Sound and Structural Vibration
Prof. Venkata Sonti
Department of Mechanical Engineering
Indian Institute of Science, Bangalore

Module No # 04
Lecture No # 17
The 2-D Structural-Acoustic Waveguide

Good morning and welcome to this next lecture on sound and structural vibration so we were
looking at far field or we were going to look at far field.
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Acoustic directivity and | said the integral we were interested in is

o) iwF Jw kXYY qi
x,y) =
y z

2nB — k" )y — nky*

So, we will consider r tending to oo and what is r? r = \/x2 + y2 where x is r cos 8 and y is

rsin 8. Now

— 00

o)

o(x,y) = .[ F(k) eT(ik coso=ysin®) gp
where
iwF 1
F(k) =

2nB (k* — kp4)y — ,ukp4 '
So, this is the integral now we have seen that in this method of stationary phase we have this

function e™*"(®) time we saw. So that function for us here is



h(k) = kcos@ + /koz —k2siné.

(Refer Slide Time: 04:20)
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So let us see so my ¢ (x, y) written in the stationary phase nomenclature

o

d(x,y) = f F(k) e™ df.

— 00

Where let me just repeat h(k) = kcos@ + /koz — k?sin6. So now we need to find a

stationary phase point that means a point where h'(k) = 0. We need to find that k value will

call it &k where h’ (k) is 0.

So, h'(k) = cos @ + 2258 — S that means my & sin 6§ = fkoz — k2 cos 6. We square

2 /koz—k2

both sides if we square both sides. We get

S 5 -
k?sin? 0 = k,“ cos? 8 —k? cos? 6.

So, if we combine this and this, we get k2 = k,* cos2 6. or k = k, cos 8 that means k is within
0 and k. So, this has 2 roots one positive going one negative going we are considering the

positive going root. So, what is y (k) now

y(k) = —i\/ko2 — ko® cos?26 = —ikysiné.

Now the second derivative of h(k) so let us see



k

h'(k) = cos — sin ) ——,
ko — k2
sineﬂ _ (=2l ksin6
[ i ZW
h”(k) = — > - .
ko” —

| am evaluating at k = k, cos 8, so

. . ko2 cos? 0 sin 6
—[sm9k051n9 +O—]

~ kosin@
h'" (k) = .
(5 ko*sin2 @
B ky%sin26’
_ -1
" kosin26’
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So, the formula let us see if we had

v = [ £00 e dk,

o 1/2 .
Yo = (xlh/,(l?)|) f (k) e'ChIOET g5 x — oo,

-1

0sin2@’

So, in this case here my k" (k) turned out to be



So,
~31/2 i
h'(k =—
{ ( )} \/k_o sin 8

so, what | have is if | plug my expression in

2m\/? [k, sin@ .
y(r) = (7) —\/—Oi elrko=T/D (ke cos B).
So, if we rewrite this now
iwF
F(k) =

2nB[(k* — kp")y — pky*]
So,
iwF
F(kgcos8) = )
21B | (ko* cos* 6 — kp4)\/k02 cos? 0 — ko — pky,*

_ lwF 1
~ 2mB —ikysin@ (k04 cos* 0 — kp4 ) - ,ukp4 '

So, if this is plugged back in here what is the total expression y at r going to be equal to.

Or let me write it as

$(x.3) = y(r) iwF <2nk0)1/2 sin @ ei(kor—m/4)
x,y)=y(() =

2nB \ r —ikysin@ (ko*cos*8 — k,* ) — pk,*
This is actually ¢ (x, y) so from here if we have to make a pressure out of it then just multiply

by iwp times ¢.

p = iwpo.
So, if we do that my pressure is equal to
2ko\"/? (pw?F eltkor=7/4) gin g
a ( r ) < 2B )(k04 cos* 0 — k" )ikosin 0 + pk,*
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We will further write this as

B (ano)l/z pw?F eikor=m/4) 5ip g
P=\"7 2inBk,*ky) (M*cos* 8 — 1) sin6 — ia’

B <2nk0>1/2< pw?F > ielkor=7/4 5in @

r ankp4ko (1 —M*cos*0)sinf +ia’
Now we write
F 2mk\'? pw? |
p= ( ) el(Tk0+7T/4-)D(M’ 0’ a) ]
2nB\ r kp4k0

where D(M, 6, a) is the directivity function given by
sin @

D(M,0,a) = ; — .
( ) (1 —M*cos*0)sinf + ia

So «a is also a fluid loading parameter which turns out to be %

So, in that sense a carries frequency in it so now we will examine this directivity function to
discuss the coupled acoustic directivity. We should note that we are talking k = k, cos 8 which
means. We are above coincidence so below coincidence there is no sound there is no wave
number that can generate sound. We are talking about coincidence now if you look at this factor

which is called directivity for & much less than 1 the directivity is a perturbation to a = 0.

a much less than 1 means, % much less than 1 which implies M much greater than /2 which

we have seen. In this range the fluid loading or inertial loading is insignificant that means

uncoupled analysis is good enough. Now when « is 0 we get the directivity D is given by
_r
1-M*cos* 60
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and M is greater than 1.
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And therefore, there is an angle cos(8y,) = % = ';—p where D tends to oo this angle 6, is called
0

the Mach angle. Now at the Mach angle if now we look at the D factor with fluid loading then
becomes finite so there is a drastic change. So, at Mach angle fluid loading is significant which
means uncoupled analysis is not good enough not adequate you have to do coupled analysis.
Next for 6 very small that means close to grazing you can see that

0

DM.0.0) = Ao +ia:

So D tends to 0 as 6 tends to O regardless of a whereas in the uncoupled analysis D = 1; a

—M4
constant at & = 0. Which means at 6 = 0 at grazing incidence again fluid loading significant.

So that is as far as coupled fluid directivity.

Now let me just summarize this here summarize the whole situation in vibration part below M
=1 we get 2 roots one is a subsonic root one is a complex root neither produces sound. Then
above coincidence we have one subsonic root so let us say this subsonic root is near k,. We
get one subsonic root that is near k, and we get again that one complex root then we get one
supersonic root which is near k,, that is called the leaky pole.
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That is responsible for sound other than that from the branch line integrals the B, and B, branch
line integrals, we get a vibration contribution which has this as the dominant propagator, and
it decays as x~3/2. And the sound part we have seen just now already discussed so with this |
close this topic of this classical problem. So, there is a lot of new and deep material in it | hope
it is useful thank you.



