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Welcome to this NPTEL lectures on Robotics – Basic and Advance Concepts. In these 

lectures, we are looking at wheeled mobile robots. In the first lecture, I had looked at a 

wheeled mobile robot moving on a flat terrain; in the second lecture, we had looked at how 

to model the wheeled mobile robot moving on an uneven terrain. In this lecture, we look 

at the Kinematics and Dynamics of a Wheeled Mobile Robot on Uneven Terrain ok. 
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So, the contents of this lecture are the following. We will look at the kinematic analysis of 

a three-wheeled mobile robot. We will look at the solution of the direct kinematics 

problem; we will look at the solution of the inverse kinematics problem. Then we will look 

at the formulation of equations of motion for dynamic analysis. Then I will present some 

simulation results, and then I will look at the stability of a three-wheeled mobile robot on 

uneven terrain ok. 
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So, as I had mentioned in the last lecture, we will model a wheeled mobile robot as an 

instantaneous parallel manipulator. So, we have a top platform and although we do not 

have a fixed platform, but we have these three ground contact points. And we will represent 

these ground contact points as 3 degree of freedom non-holonomic joints ok. 

So, in a sense, 𝐺1, 𝐺2, 𝐺3 determines the ‘fixed’ base. As the wheeled mobile robot move, 

this 𝐺1, 𝐺2, 𝐺3 will change with respect to the reference coordinate system which is {0}. 

And then there are these two rotary joints in each leg. 

So, one rotary joint allows lateral tilting, one rotary joint represents a rotation of the wheel, 

in the front wheel there is no lateral tilting, but there is steering. So, 𝜙3 is the steering. 𝛿1 

and 𝛿2 are the lateral tilt; and 𝜃1, 𝜃2, 𝜃3 are three rotations of the wheel. So, as I said we 

are going to look at this wheeled mobile robot as an instantaneous parallel manipulator 

with the platform connected to the ground by three serial chains. 

There are three actuated joints which are 𝜃1, 𝜃2, and 𝜙3. So, 𝜃1 and 𝜃2 are the two rear 

wheeled rotations. So, we can think of some motors, may be a half motor which is rotating 

the wheels. And wheels steering is in the front wheel which is 𝜙3. And then there are these 

three passive joints. One of them is the wheel rotation of the front wheel, and then there 

are these two rear wheel tilts denoted by 𝛿1 and 𝛿2. 

(Refer Slide Time: 03:29) 

 



 

 

So, we are going to analyze the WMR as a parallel manipulator at every instant. Why? 

Because the ground contact point 𝐺1, 𝐺2, 𝐺3 are changing. So, instantaneously we are 

going to think of it as a parallel robot. So, the wheels are not fixed as in a parallel robot in 

a typical say 3 RPS robot or some others steward co platform. The base points are fixed 

with respect to the reference coordinate system. In this case, the base points are moving, 

but at each instant it looks like a parallel robot. 

We have non-holonomic no slip constraints, and hence the kinematics is in terms of joint 

rates. Remember we have said 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0, and 𝑣𝑧 = 0 because the wheels cannot 

lift off from the ground from the contact points. So, the kinematics are basically in terms 

of the rate of change of these generalized coordinates. In the direct kinematics problem, 

we are given the actuation rates which are 𝜃1̇, 𝜃̇2, and 𝜙3̇. 

𝜃̇1 and 𝜃̇2 are the in the two rear wheels; 𝜙̇3 is the steering. We are also given the terrain 

and the WMR geometry. We want to find the orientation of the top platform and the 

position vector of the center of the platform. So, we want to find the orientation of this top 

platform and the position of this top platform with respect to a fixed coordinate system. 

We are given 𝜃̇1, 𝜃̇2, and 𝜙̇3. 

In the inverse kinematics, we are given the geometry of the wheeled mobile robot the 

terrain. And given any three of 𝑉𝑝𝑥, 𝑉𝑝𝑦, 𝑉𝑝𝑧, and 𝜔𝑥, 𝜔𝑦, 𝜔𝑧, we know that it has 3 degrees 

of freedom, remember this is a 3 degree of freedom model. So, we can only give 3 of these 

6 quantities; 3 of this 6 linear velocity and angular velocity combined. 

And the goal is to find the rear wheel actuator inputs 𝜃̇1, 𝜃̇2, and the steering input to the 

front wheel. So, this is how the direct and inverse kinematics problems are defined. And 

as I mentioned since the constraints are in terms of non-holonomic constraints, we need to 

derive this direct and inverse kinematics in terms of velocities. 
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So, what is the algorithm? The first step is of course, to generate the uneven terrain surface. 

You have to tell me what is the uneven terrain. So, we can use either bi-cubic patches or 

B-splines to reconstruct the surface from the elevation data. So, somebody has given you 

some points what is the location of the point in X and Y and the height, we can use this 

elevation data to obtain the equation of a surface. 

Once we find the equations of the surface, we can find the metric, the curvature form, and 

the torsion for the ground and the wheels at the three-wheeled ground contact point. So, at 

every point, wherever there is contact, we find this [𝑀], [𝐾] and [𝑇] because that is 

required in the contact equations. 

