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Good morning and welcome to this next lecture on sound and structural vibration. So, we ended 

up in the last class over here where we found pressure due to an input volume velocity and due 

to a force applied to the structure. Similarly, we found the velocity at the common point when 

a force is applied, and a volume velocity is given into the cavity. So, we will just make some 

physical comments.  

So, if I put this together in a matrix form, I get 

[
𝑝
𝑈

] =

[
 
 
 

𝑍𝑎𝑠𝑌𝑠

1 + 𝑍𝑎𝑌𝑐𝑠

𝑍𝑎

1 + 𝑍𝑎𝑌𝑐𝑠

𝑌𝑠

1 + 𝑍𝑐𝑎𝑌𝑠
−

𝑌𝑠𝑠𝑍𝑎

1 + 𝑍𝑐𝑎𝑌𝑠]
 
 
 

[
𝐹
𝑄

]. 

 I have to make the comments here only or I take a new page and write again. So, let me make 

the comments here. So, if there is no flow into the system that means my 𝑄 is 0.  

 

Then if a force is applied a pressure and a velocity are generated and if the system is in vacuum 

suppose then 𝑍𝑎 is actually 0 then pressure is actually 0 you can see the pressure is 0 if the 

system is in vacuum. Then the particle velocity is just 𝐹 over 𝑍𝑠. So, this term goes to 0 particle 

velocity is just 𝐹 over 𝑍𝑠 now if the system is not in vacuum a pressure gets generated which 



opposes the applied force and thus reduces the particle velocity to 𝑈 which is given by this 

entity with the denominator. 

 

And if in addition to that a flow 𝑄 is given a pressure increment of 𝑄𝑍𝑎 should have happened 

provided 𝑍𝑠 was infinity or 𝑌𝑐𝑠 was 0 but as 𝑍𝑠 finite, the pressure is reduced since the structure 

deforms and therefore you have this additional denominator you do not get that much pressure. 

Similarly, if 𝐹 happens to be 0 then 𝑄 is the inflow when 𝑍𝑠 is infinite 𝑌𝑐𝑠 is 0 thus the velocity 

is going to be 0 velocity the interface is going to be 0. 

 

But a pressure is going to be generated so, related to the pressure there is no velocity since the 

structure is infinitely rigid if the structure has a finite impedance 𝑍𝑠 firstly the pressure 

generated is lowered 𝑄 into 𝑍𝑎 divided by this because the structure now takes up some 

deformation and the corresponding velocity is a plane my multiplying with 𝑠 over 𝑍𝑠 it is a 

negative. So, this matrix makes physical sense.  
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Now let us look at the actual system which is this. So, there is a structure. So, we will call this 

what do we call this topic we will call this vibrating plate interacting with the cavity vibrating 

plate backed by a cavity interacting with the cavity. So, the diagram I will use is very similar 

to what is shown in Kim Brennan's paper. So, this is a vibrating structure, and it is backed by 

some arbitrarily shaped cavity. 

 

That cavity wall is rigid small as rigid. Then there is this volume 𝑉 inside there are forces 

applied to this structure that is described by 𝑦 the structural surface is described by 𝑦 ⃗⃗⃗   bar and 



it has a surface given by 𝑆𝑓 and then within there are acoustical sources acoustical sources that 

source distribution is described by 𝑆(𝑥 , 𝜔). So, the 3D geometry of the cavity is described by 

the vector 𝑆(𝑥 , 𝜔) and the plate surface which is a plane is described by 𝑓(𝑦 , 𝜔). 

 

So, now what do we do? We describe now the acoustic pressure we describe the acoustic 

pressure using the modal sum pressure is described by where we assume that the mode shapes 

are the rigid body mode shape that means the panel was rigid. So, that is equal  

𝑝(𝑥 , 𝜔) = ∑ 𝜓𝑛(𝑥 )𝑎𝑛(𝜔).

𝑁

𝑛=1

 

𝜓𝑛 are uncoupled acoustic mode shapes and we take 𝑛 of them.  

 

So, that is why the index 𝑛 goes from 1 to 𝑛. So, we take 𝑛 acoustic mod shapes and then 

𝑎𝑛(𝜔) are the amplitudes or also called modal participation factors and we can write this in a 

matrix in a vector notation. So, we will do it 𝜓⃗ 𝑇𝑎  the bar indicates vector similarly the plate 

velocity described by  

𝑈(𝑦 , 𝜔) = ∑ 𝜙𝑚(𝑦 )𝑏𝑚(𝜔).

