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Good morning and welcome to this next lecture on sound and structural vibration. Last class 

we did a very basic introduction to waves and wave bearing systems. So, we looked at some 

basic nomenclatures. Now, before I move on to the actual problem, first problem we are going 

to look at I just want to add a few points that I missed in the introduction. So, first point is that 

we said that p(x, t)  =  f(𝑐𝑡  − 𝑥) + g(𝑐𝑡  +  𝑥). So, let us take f(𝑐𝑡  − 𝑥).  

 

Suppose I multiply within the argument a k, so this becomes f{𝑘(𝑐𝑡  −  𝑥)}, k is a constant. So, 

in every derivative on the left or right of the wave equation k falls out and cancels out, it does 

not matter. Then what I have is f(𝑘𝑐𝑡  −  𝑘𝑥), k is the wave number in kc is ω. So, I get 

f(ω𝑡  −  𝑘𝑥). So, now if ω happens to be a single frequency then this has to be written either 

as a sin(ω𝑡  −  𝑘𝑥) or cos(ω𝑡  −  𝑘𝑥) or in a combined sense the phasor notation  𝑒𝑗(ωt − 𝑘𝑥), 

so one point I wanted to make.  

 

Then the second point is I said every point on a wave bearing system vibrates, sees the wave 

coming and going and has a phasor description that means it has its own 𝑒𝑗(ω𝑡 − 𝑘𝑥), but I also 



said that everything is real. Finally, we are interested in finally quantities are real which means 

what? The expression has to be either a cos(ω𝑡  −  𝑘𝑥) or a sin(ω𝑡  −  𝑘𝑥).  

 

So, in that crank and spring example if we freeze time that means in these expressions we freeze 

time and then we move in space then what the expression is a sinusoid, right. So, I will see a 

sine wave as I move in space, regions of compression, regions of rarefaction as a sinusoid. 

Similarly if we freeze space that means we remain in one place on the spring some point 𝑥∗, 

then it will be oscillating also at the same omega. 

 

So, the descriptor will be either some cos(ω𝑡  − 𝑘𝑥∗) or   sin(ωt  −  𝑘𝑥∗), this is a constant 

now, right. So, it is a cosine in time, sine in time. A single point will be oscillating in time as a 

sinusoid or a cosinusoid. So, any way you look at it the descriptor is sinusoidal that is the 

second point I wanted to make. Then third point I said many things about phase. I made points 

about phase.  

 

In actuality if the system that is mass and the spring is driven by a force, then of course the 

description, the response, let us say displacement will be; let us say displacement of the first 

point 𝑥0 will be ωt plus or minus some phase. Now it is phase with respect to the force, but 

because I was doing a schematic, not an actual calculation, so I had my phasor starting at 
π

2
 and 

the mass was hard tight with no flexibility to that crank.  

 

So, I decided to give this mass also a phase of 
π

2
, so we can do that, plus 

π

2
, so that every next 

point will have a phase related to the starting mass. These are the points I wanted to make.  

(Refer Slide Time: 08:48) 



 

Now, we will begin a problem which I call as a classical problem in structural acoustics. This 

problem has been discussed extensively in the literature and mainly due to one author called 

D. G. Crighton. If you type this name you will get the papers on any of the Google Scholar 

type sites. So, what is this problem? It is a plate, a flexing plate that resides in the x z plane. It 

resides in the x z plane, this is x that is z and this vertical is y.  

 

So, there is this plate, it is an infinite infinite plate, it extends to infinity in z and it extends to 

infinity in the x direction both directions and above you have an acoustic half space. And there 

is a line force applied at x  =  0 along the entire z direction, there is a line force applied, a 

harmonic line force that means e to the j omega t line force applied to this infinite plate at x  =

 0 in the z direction. 

 

So, by the very nature of forcings or derivatives, all dependencies of z will go to 0 and therefore 

this plate becomes a 1D plate. So, we can show the schematic in one dimension. So, now what 

do we have? We have a one dimensional plate with an acoustic half space with a line force 

acting at x  =  0 that is y direction, this is x direction. So, the acoustic problem has become two 

dimensional and the wave problem has become one dimensional. 

 

Now in sound structure interaction problems, there are two ways the problems are formulated; 

one is called the uncoupled formulation or also called one way coupling or it is called fully 

coupled or two way coupled. So, what is one way coupled? So, one way coupling or uncoupled 

one, formulation one is uncoupled which is the structure is first placed in vacuum and it is 

forced. 



 

And the response that is displacement or velocity are found first with vacuum as the medium. 

Then the response is used to find acoustic pressures that is now the medium is brought in. So 

that means only one unknown at a time. 
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There is one unknown at a time. The first unknown is let us say plate velocity. Then after it is 

found, the second unknown is fluid pressure. So, this is one way coupled. So, why is it called 

one way coupled because in this case the velocity that you have found does not change 

anymore. The velocity decides the pressure. The pressure in turn does not or cannot decide or 

modify the original pressure, no that does not happen. 

 

So, in contrast we have number two the fully coupled formulation or two way coupled, what is 

that? The plate is excited and the plate excitations create pressure ripples in the fluid. So, 

medium is already there, it is not vacuum anymore, so pressures are created. Now, these 

pressures are immediately applied to the plate. So, till a steady state is reached both pressure 

and velocity of the plate are unknown. 