Then we form the contact equations. So, for each wheel obtain 5 ordinary differential 

equations in 𝑢̇𝑖 , 𝑣̇𝑖 , 𝑢̇𝑔𝑖, 𝑣̇𝑔𝑖 and 𝜓̇. Remember we derived this contact equations in the 

derivatives of 𝑢̇, 𝑣̇ and 𝜓̇. For no slip, we set 𝑣𝑥 = 𝑣𝑦 = 0, and we compute 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 as 

they are related to the angular velocity of the platform. So, which is Ω𝑝𝑥
, Ω𝑝𝑦

, Ω𝑝𝑧
 and 

the input and passive joint rates. 

So, the angular velocity (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇
 which appear in the contact equations can be related 

to the angular velocity of the platform plus the angular velocity of the inputs. So, again the 

inputs are 𝜃̇1, 𝜃̇2 and the 𝜙3̇, steering. Above equation couples all five sets of ODEs. So, 



 

 

for each wheel, there are 5 ODEs. This equation couples all the 5 sets of ODEs, and we 

are resulting in 15 ODEs in 25 variables. 

So, we have 15 contact variables remember 𝑢𝑖, 𝑣𝑖, 𝑢𝑔𝑖, 𝑣𝑔𝑖, and 𝜓𝑖 times 3, 15 contact 

variables. And then we have this 𝜃1, 𝜃2, 𝜃3, 𝛿1, 𝛿2 and 𝜙3. Out of this 21 variables, 𝜃1, 𝜃2, 

and 𝜙3 are actuated and known ok. So, we have 15 contact variables plus 6 from the WMR 

itself; but out of this 6, 3 are known. So, we need three constraint equations. We have 21 

variables, 3 are known, but we have only 15 ODEs ok. 
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So, we obtained the angular and linear velocity of the center of the platform. So, let us 

assume some 𝛾, 𝛽, 𝛼 is some Z-Y-X Euler angle representation of the orientation of the 

top platform. Then the (Ω𝑝𝑥
, Ω𝑝𝑦

, Ω𝑝𝑧
)
𝑇

 which is nothing but the platform angular 

velocity along X, Y and Z will be related to 𝛼̇ cos 𝛽 cos 𝛾 − 𝛽̇ sin 𝛾 and so on. 

We have done this earlier. We have seen how we can take simple rotations about Z, Y and 

X, multiply them, multiply these three rotation matrix get a rotation matrix. And then do 

[𝑅̇][𝑅]𝑇 to obtain the angular velocity of the top platform ok. We are doing exactly the 

same thing. And it turns out that we will get 𝛼̇, 𝛽̇, 𝛾̇ in some particular way. 

And clearly these are related to all the 15 joint variables 𝑢𝑖, 𝑣𝑖, 𝑢𝑔𝑖, 𝑣𝑔𝑖, 𝜓𝑖 for each of the 

wheels, and their derivatives ok. If (𝑥𝑐, 𝑦𝑐, 𝑧𝑐)
𝑇, denote the coordinates of the center of the 



 

 

top platform in reference coordinate system {0}, then the linear velocity of the center of 

the platform can is given by derivative of 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐. 

And this can be obtained as linear velocity of the wheel coordinate system. Just remember 

there is a wheel coordinate system for each wheel at the center of the wheel and times Ω𝑝 

cross the distance between the CG of the wheel ok. So, 𝒑0 𝑐𝑖
 locates the attachment of the 

wheel to the platform from the center of the platform. And 𝑽0 𝑤𝑖
 is the velocity of the 

center of the wheeled. 

So 𝑐𝑖 is not the CG, it is the location of the point of attachment of the wheel to the platform. 

Later on we will also need the velocity of the CG, and location of the CG. We will come 

to that. 
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We form this holonomic constraint equations. What do we mean by holonomic? They are 

not related to the derivatives of the generalized coordinates. So, basically what are these 

three holonomic constraint equation that the distance between 𝐶1, 𝐶2, 𝐶3 must remain 

constant because the top platform is rigid. So, ‖ 𝒑0 𝑐1
− 𝒑0 𝑐2

‖
2
= 𝑙12

2  and so on. 

So, 𝒑0 𝑐𝑖
, for 𝑖 = 1,2,3 locates 𝐶1, 𝐶2, 𝐶3 from the origin of the reference coordinate 

system. And 𝑙𝑖𝑗 is the distance between the centres of the wheel 𝑖 and 𝑗. So, these 

holonomic constraints are very similar to S-S joint constraints. So, let us look at these 



 

 

constrain once more. So, I have 𝐶1 to 𝐶2, the distance will be constant; 𝐶1 to 𝐶3, the 

distance would be constant; 𝐶3 to 𝐶2, the distance will be constant because otherwise the 

platform is not rigid ok. 
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So, now we can write the algorithm how to solve the direct kinematics problem? So, first 

is from steps 1, 2 and 4, we have 15 ODEs plus 3 algebraic equations, 3 holonomic 

constraints in 21 variables. There are 18 unknown variables, why? because 𝜃̇1, 𝜃̇2 and 𝜙̇3 

they are the rotations of the two rear wheels and the steering of the front wheels are given. 

So, we differentiate the holonomic constraints convert to a system of 18 ODEs in 21 

variables, out of which 3 variables are known. And we solve these equations using an ODE 

solver. We integrate with a ODE solver with initial conditions. And then we obtain all 

these 15 variables 𝑢𝑖, 𝑣𝑖, 𝑤𝑖 and so on. 

