Sound and Structural Vibration
Prof. Venkata Sonti
Department of Mechanical Engineering
Indian Institute of Technology — Bengaluru

Lecture —31
Numerical Example

Good morning and welcome to this following lecture on sound and structural vibration. We are
looking at a panel vibrating with a backed cavity.
(Refer Slide Time: 00:36)
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And last time | showed you this schematic here. So, we will look at it the problem that Kim
and Brennan have solved. So, there is a box. The top cover is actually a vibrating plate with
simple support conditions here and then it is back by this rigid cavity, the other 5 walls are
rigid. So, one is you will have a point force excitation from the panel, so, we will look at
vibration and sound.

Similarly, will excite it with an acoustic speaker and again look at vibration, sound and the
paper describe theory and an experiment. So, | will now show you the paper.
(Refer Slide Time: 01:36)
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So, this is the paper here published in journal of sound and vibration 99 volume, 223 number
1 pages 97 to 113 and the full title compact matrix formulation using the impedance and
mobility approach for the analysis of structural acoustic systems. So, let me move down so,
this is the initial mobility and impedance part that | have described. We should be able to read
the paper now then some initial definitions everything is here. | have described in the lecture,
so, now they go to an example. This is the example.
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Figure 6. Experimental set-up to validate the analytical model for the structural-acoustic
system .

In a similar way to Figure 3, the F-u and p-Q representations for a weakly
O 3. o B . :

X

So, there is this box now, top cover is flexible, vibrates, other walls are rigid and it can be
driven by a point force using an electromagnetic shaker and this wall can be; there is a speaker
mounted that can drive the acoustic space. So, L,, L, and L5 are the dimensions.

(Refer Slide Time: 03:33)
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a described in Section 3. The enclosure consisted of five acoustically rigid W
: and a simply supported flexible plate on the remaining side. To make"“fhc”
acoustically rigid boundary condition, 25-mm thick plywood walls were used

TABLE |
Material properties of the experimental rig

Density Phase speed ~ Young's modulus ~ Poisson’s ~ Damping

Material ~ (kg/m’) (mfs) (N/m?) ratio (v) ratio ({)
Air 1221 340 - - 001
Al 2770 - 71 x 10° 033 0:01

TABLE 2

The natural frequencies and geometric mode shape coupling coefficients of each uncoupled
system of the experimental rig

e Ldee Plafe 1 __ 3 4 5 6

So, this describes the experimental setup and the parameter values, air density, phase, speed
and the boxes aluminum or the vibrating panel is aluminum. The rest of the box is wooden, but
the vibrating part is aluminum, and these are the values taken for the aluminum portion.
(Refer Slide Time: 04:03)
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TABLE 2 HPTEL NS
The natural frequencies and geometric mode shape coupling coefficients of each uncoupled
system of the experimental rig

Order Plate 1 2 3 4 5 6
Type (L,1) ) G @) GH o6
Cavity Frequency (Hz) 141 157 184 222 210 330
1 (0,0,0) 0 1-0000 0 03333 0 02000 0
2 (10 113 0 09428 0 03771 0 02424
3 (200 27 —0-4714 0 08485 0 03367 0
4 (3,00) 340 0 05657 0 08081 0 03143

And these, of course, are the uncoupled resonances and the C n m values are very important.
Ah Here are the plate, uncoupled resonances mode, 11,21,31,41,51, 6 1 and these are the
uncoupled acoustic mode numbers and resonances. And these are the C,,,,, values | will speak
more about this after this paper is done. These are very important.

(Refer Slide Time: 04:49)
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So, now, if you look at the velocity, this is the velocity response of the panel. So, one is one
line is theory and the other line is experiment.

(Refer Slide Time: 05:11)
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And this is the sound pressure. So, this is for point force excitation, there is a location where a
point force is given, and these are the values, and you can more or less see that these peaks
come where you have panel resonance or acoustic resonance. These are resonances of the
system and because, actually it is air, it is very lightly loaded. So, the uncoupled resonances,
more or less remain, they do not change very much. The next is due to acoustic excitation.
(Refer Slide Time: 05:56)



et __ o e

DR2QHSE| 0@ um| = @/ HB| 0G| Tooi? | Comment

: 140 \
IPTEL, NS¢

Sound pressure (dB)

0 50 100 150 200 250 300 350 400

iroanoncy (|]7)
[rananouib

This is the sound pressure inside for experimental acoustic excitation a acoustic response with
lymph masses placed on plate. A rigid, bald condition was assumed in the simulations b
acoustic masses removed from the plate full coupled coupling was assumed in the simulations.

So, this is the coupled response due to acoustic excitation and again these peaks, you see, are

all the original resonances of the system.

So, air being light more or less, the uncoupled resonances hold, and these are the dimensions
L 1, L 2, L 3 and the thickness of the plate is 5 millimeters and so, forth. So, using the derivation
| have presented and this paper you should be able to get these results quite easily. Now | move
back to my iPad and move forward with the next portion of the lecture. Now we will continue

with the same problem and get some insights now. The insights proceed as follows.