 

So we have two unknowns, two simultaneous unknowns, both have to be solved together. So, 

we will be looking at a two way coupled problem now. So, let us see. I have y direction this 

plate, it is a 1D plate. There is a line force medium. So, the acoustic side variables, the acoustic 

variables. So, ρ0 is the mean fluid density; c is the sonic velocity, sound velocity;  ϕ(𝑥, 𝑦, 𝑡) is 

the acoustic potential; p(𝑥, 𝑦, 𝑡) is the acoustic pressure, perturbation pressure. 

 



Then we have p(𝑥, 𝑦, 𝑡) given by −ρ
∂ϕ(𝑥,𝑦,𝑡)

∂ 𝑡
 and acoustic particle velocity 𝑣𝑎(𝑥, 𝑦, 𝑡) is given 

by 
∂ϕ(𝑥,𝑦,𝑡)

∂ 𝑦
 in the y direction, we will be interested in the y direction velocities. Then 𝑘0 is the 

acoustic wave number given by  
ω

𝑐
.  
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Now, the Helmholtz equation that means the acoustic wave equation for a harmonic case and 

the time removed is  

∇2ϕ  +  𝑘0
2ϕ  =  

∂2ϕ(𝑥, 𝑦)

∂ 𝑥2
+

∂2ϕ(𝑥, 𝑦)

∂ 𝑦2
  + 𝑘0

2ϕ  = 0. 

The whole course is about harmonic excitations, not transients and therefore I will often keep 

time and remove time in some convenient manner, it is cumbersome to keep carrying the  𝑒𝑖ω𝑡 

type terms.  

 

So, this is the Helmholtz equation. Then on the structural side we have 

𝐸ℎ3

12(1 − ν2)
[
∂4η(𝑥, 𝑧, 𝑡)

∂ 𝑥4
+ 2

∂4η(𝑥, 𝑧, 𝑡)

∂ 𝑥2 ∂ 𝑧2
+

∂4η(𝑥, 𝑧, 𝑡)

∂ 𝑧4
]   +  m

∂2η(𝑥, 𝑧, 𝑡)

∂ 𝑡2
= 0. 

The configuration we said was such that all z dependencies will go, so this term goes away.  

 

So, this term goes away, this term goes away because of the nature of the forcing and so we 

are going to be left with, I will give this a name called B so that I do not repeat it. So, B 
∂4η

∂ 𝑥4 +

m
∂2η

∂ 𝑡2 , this is my 1D plate. Now, what are the plate parameters? E is the Young modulus 



modulus of the plate material, ν is the Poisson’s ratio, h is the plate thickness, B is of course  

𝐸ℎ3

12(1−ν2)
  is the flexural rigidity.  

 

Then  ρ𝑝  is the plate density, then m is the mass per unit area given by ρ𝑝 h. Then η(𝑥, 𝑡) we 

will take it as the plate displacement and  v(𝑥, 𝑡) is −iωη(𝑥, 𝑡)  because my time descriptor or 

the harmonic descriptor is 𝑒−𝑖ω𝑡. Let us see now.  
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The force is given by  F δ(𝑥)𝑒−𝑖ωt as it says applied at x  =  0 and 𝑘𝑝 is the invacuo flexural 

wave number and it is at a given frequency at ω given by  𝑘𝑝 =   (
𝑚ω2

𝐵
)

1
4⁄

. Then we have 𝑐𝑝 is 

the flexural wave speed given by 𝑐𝑝 =  
ω

𝑘𝑝
. And then we have plate equation  

B 
∂4η(x, t)

∂ 𝑥4
+ m

∂2η(x, t)

∂ 𝑡2
= F δ(𝑥)𝑒−𝑖ω𝑡 − p(x, y = 0, t).   

 

This is how the coupling happens. The pressure generated is applied back. Now, it is a linear 

system, so driven at 𝑒−𝑖ω𝑡 the response will be at 𝑒−𝑖ω𝑡. So, η(𝑥, 𝑡) I will take it as some 

W(𝑥)𝑒−𝑖ω𝑡 in my pressure p(𝑥, 𝑦, 𝑡)  =  iωρϕ(𝑥, 𝑦, 𝑡).  

 

So, what I now have is  

B
𝑑4𝑊(𝑥)

𝑑𝑥4
𝑒−𝑖ωt − mω2W(𝑥)𝑒−𝑖ωt = F δ(𝑥)𝑒−𝑖ωt − iωρϕ(𝑥, 𝑦 = 0)𝑒−𝑖ω𝑡. 

 



Actually  ϕ(𝑥, 𝑦) and ϕ(𝑥, 𝑦, 𝑡) are slightly different, but please I do not want to keep changing 

notation. So, these goes away. So, now I will replace W with η for my own convenience. So, 

we get  

B
𝑑4η(𝑥)

𝑑𝑥4
− mω2η(𝑥) = F δ(𝑥) − iωρϕ(𝑥, 𝑦 = 0). 
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Now, we have 

B
𝑑4η

𝑑𝑥4
− mω2η = F δ(𝑥) − iωρϕ(𝑥, 𝑦 = 0), 

and we convert η to velocity − iωη as velocity so that 

B
𝑑4V

𝑑𝑥4
− mω2V = −iω{F δ(𝑥) − iωρϕ(𝑥, 0)}, 

                                                                 =   − iωF δ(𝑥)  −  ω2ρ2ϕ(𝑥, 0). 

In the kinematic boundary condition is given by  

va(x, 0)  =  v(x)  ⇒
∂ϕ(𝑥, 0)

∂ y
= v(𝑥). 

This means at y  =  0, this is plate velocity. Our time is up, so we will leave it here for today. 