All these locations of the each wheel, and every two parameter is known. And obtain the 

position vector the center and orientation of the platform from the 21 variables at each 

instant of time. Remember at each instant of time, the ground contact point is changing. 

How about the inverse kinematics problem? 

We do steps 1, 2, 4. Again we have 21 ODEs plus 3 algebraic constraints. We assume that 

the linear velocity of the platform 𝑥̇𝑐, 𝑦̇𝑐, and the angular velocity of about the vertical 𝛾̇ 

are given. So, we have 24 unknowns. Again convert the DAEs into ODEs. Now, we have 



 

 

a set of 24 ODEs required with 𝜃̇1, 𝜃̇2, 𝜙3̇ as a function of time ok. So, we solve this 24 

ODEs, and obtain 𝜃1, 𝜃2, and 𝜙3 as a function of time. 

In the direct kinematics, we have 18 ODEs; in the inverse kinematics, we have 24 ODEs. 

Why, because there is a differential equation for the 6 degrees of freedom of the top 

platform which is appearing. Again, the initial conditions for the direct and inverse 

kinematics problem must satisfies the holonomic and non-holonomic constraints. We 

cannot arbitrarily choose all these generalized coordinates initial conditions. They must 

satisfy all the constraints. 
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So, let us look at some numerical simulation results for direct kinematics. We have 

geometry of the WMR. Length of the rear axle is 1 meter; distance of the center of the 

front wheel from the middle of the rear axle is 1 meter, so two rear axle 1 meter. Centre 

point of the axle to the front wheel is also 1 meter. Torus-shaped wheeled are similar to 

what we have done earlier, 𝑟1 the small radius is 0.05 meters, 𝑟2 = 0.25 meters. 

And WMR center is at the centroid of the triangular top platform. We choose a set of initial 

conditions. So, 𝑢1 = 1.5816, 𝑣1 = 3𝜋/2 and so on. So, this basically these tell you where 

the point of contact is initially between the three wheels and the ground, and what is the 

location of the X-axis between each wheel ground contact point, the angle 𝜓, and also all 

the tilt angles ok. 



 

 

These sets of values of initial condition, so 𝑢1, 𝑣1, 𝑢𝑔1, 𝑣𝑔1, 𝜓1, 𝑢2, 𝑣2 and so on, they are 

checked to satisfy the constraints ok. These initial values must satisfy the initial constraints 

which are holonomic and non-holonomic constraints. We have actuated inputs which was 

𝜃̇1 = −1 radian per second; 𝜃̇2 = −0.9 radian per second; and 𝜙3̇ = 0.005𝑡 radians per 

second. 

These are chosen arbitrarily. We could have chosen some other rotation rates of the rear 

wheels and the steering rotation rate ok. So, this uneven surface is same as the one which 

is used for single wheel dynamic simulation. 
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So, we have these simulation results. So, wheel 1 the dark line shows the wheel ground 

contact point of the wheel 1 and 2 and 3. The you know bigger dash lines shows the wheel 

center, and the dot dash lines shows the center of the platform ok. So, since these wheels 

are moving on uneven terrain, all these curves will look different because the wheels are 

tilting. 

So, as you can see the center of the platform is this line, the wheel 3 looks like this; and 

the wheel ground contact point looks like this ok. Wheel 2 and wheel 1 the wheel ground 

contact point and the motion of the wheel centers are different. We can also find 𝛿1 and 𝛿2 

which are the lateral tilt of the two rear wheels. 



 

 

So, as you can see that 𝛿1 and 𝛿2 are adjusting in a way or they are behaving in a way such 

that 𝑣𝑥 = 𝑣𝑦 = 0, there is no slip at the wheel ground contact points. So, the locus of wheel 

centers are not the same as wheel ground contact point. This is uneven terrain and there is 

lateral tilt. The lateral tilt changes at different points of the uneven terrain, which is 

expected. 

Due to the uneven terrain the distance between the two contact points in the rear wheel 

will be different at different instance of time. And hence the lateral tilt will be different. 
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We can also plot and see whether the constraints are satisfied during the simulation. These 

are the three holonomic constraints. So, basically the distance between 𝐶1 − 𝐶2, 𝐶2 − 𝐶3, 

and 𝐶3 − 𝐶1 are constant. We can also plot the slip velocities which is 𝑣𝑥 and 𝑣𝑦. So, as 

you can see all of them are more or less satisfied. So, we have very small constraints 

violation. 

We also have very small slip velocities ok. The holonomic constrains are satisfied up to 

10−7 meters, there is virtually no slip. The WMR traverses uneven terrain without slip. 
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This is a video showing the direct kinematics of the three-wheeled robot. And I will show 

that at the end, I will show it with some other videos ok. Basically, this is a surface and 

this yellow, green, and red are the three wheels. And you will see in the video that it can 

go over this uneven terrain. 

(Refer Slide Time: 21:02) 

 

We can also do the inverse kinematic simulations. Again, the geometry of the WMR is 

same as used in the direct kinematics. Basically, the length of the rear axle is 1 meter; the 

distance of this on the center of the front wheel to the middle of the rear axle is 1 meter; 



 

 

torus-shaped wheels 𝑟1 = 0.05, 𝑟2 = 0.25. WMR center is at the centroid of the triangular 

platform. Again, we choose these initial conditions to satisfy the constraints. 

