 

𝜌𝑎𝑐𝑘𝑎
8 𝜋2

[
 
 
 

∫ ∫ 𝑉(𝑥, 𝑦)𝑉(𝑥1, 𝑦1) 𝑑𝑥 𝑑𝑦 𝑑𝑥1 𝑑𝑦1  𝑅𝑒

{
 

 

∫ ∫
𝑒−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦+𝑖𝑘𝑥𝑥1+𝑖𝑘𝑦𝑦1

√𝑘𝑎
2 − 𝑘𝑝

2

∞

−∞

∞

−∞

𝑑𝑘𝑥  𝑑𝑘𝑦

}
 

 𝑏

0

𝑎

0

]
 
 
 

 . 

So, we will stop this lecture here thank you. 

 

 