(Refer Slide Time: 08:04)
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So, we have the acoustic amplitudes given by these set of equations. We can combine them in

EE F e

So, @ is N cross 1 and b is M cross 1. Now we want to find the coupled natural frequencies.

a matrix form. I get

That means the plate is influenced by the acoustic space, so, its natural frequencies change, and
the acoustic space is modified by the flexible wall and its natural frequency is changed. So, we
want the coupled natural frequencies. And the way is we set the forcing to 0 the side forcing,
external forcing functions set to 0 and we take the determinant of the remaining matrix. So, we

take the determinant of the matrix.

As you know, in an in 175 you have the frequency term so, that generates a polynomial which

will give you the frequencies. So, we have determinant of l”x’v ~Zal| e take the
YSCT IMXM

determinant of this matrix and we set it to 0. That is what we do. Now very interestingly, it

turns out that this determinant, this determinant is equal to, identically equal to the determinant

-

of another matrix which is [Ty, + Z,CY;CT].

It is interesting result also equal to the determinant of {1y + Y;CTZ,C]. So now, that has to
be set to 0. Obviously and we will take this form, will take the latter form, will take this separate
this form and deal with it. Now so, suppose we consider M as equal to 3. That means 3 panel
modes or 3 plate modes. It is an approximation, so, we can consider as many modes in acoustics

or panel as we want. Because you deal with the modal sum you truncate somewhere.

So, you can consider as many as you want as a study to begin with. So, we will take now
N equal to 1 which is 1 acoustic mode. If we do that, then | am going to write this in here. So,
this determinant looks like this. It looks a little I mean that matrix first of all looks like this. It
looks like

ij11zpocozA1

1
* psthV(a)zﬁ,l2 — w?)




wpq IS the first panel uncoupled resonance value. The 1,2 term in the matrix will be

jwC11p0Co*C1241

- 2 - - - -
oSV (wprZ-w2) So, you can see that this was C;,“. This is C;,C;, everything else is same.

So, you will have C;,C;5 and all else is same and in here the 1 will not be there. So, you will
have C;,C;, and all other constants and (a)pz2 — wz) and all other constraints in the numerator

jwpocy?A; etcetera. And here again you will have 1 + jwC;,? etcetera. In here you will have

jwCi3% poco?Aq
pshSsV(wps?2-w?)

So, this is a matrix. So, there will be element here, similarly, there will be element here.
Similarly, so, this is the matrix. Now, just remember the form of this matrix.
(Refer Slide Time: 18:35)
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This can be given by or written down as I5,5 + U;V;". So, it can be written so simply and what
is U;? U, is given by

JwCyiq JwCy, JwCiz
pshSpV(wps? — w?)  pshSpV(wp2? — w?) pshSyV (wps® — w?)

So, U, is 3 cross 1 or rather it is M cross 1. So, the dimension is equal to number of panel
modes plate modes that we are considering, and U; is related to structural properties. Plate
properties, structural properties, plate density, plate thickness, plate, surface area, plate

resonances. So, you can see that plate this related to structure. Now let us look at ;. V; is given

by



T
_ POCOZC11A1 P0C02612A1 pOC02C13A1
1 % % % '

So, V; isalso 3 cross 1. That means it agrees with U;. But it has all the acoustic properties and
the number of VV's. How many V's will be there? The number of V vectors that is V;, whether 1
or 2 or 3, depends on number of acoustic modes considered that is the structure. That means
what that complicated looking matrix first of all, can be represented very easily like this and

U, has structural properties.

I/, carries acoustic cavity properties. Now, even more interestingly now, if we are looking, at

the determinant of this. So, the determinant of now I35 is a 3 by 3 identity matrix. It looks

1 00
0 1 0‘ that is I343. S0, we are looking for the
0 0 1

like this

Det[lzns + U,V | = 14+ U, V.

So, let me write that also. So, how does it look? How does this look? This looks like this, it
looks like

2 2 2 2 2 2
C11"poCo C12"poCo C13"poCo

1 )
' pshSpV (wps® — w?) ’ pshSpV (wpe® — w?) ’ pshS;V (wps? — w?)

that is the determinant.

We will set this to 0, to figure out my new solutions of w later. Now, what would be the
structure if now we choose M equal to 3? That means 3 panel modes and we choose N equal
to 2 that is 2 acoustic modes. So, use there will be U; and the U; will have M cross 1 dimension
and therefore the V's, V; is also we have will have M cross 1 dimension nut now how many U's

and how many V's will be there. That is decided by the number of acoustic modes.

So, i will runfrom 1to 2 and I call it the coupling matrix. Let us give it a name. We will call
it the coefficient, so, this matrix here that we have will give it a name. We will call it the
coefficient coupling matrix coefficient coupling matrix or coupling matrix. So, whenever |
refer to that, so, how does this coupling matrix look like for this situation of 3 panel modes and
2 acoustic modes? It can be written as [I3x3 + UyVy" + U,V,"|. That is how the matrix looks

like very simple.



Now, the next level is | want the determinant of this. We have to compute the determinant of
this matrix and how does the determinant look? It approximately not exactly this was exact,
till here it was exact but here how does the determinant look? It looks approximately like

(1+U,"v,)(1+ U,"V,). But what is it exactly? It is this product plus some extra terms,

There are some extra terms, these extra terms become negligible, provided the fluid loading is
low. That means fluid density is small compared to the plate density. So, this this
approximation becomes better and better as the fluid density relative to plate density goes

down. Right now, the time is up. So, we will continue this discussion in the next class. Thanks.