So, I am not going to go into each and every term, but we have obtained 𝑢1, 𝑣1, 𝑢2, 𝑣2, 

𝑢𝑔1, 𝑣𝑔1, and so on everything such that they satisfy the constraints. The inputs are 𝑥𝑐̇ =

0.03 meters per second, 𝑦𝑐̇ = 0.15 meters per second, and 𝛾̇ = −0.005𝑡 radians per 

second. 

So, I want a velocity along the X-direction, X-component velocity as 0.03 meters per 

second, the Y-component of the center of the top platform should have a 0.15 meters per 

second, and it should rotate by some 0.005𝑡. The uneven surface is same as used in direct 

kinematics. 

Again, we can plot the wheel ground contact point which is the dark line, the center of the 

platform which is the dot dash line which is seen here, and the wheel center. So, for the 

three wheels, so this is one wheel, this is another wheel, this is the front wheel. And this is 

the platform center. You can plot the trajectory of all these points ok. 

Likewise, you can find the plot of 𝛿1 and 𝛿2 which are the lateral tilts. So, again due to 

uneven terrain, locus of wheel centers are not same as wheel ground contact point. If the 

wheel was rolling on a flat terrain straight or taking a turn, this wheel center and the contact 

point should be on top of each other. And if you are looking from the top, they should be 

along the same trajectory. 
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Then again, the lateral tilt changes at different points of the uneven terrain as expected. 

We can also plot the constraints as a function of time. We can plot this constraints between 

𝐶1 and 𝐶2, 𝐶2 and 𝐶3, and 𝐶1 and 𝐶3 the distance. And we can see that it is very small it is 

of the order of 10−7. 

We can also plot the slip velocities. The slip velocity at the three wheel ground contact 

point. So, this is for one wheel, this is for another wheel, this is for the third wheel. And 

we are plotting 𝑣𝑥 and 𝑣𝑦, all of them are very, very close to 0 which is like 10−16. 

So, the holonomic constraints are satisfied up to 10−7 meters, there is virtually no slip. 

The WMR is traversing this uneven terrain without slip which is what we wanted. 

Remember as I said that on an uneven terrain if the axle length is constant, then the wheels 

will slip. However, we have proposed a way of letting this torus shape wheel tilt laterally, 

and the distance between the wheel ground contact points of the two rear wheels will adjust 

such that there is no slip. And this is a proof by simulation. 
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Let us continue. We can also perform the dynamic analysis of this WMR. We can derive 

the equation of motion for the WMR using the Lagrangian formulation ok. The kinetic 

energy of the wheels platform and links connecting the actuated and passive joints to the 

platform need to be computed. 

The potential energy is due to gravity. Again in the dynamic analysis, we have 15 contact 

variables of the three wheel ground contact points, 3 passive variables, and 3 actuated 

variables, and 6 variables for the position and orientation of the WMR platform. So, totally 

there are 27 generalized coordinates. 

There are three actuating torques, two in the rear wheel and one for the front wheel 

steering. So, we need 24 independent constraint equations for the system to be well-posed. 

We have 27 generalized coordinates, 3 are given. So, we need 24 constraint equations. So, 

as you can see this is a very, very complex system. 

We have large number of differential equations; we also have large number of constraints. 

So, we can derive these equations of motion subjected to the holonomic and non-

holonomic constraints using the Lagrangian formulation. This was done ok. 
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Just to give you an idea how complicated it is. The kinetic energy is kinetic energy of 

wheel 1, wheel 2, wheel 3, kinetic energy of the platform, kinetic energy of the links of 

the actuator, kinetic energy of the links also. We also have potential energy of wheel 1, 

wheel 2, wheel 3, platform actuator then links. 

So, all the kinetic energy and potential energy can be found. It is a humongous task. It is 

very laborious and long, but nevertheless it can be found the ideas are very simple. Kinetic 

energy is 
1

2
𝑚𝑉𝑐

2 +
1

2
𝐼𝜔2, and potential energy is like 𝑚𝑔ℎ. 

We can also find the constraint equations from inverse kinematics which is [Ψ]𝑞̇ = 0, 

where [Ψ] is a 24 × 27 matrix. And hence eventually we have a set of differential equations 

which are 27 of them. So, the mass matrix is 27 × 27, Coriolis term is 27 × 1 gravity term. 

Then there are these torques, and then there is this [Ψ]𝑇𝜆. So, these are the constraint 

equations and 𝜆’s are the Lagrange multipliers ok. So, only 3 out of these 27 elements in 

this 𝜏 are nonzero. So, the ones corresponding to 𝜃1, 𝜃2, and 𝜙3 are nonzero, because they 

are given all others are 0. There are no torques corresponding to the other generalized 

coordinates. 
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So, 𝜆 is a 24 × 1 vector of Lagrange multipliers. We can solve for 𝜆. Finally, we obtain a 

set of 27 second order ODEs, and these were obtained in a symbolic form by using 

Mathematica. It took a lot of time. It is huge and humongous set of simplifications and 

equations which were used to obtain this 27 second order ODEs. 

With actuators locked and wheel tilted, WMR falls under its own weight because this is to 

do with non-holonomic constraints. Contrary to a normal parallel manipulator, if you lock 

the actuated joints, it becomes a structure. In the case of a three degree of freedom WMR 

because the constraints at the wheel ground contact points are non-holonomic, basically 

they restrict the velocities. 