𝑀

𝑚=1

 

Here what are Φ𝑚 they are the uncoupled plate modes that means plate vibrating in vacuum 

not backed by a cavity then 𝑏𝑚 are the amplitudes or model participation factors and in a matrix 

notation or a vector notation this 𝜙⃗ 𝑇𝑏⃗ . Now these uncoupled modes they satisfy orthogonality 

that is the advantage. So, how is. So, let us write orthogonality what is that orthogonality?  

𝑉 = ∫𝜓𝑛
2(𝑥 )𝑑𝑉. 

𝑆𝑓 = ∫𝜙𝑚
2 (𝑦 ) 𝑑𝑆. 

That means if this index is different 𝜙𝑚 into 𝜙𝑟 integrated will be 0 that is the orthogonality.  
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So, now let us look at the acoustic space acoustic space. So, the equation is ∇2𝑝 + 𝑘2𝑝 is equal 

to there will be a component coming from acoustic sources there will be a component coming 

from plate deformation and therefore a volume velocity from there volume velocity from there.  

∇2𝑝 + 𝑘2𝑝 = 𝜌0𝑗𝜔 𝑆(𝑥 , 𝜔) + 𝜌0𝑗𝜔 𝑈(𝑦 , 𝜔)𝛿(𝑧).  

So, let us look at the units now the units of this are pressure over length square pressure divided 

by length squared.  

 

So, let us take the force first mass into acceleration divided by 𝐿 square now I have pressure 

units divided by one more 𝐿 square this one. So, I have 𝑀 over 𝑇 square length cube. So, this 

is density. So, I will have acoustical density over here that means these terms should have the 

same units I am trying to generate those terms. So, density is there and then I need something 

over 𝑇 square and the acoustic source has to be a volume velocity acoustic source is what a 

volume velocity source with some spatial distribution.  

 

So, this is going to be the remaining is what I just one over 𝑇 square. So, how do I do that I 

will say it is volume velocity that gives me one over volume over 𝑇 per unit volume velocity 

per unit volume this will give me 1 over 𝑇 because volume cancels out and then I will put 𝑗𝜔 to 

make it one over 𝑇 square. So, I have 𝑗𝜔 and an 𝑆 which is volume velocity per unit volume.  

 

So, this is 𝑆 has volume velocity per unit volume. So, that is how I get. Now what about the 

plate? The plate as its own velocity you plate velocity locally there is a plate velocity. So, that 

has length over time units. So, now what I do is that the plate is a plane the plane in 3D space. 



So, out of the 𝑥  space which is 3d it occupies. So, one dimension is reduced one dimension 

gets reduced that means we remain in a plane.  

 

So, one dimension is dropped and that becomes my 𝑦. So, I put. So, what do I do I do take the 

velocity and then I multiply by a certain delta function which has dimension in it whatever 

dimension let me put 𝑧 here temporarily? So, what this gives me is length over time divided by 

length. So, I have one over time now I have 1 over time. So, what do I do I multiply by 𝑗𝜔 that 

gives me 1 over time square and I multiply by a density the fluid density which gives me mass 

over 𝐿 cube. 

 

Suppose you follow so then what do I do I have 𝜌0𝑗𝜔 velocity locally multiplied by a certain 

delta that delta takes me from 𝑥 space to 𝑦 space the 𝑥 dimension 3D to 𝑦 dimension to 2D that 

is what that 𝛿(𝑧) does okay. So, now given this situation I am going to substitute for my 

pressure the modal sum. So, what does that do I get  

∇2 ∑𝜓𝑛(𝑥 )

𝑛

𝑎𝑛(𝜔) + 𝑘2 ∑𝜓𝑛(𝑥 )

𝑛

𝑎𝑛(𝜔) = 𝜌0𝑗𝜔 𝑆(𝑥 , 𝜔) + 𝜌0𝑗𝜔 𝑈(𝑦 ,𝜔)𝛿(𝑧).  