But they do not restrict the configuration of the whole parallel manipulator. And as a result 

the whole platform manipulator will fall, and this was seen during simulations. So, as I 

said this is only because the wheel ground contact points are instantaneous three degrees 

of freedom joints, they are not like spherical joints. 

And there is something called form closure which is not present ok. We need additional 

terms modeling a torsion spring and a damper to prevent the top platform falling under 

own weight with actuators locked. And hence this is added. So, we add corresponding to 

the lateral tilts some talk which is 𝑘𝑠𝑖𝛿𝑖 + 𝑘𝑑𝑖𝛿̇𝑖, 𝑖 = 1,2. 



 

 

So, there is a damping and there is a spring stiffness added to the lateral tilt. So, these are 

some constants. So, this is added in a way so, that it does not fall in its on its own weight. 
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So, here is the algorithm to do the dynamic analysis of a three-wheeled mobile robot going 

over uneven terrain with wheels model as torus shape wheels, and also the wheel ground 

contact does not have slip. So, first just like kinematics, we generate the surface. We 

reconstruct the surface from elevation data. We find the derivatives of the surface. We 

need 𝒞3 continuity; because we need to go to dynamics we have the derivatives of many 

of these terms. 

We used a fourth degree B-Spline surface using MATLAB Spline Toolbox, and the 

surfaces were generated. We form the equations of motion these are 27 second order 

ODEs. We obtain initial conditions. The initial conditions must satisfy no slip and 

holonomic constraints. 

The three actuated variables can be chosen arbitrarily. The rest 24 are obtained using 

inverse kinematics equation ok. So, to obtain the initial conditions, we need to solve the 

inverse kinematic equations. And then we solve all these ODEs numerically in MATLAB, 

to find how the generalized coordinates are changing in time. 
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So, a few numerical simulation results, so this is the three-wheeled mobile platform, again 

this is the model 𝐺1, 𝐺2, 𝐺3 are the three non-holonomic contact points. There are 15 

variables at each in these 3, 5 in each, then there is 𝜃2, 𝛿2, 𝜃3, 𝜙3, 𝜃1, 𝛿1, and then there 

are the 6 variables of the top platform ok. 

This is the surface which was use earlier also. And we are going to use the same 

synthetically generated surface with 𝒞3 continuity for simulation. This is not a real surface; 

this is generated in MATLAB. 
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The mass of the top platform is assumed to be above 10 kgs, mass of wheel 1 kg because 

in dynamics we need to know masses. The allowable deflections due to lateral tilt is 𝜋/4, 

because we need to assume some spring constant to prevent lateral tilt beyond 𝜋/4 radians. 

And it turns out 𝑘𝑠𝑖 = 16.24 Newton meter radian, and 𝑘𝑑𝑖 = 0.57 Newton meter second 

per radian ok. So, this is 𝑘𝑠𝑖 is obtained for self-weight, and 𝑘𝑑𝑖 is chosen such that there 

is some damping. 

The initial conditions are again obtained such that it satisfies the constraint equations both 

the holonomic and non-holonomic constraint equations ok. All the initial values of the first 

derivatives are chosen to be 0. So, this robot or this wheeled mobile robot is starting from 

rest. 

And we have arbitrarily chosen 𝜏1 = −0.35 Newton meters, 𝜏2 = −0.5 Newton meter, 

and 𝜏3 = −0.001𝑡. So, it is tracking some trajectory with the steering there is as a function 

of time ok. We can choose other values. This was chosen by the student. 
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So, we can solve these 27 ODEs, and then we can plot what the wheel 1 is doing, what the 

wheel 2 is doing, and what the wheel 3 is doing, so wheel 1, wheel 2 and wheel 3, wheel 

3 is the steering wheel. We can also see what the center of the platform is doing again 

using this dot dash line. At the center of the wheel and the wheel ground contact points are 

again different basically because it is moving on the uneven terrain. 



 

 

There is also 𝛿1 and 𝛿2 which is tilting the two rear wheels are tilting, so that there is no 

slip. And we can plot 𝛿1 and 𝛿2 as a function of time ok. So, coming back to it, 𝛿1 and 𝛿2 

are passive ok. So, they vary or adjust automatically to avoid slip. We can see that the error 

in the holonomic constraints are very small of the order of 10−6. 

So, this is the constraint between 𝐶1 and 𝐶2, this is the constraint between 𝐶1 and 𝐶3 and 

this dot dash is a constraint between 2 and 3. As you can see it is very small, it is 10−6. 

We can also check 𝑣𝑥 and 𝑣𝑦 for the slip velocity at all the three wheels, at the wheel 

ground contact point. And as you can see they are also very small this dash line is for 𝑣𝑦, 

𝑣𝑥 is the solid line, they are all like 10−7, of the order of 10−7. 

So, all the constraints are satisfied at least up to 10−7, distance meters and this is something 

else velocities. The three-wheeled mobile robot can hence to be shown to travel an uneven 

terrain without slip because the slips are so small, the constraints are satisfied. And as you 

can see it is tracing some path on the uneven terrain ok. 
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So, next let us look at stability of this three-wheeled mobile robot and uneven terrain ok. 

So, on an uneven terrain, the loss of vehicle stability could be due to tip-over or roll over 

ok. Tip-over means the vehicle undergoes rotation resulting in reduction in the number of 

vehicle ground contact points ok, say instead of three you can have less. Mobility is lost 

and if the rotational motion during tip-over is not arrested, the vehicle will overturn. 



 

 

So, first thing is we need to find or define and measure of stability to warn the operator, or 

if you are on the vehicle to see that it is tipping over or it is about to tip-over ok. Like in 

any vehicle the placement of the center of mass, speed, acceleration, external forces and 

moments, and the nature of terrain will determine the tip-over or stability ok. It is not only 

one parameter; various parameters are involved to obtain the stability of a mobile robot on 

uneven terrain. 

There are various measures of stability which has been developed ok. We are going to use 

something called the force angle stability measure. This was first developed in 96 ok. And 

we will investigate the stability of the previously developed three-wheeled mobile robot 

with torus-shaped wheels for different conditions. 
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So, what is the force angle stability measure? Ok. So, let us look at the center of mass 

which is subjected to a force 𝒇𝑟. So, this is the center of mass of the platform that is the 

force which is acting. This is a terrain ok. The 𝒇𝑟 makes an angle 𝜃1 and 𝜃2 with the tip-

over axis normals 𝑰1 and 𝑰2. So, these are the two wheels, there are these axis normals 𝑰1 

and 𝑰2. And it makes an angle 𝜃1 and 𝜃2, so 𝜃1 and 𝜃2. 

The force angle stability measure tells you that this variable 𝜉, which is minimum of 𝜃1, 

𝜃2 into 𝒇𝑟. So, this 𝜉 should have some range of values. So, basically what it eventually 

will boil down to the fact is that this angles 𝜃1 and 𝜃2 should not be such that this 𝒇𝑟 is 

outside this 𝑰1 and 𝑰2, roughly speaking ok. 



 

 

And we have this reference coordinate system X-Y, and we can locate the point of contact 

which is 𝒑1 in this case, and we can also locate the center of that platform which is 𝒑𝑐. 
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So, in the case of a three-wheeled mobile robot, so we have wheel 1, wheel 2, wheel 3, we 

can locate the wheel ground contact points by 𝑢𝑔, 𝑣𝑔 and 𝑧𝑖 for each of the three wheels. 

The location of the center of mass 𝒑𝑐 = (𝑥𝑐, 𝑦𝑐, 𝑧𝑐)
𝑇. The line joining the wheel ground 

contact points is 𝒂𝑖. So, 𝒂3 is the line which joins wheel 1 to wheel 3; 𝒂2 is 2, 1, 3; and 𝒂1 

is between wheel 1 and wheel 3. And then we have this force which is acting at the center 

of mass which is 𝒇𝑟. 

So, the component of the net resultant force is 𝒇2
∗ , for tip-over axis 𝒂2. So, the angle 𝜃2 for 

the tip-over axis 𝑎2; likewise we find 𝜃1 for 𝒂1, and 𝜃3 for 𝒂3. So, there are these three 

angles which tells you the angle between the normal 𝑰1, 𝑰2, 𝑰3, and the resultant force 𝒇2
∗ . 

This is for 𝒂2; similarly for 𝒇1
∗  and 𝒇2

∗ . 

So, if any 𝜃𝑖 = 0, the 𝜔𝑟 can tip-over 𝒂𝑖. So, basically what is happening? So, if this 𝜃2 =

0 so which means what, 𝒇2
∗  is along this normal 𝑰2. So, now the WMR can tip-over 𝒂2 

about this wheel ok. So, that is the basic idea. We will calculate these angles and make 

sure they are not 0. If they are coming close to 0, we note that tip-over about a certain line 

is going to occur ok. 
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The net resultant force can be computed also. So, this 𝒇𝑟 is given by the force due to 

gravity, the force due to disturbance minus the force due to the inertia ok. So, force due to 

gravity and inertia are obtained from dynamic simulation. The 𝒇𝑑𝑖𝑠𝑡 is some external 

disturbance which we need to assume. The net resultant movement at the center of mass 

is due to gravity, the disturbance moment and the inertial moment. 

We are interested in component of 𝒇𝑖 and 𝒏𝑖 about the tip-over axis 𝒂𝑖. So, will there are 

three of them between. So, 1-2, 2-3, 3-1, it can tip-over any one of these axis. So, we want 

to find the force for that tip-over axis and also the angle. So, we, so we know this 𝒇𝑖 and 

𝑛𝑖 about the tip-over axis, we have to combine this 𝒇𝑖 and 𝒏𝑖 to get a resultant force which 

is this 𝑓𝑖
∗, and this is combined in this way. 

So, 𝒇𝑖
∗ = 𝒇𝑖 +

𝑰𝑖×𝒏𝑖

|𝑰𝑖|
. So, 𝑰𝑖 is the tip-over axis normal ok. So, from the dynamic simulation 

we will get some force 𝒇𝑖 and 𝒏𝑖, we need to combine them to find the resultant force 

which is given in this form. And then we compute the angle stability measure 𝜃𝑖 which is 

the angle between 𝒇𝑖
∗ and the unit vector along the normal 𝑰𝑖. 

The sign of 𝜃𝑖 determines if the net resultant force is inside the support polygon or not. 

And the overall force angle stability measures states is that this is 𝜉𝑖 which is the minimum 

of all three. So, it can tip-over any one of these three axis. 
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So, we need to find the minimum of 𝜃1, 𝜃2, 𝜃3 and then take a decision about which axis 

it is going to tip-over. So, let us look at some numerical simulations. So, again the mass of 

the top platform is 10 kg. We are going to use the same numbers as used in dynamic 

analysis. 