So, what are we going to do to this we are going to use the orthogonality. So, we are going to 

multiply by another mod shape of the same basis and integrate over the volume of the cavity 

that is what we are going to do.  
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So, let us do that we have  



∫∑∇2𝜓𝑛(𝑥 ) 𝑎𝑛(𝜔) 𝜓𝑝(𝑥 ) 𝑑𝑉

𝑛

+ ∫𝑘2  ∑𝜓𝑛(𝑥 )𝑎𝑛(𝜔)  𝜓𝑝 𝑑𝑉 =

𝑛

 ∫ 𝑗𝜔𝜌0𝑆(𝑥 , 𝜔)𝜓𝑝(𝑥 ) 𝑑𝑉

+ ∫ 𝑗𝜔𝜌0𝑈(𝑥 , 𝜔) 𝛿(𝑦 − 𝑦 )𝜓𝑝(𝑥 ) 𝑑𝑉 + ∫ 𝑗𝜔𝜌0𝑈(𝑦 , 𝜔)𝜓𝑝(𝑦 ) 𝑑𝑆. 

 

 

Now we have to use a certain bit of information that is relevant to the mode shapes. So, the 

mode shape if you realize from your acoustics of interior spaces the mode shape satisfies the 

Helmholtz equation.  

(∇2 + 𝑘𝑛
2)𝜓𝑛(𝑥 ) = 0. 

This you should know this that means I am going to use the fact that  

∇2𝜓𝑛(𝑥 ) = −𝑘𝑛
2𝜓𝑛(𝑥 ), 

this is very important because the derivative suddenly vanishes you see. 

 

The left side is a derivative the right side is an algebraic meanwhile let me tell you that the 

mode shapes are as follows the acoustic mode shape is for rigid walls  

𝜓𝑛 = cos
𝑛1𝜋𝑥1

𝐿1
 cos

𝑛2𝜋𝑥2

𝐿2
 cos

𝑛3𝜋𝑥3

𝐿3
 ,  

where 𝑛1, 𝑛2 and 𝑛3 are individual mode numbers in the 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3directions this is for a 

hard wall enclosure rectangular enclosure then the plate modes are simply supported modes.  

 

So, they are 

𝜙𝑚 = sin
𝑚1𝜋𝑦1

𝐿1
 sin

𝑚2𝜋𝑦2

𝐿2
 . 

 Now just in case you have forgotten how this aspect works out I will just give a sketchy proof 

or a sketchy derivation of this. So, if we have  

𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
+

𝜕2𝑝

𝜕𝑧2
+ 𝑘2𝑝 = 0, 

that is your Helmholtz equation and then we do this 𝑝(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)we are doing 

separation of variables and we substitute it in here.  

So, what we will now get  

𝑋′′𝑌𝑍 + 𝑌′′𝑍𝑋 + 𝑍′′𝑋𝑌 + 𝑘2𝑋𝑌𝑍 = 0. 

So, if I divide by if I divide the whole thing by 𝑋𝑌𝑍. So, I get 



𝑋′′

𝑋
+

𝑌′′

𝑌
+

𝑍′′

𝑍
= −𝑘2. 

So, this is exclusively a function of 𝑋 this is exclusively a function of 𝑌 and a function of 𝑍 

which is equal to a constant.  

 

So, each of these must be a constant. So, I write it as 

−𝑘𝑥
2 − 𝑘𝑦

2 − 𝑘𝑧
2 = −𝑘2. 

 So, if I remove the minus, I get this now 

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝑘2, 

 if I try to solve each one of these. So, that means 
𝑋′′

𝑋
= −𝑘𝑥

2
 if I try to solve that that ends up 

as 𝑋′′ + 𝑘𝑥
2𝑥 = 0 is like a spring and a mass system. So, this has you know 

𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥 type of solutions. 

 

Then we apply the boundary conditions applying the boundary conditions we get values for 𝑘𝑥 

which are infinite not just one. So, it will acquire in index kind of 𝑘𝑥 let us say you know 

𝑝 whatever requires an index 𝑝 equal to 1, 2, 3, 4 and so forth. So, now what happens is I will 

have 

𝑘𝑥𝑝
2 + 𝑘𝑦𝑞

2 + 𝑘𝑧𝑟
2 = 𝑘𝑝𝑞𝑟

2. 

 So, what that means now is that I have from here ∇2(𝑋(𝑥), 𝑌(𝑦), 𝑍(𝑧)) = −𝑘𝑝𝑞𝑟
2𝑋𝑌𝑍. So, I 

will stop here we will continue from the next class. 

 

 

 