Mass of each wheel is 1 kg. The spring constant we have assumed some springs to prevent 

lateral tilting and the damping is this. We look at various terrains. We, can look at a curved 

path on a flat terrain, two rear wheels on two different planes and uneven terrains. 

For each of the chosen path and or input torques, compute at every instant of time the net 

resultant force which is acting at the center of mass. The net resultant moment 𝒏𝑟 which 

is acting at the center of mass. Compute the tip-over axis 𝒂𝑖 and the normal 𝑰𝑖 at each one 

of these contact points 𝑖 = 1,2,3. Compute 𝒇𝑖
∗ by combining 𝒇𝑟 and 𝒏𝑟. And then you 

compute the force angle stability measure ok. This should be away from 0. It should be for 

minimum of 𝜃1, 𝜃2, 𝜃3 could be away from 0. 
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So, here is a simulation of a wheeled mobile robot ok, which is traveling on a trajectory 

on a flat surface ok. So, the wheel 3 is this dark line. The projection of this resultant force 

𝒇∗ is this dash line which is this one ok. Wheel 1 is this dot dash lined, and the wheel 2 is 

this one ok. So, what you can see is that force angle stability measure basically the angles 

behaves like this, and then it comes down to about 0.6 ok. 

So, as the WMR turns, the stability margin reduces but it is all still stable it never goes 

towards 0. And in this example, you have assumed torque as 𝜏1 = −0.5, 𝜏2 = −0.75, and 

𝜏3 = −0.004𝑡 to trace this circle. So, basically what have we done, let us summarize. 

I have the equations of motion. I can solve the equations of motion to find out what is the 

net resultant force, and the net resultant moment acting at the CG of the top platform. Then 

I can find these tip-over axis between 𝒂1, 𝒂2 and 𝒂3, three of those between wheels 1 and 

2, 2 and 3, and 3 and 1. 

Then I can find the normals. And then I can find the angle between this resultant force and 

this 𝐼1, 𝐼2, 𝐼3, and then plot all of them – evaluate all of them and show how the wheel is 

moving on this flat terrain. I can show this is the third wheel. These are the first one and 

two wheels. And this is that projection of the force vector onto the plane. And then I can 

compute this – 𝜃1, 𝜃2, 𝜃3, and the minimum of those and plotted. 



 

 

So, what does it say? That it is reasonably stable it is this wheeled mobile robot can move 

on a flat terrain in a stable manner. When it is turning, the stability margin reduces a little 

bit, but nevertheless it is fine. 
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Now, let us look at this wheeled mobile robot on an inclined plane. So, again basically I 

can plot what the first wheel is doing, the second wheel is doing, and the third wheel is 

doing ok. So, what we can see here is the stability margin to slip at wheel 1 which is this 

dash lines 1, 2 and 3, and this the holonomic constraints. 

So, all of them are very close to 0. Remember they were like 10−7. So, the stability margin 

here is also away from 0 ok. So, this wheeled mobile robot on this inclined terrain is still 

stable for these kinds of inputs again 𝜏1 = −2.4, 𝜏2 = −4, and 𝜏3 = −0.08𝑡. 
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Initially it is least stable about axis 2 – as the WMR turns, the tip-over starts shifting from 

axis 2 to 1, and stability increases ok. Now, let us look at a wheeled mobile robot on an 

uneven terrain which looks like this. So, there is a hump here. And we want this wheeled 

mobile robot to go over this hump. So, what you can see is the first wheel looks like this; 

this is the path it traverses. The second wheel looks like this, and the third wheel is at the 

middle ok. 

Again the input torques at 𝜏1 = −4, 𝜏2 = −4, and 𝜏3 = 0, as there is no steering it is going 

straight over this uneven terrain. We are just chosen arbitrarily some numbers to try or 

different cases. We have tried many, many cases ok. And again the stability margins 1, 2, 

and the Z-component of this motion is plotted here. So, what you can see is the stability 

margin 1 and 2, they are all away from 0 occur. And the WMR is able to negotiate this 

hump which is an obstacle on uneven terrain without tip-over. 
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Let us try another trajectory where the surface is slightly different. So, again we have 1 

which is wheel 1, 2 which is wheel 2, 3 which is wheel 3, and at 4 there is unstable behavior 

that is happening which is shown here. So, let us go back a little bit. Again we are applying 

some torque 𝜏1 = −4, 𝜏2 = −4, and 𝜏3 = 0 – there is no steering ok. The stability margin 

reduces while climbing the second peak, not this first one, the second peak and tip-over 

occurs about axis one. 

So, this simulation shows that after some time this at this 8 point something the stability 

margin is going below 0. So, there is not much meaning what is happening here ok. Also 

the wheel slip is also increasing a lot. So, after some point, there is wheel slip. So, again 

there is no point in simulation. Nevertheless, what it is showing here is that the stability 

margin is going below 0, and hence there is a tip-over. 
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So, in summary a three-wheeled mobile robot with torus-shaped wheels were studied for 

stability. The rear wheels with passive lateral tilt capability at present. We modeled this 

three-wheeled mobile robot as a parallel robot with 3 degrees of freedom. The solution of 

the direct and inverse kinematics was obtained by integration because the direct and 

inverse kinematics are related to the velocities unlike in a serial robot. 

I showed you some dynamic modeling and simulation. I will show you next also some 

more dynamic modeling and simulation using a software package called ADAMS after 

this ok. So, in ADAMS, I do not have to do all these things in MATLAB. So, and do all 

this 27 equations and 24 equations. 

So, we can make a CAD model of the three-wheeled mobile robot, we can make a CAD 

model of the surface, and then we can simulate on the surface. I also showed you how we 

can traverse this uneven terrain without slip by allowing this lateral tilting. Finally, with 

force-angle stability measure, I could show you that it could measure or indicate tip-over 

stability ok. 

It is a measure of tip-over stability. And I looked at several trajectories on uneven terrains, 

on flat terrains, on incline planes, and uneven terrains. And I showed you that we could 

compute this force angle stability measure. And in one of the examples, I showed you that 

it could do tip-over ok. 
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So, with this, we will come in the next after this I will show you some videos. In these set 

of lectures, we were looking at wheeled mobile robots. In the last, I have discussed and I 

mentioned that I am going to for some videos of wheeled mobile robots going on uneven 

terrain ok. So, the first video is on a motion of a three-wheeled mobile robots which was 

simulated using MATLAB. The uneven terrains were generated using Spline toolbox in 

MATLAB. 

We solve the direct kinematics equations, which was discussed previously. We integrated 

the first order ODEs and found all the 15 variables, wheel ground contact points, and also 

how the 𝜃′s and the top platform moved. And I showed you in simulation that there was 

very little slip and the holonomic constraints were satisfied. 

So, this solution was generated in MATLAB. And then this in MATLAB, there is a feature 

to animate the results and this video shows the animation. So, it is looking little crude, but 

nevertheless you can see that the three wheels are moving on uneven terrain. And I had 

actually showed you earlier plots of this direct kinematic simulation, and showed that there 

is no slip. 
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In the next slide, I will show you some videos obtain using something called ADAMS. So, 

ADAMS is a commercial simulation software package. And again we can create a model 

of the three-wheeled mobile robot in ADAMS. It is a dynamic model meaning it solves 

the dynamic equations of motion in its own way. We can create the uneven terrain using a 

CAD model. The three-wheeled mobile robot with torus-shaped wheels is also created 

using CAD tools. 

Now, in ADAMS to connect, the wheels to the body we need to provide some kind of a 

suspension. Remember the wheels can tilt laterally and it can go up and down. So, we need 

a two-degree-of-freedom suspension. And one of my student worked on these two-

degrees-of-freedom suspension. And we incorporated a two-degree-of-freedom 

suspension on this wheeled mobile robot. 

So, basically one degree of suspension is to allow the tilt, and one degree of freedom is to 

account for the vertical motion of the platform and the wheel. So, you choose appropriate 

settings in ADAMS. So, you need to play round with ADAMS, because you need to set 

the friction in ADAMS, and something called the depth of penetration of the wheels, so 

that is the way ADAMS works ok. 

You need to make sure that the wheels are always in contact with the uneven terrain by 

giving this depth of penetration. And also you have to specify a friction. In the MATLAB 

simulations, I did not specify any friction at the wheel ground contact point because that 



 

 

was the way it was developed ok. We do not need to incorporate the friction at the wheel 

ground contract point in MATLAB, basically there is no slip. So, there is no friction. 
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We also need to choose the inputs appropriately in ADAMS, we need to play around with 

it. So, what you will see now is the motion of a three-wheeled mobile robot going on an 

uneven terrain which was both the uneven terrain and the robot was created in CAD 

models. 

And then appropriate parameters were set. And then you can see it is moving. So, the 

important thing to notice here is that this uneven terrain it looks like some wavy surface 

because we cannot generate very complicated uneven terrains in ADAMS. The important 

thing to notice is that the wheels are tilting laterally. 

So, the front wheel is rotating, and it is and also it is being steered, whereas, the two rear 

wheels are rotating and tilting laterally. So, as you can see that the motion is quite smooth, 

there is almost no slip I mean you cannot see that there is no slip in the video. But if you 

look at the ADAMS simulation and you can plot all the variables again, and you can see 

that there is no slip. 

But definitely this video shows that this three-wheeled mobile robot with torus-shaped 

wheels, and wheels capable of lateral tilting can negotiate an uneven terrain. This is 



 

 

another uneven terrain and the same three-wheeled mobile robot which is negotiating this 

an uneven terrain ok. ADAMS is a very, very powerful commercial package. 

There are plugins, and there are extensions of ADAMS which can simulate the motion of 

a car or a four wheeled vehicle, it is called ADAMS car. But this is not using ADAMS car 

we have just imported the surface from a CAD model, we have also imported a model of 

this three-wheeled vehicle. Then we have put suitable joints between this green platform 

and the wheels, and then we are giving some input ok. 

So, this is another terrain which was created. And this is that same three-wheeled vehicle 

negotiating this uneven terrain. Again, I can see that there are these hills and valleys and 

wavy terrain. And then we can go negotiate the terrain with the wheels always in contact 

with the terrain ok. 

So, the wheels are always in contact with the terrain. It is not floating in air and that is the 

way to do that is to specify some friction and some depths of penetration. So, the depth of 

penetration is very small ok. So, with that, we come to an end of this set of lectures on 

wheeled mobile robots. 

Thank you for listening. 


