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Mathematical Preliminaries, D-H Convention & Examples 

 

Welcome to this NPTEL lectures on Robotics: Basic and Advanced Concepts. In this week 

there will be three lectures, the first lecture deals with mathematical preliminaries required 

to model and analyze robots, it will also include the very important notion of something 

called homogeneous transformation matrix. 

In the second lecture we will look at how to model and represent joints and links of a robot 

and in the third lecture we will look at examples of D-H parameters and link transformation 

matrices. 
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So, the first lecture is on Mathematical Preliminaries. 
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So, what do we need to know or how do we proceed? So, we recognise or as mentioned 

earlier, the links of a robot will be assumed to be rigid bodies ok. So, the first important 

thing that we need to understand is, how do we represent the rigid body which models the 

links of a robot. 

So, to represent a rigid body in 3D space, we look at the position and orientation of the 

rigid body. To represent the position of a rigid body basically we need a right-handed 

coordinate system to start with, we need a reference coordinate system ok. A reference 

coordinate system or any right-handed coordinate system is specified by an origin OA, X 

axis, Y axis and Z axis we are going to use several coordinate systems. So, we will keep 

track of by labelling the coordinate system with {A} {B} and so, on. 

So, in this case we have an XA axis, a YA axis, a ZA axis and an origin OA. So, the rigid body 

is represented by potato shaped contour ok. So, the right-handed coordinate system is 

specified by an origin OA, a set of three mutually orthogonal axis unit vectors XA, YA and 

ZA. You can think of these along the index finger, the middle finger and the thumb of the 

right hand respectively and as mentioned we will label each coordinate system and in this 

case it is labelled as curly bracket A ok. 

So, as I said we want to represent the position of a rigid body in 3 D space. So, the first 

natural question is position of what. So, basically we want to find the position of a point 

of interest on the rigid body and what could be the point of interest? It could be say the 



  

centre of mass or the centre of gravity or even maybe location of a sensor or some special 

point on the rigid body. 

So, this point P which is shown in this figure can be represented using a vector drawn from 

the origin OA to that point and we are going to keep track of in which coordinate system 

this vector is shown by this superscript leading superscript A ok. So, this vector Ap can be 

represent that using three Cartesian coordinates px, py, pz. So, this is the column vector. So, 

px, py, pz transpose mean it is a column vector. 

So, what are these px, py, pz? They are nothing but the projection of this vector Ap along 

that XA axis, YA axis and ZA axis. So, this Ap can be written as px into XA, py into YA plus pz 

into ZA. XA axis is nothing but (1 0 0) as a column vector. YA axis is (0 1 0) and ZA axis is 

(0 0 1). So, hence Ap is nothing but px, py, pz as a column vector. 
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Position of one point on the rigid body is not enough to describe it in 3D space. So, you 

can think of a let us say you are holding a cube. If I give you the corner of the cube that is 

not enough because based from that one point which is the corner of the cube I can rotate 

the cube about some different directions and it will look very different to different people 

when you rotate it. 

So, the moral of the story is the position of one point on the rigid body is not enough to 

describe it in 3D space. We need something called as the orientation of a rigid body with 



  

respect to the reference coordinate system ok. So, how do we describe the orientation of a 

rigid body B?  

So, first is we attach a coordinate system B to the rigid body B. So, this is the rigid body 

B. So, we have a reference coordinate system XA, YA, ZA and an origin OA we attach another 

coordinate system XB, YB, ZB with the origin OB on the rigid body. 

Now, we are only interested in the orientation right now not in the translation, we will 

come to that later. So, then the origin of OA and OB can be at the same place. So, if I can 

describe to you or specify to you the XB axis, the YB axis and the ZB axis with respect to the 

A coordinate system or another way of saying if I can describe the coordinate system B 

with respect to A, then I could very completely describe the orientation of the rigid body 

in A ok. 

So, again the example of a cube if I tell you that the three edges of the cube let us say 

labelled as X, Y and Z, if I tell you which way or how to draw this axis on the cube then 

completely describes the orientation of the cube ok. So, in this figure we are I am also 

showing some vector k and phi we will come to this later ok. So, remember there is an axis 

k and an angle phi on the rigid body which is useful to represent the orientation of the rigid 

body. 
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So, let us proceed. So, the unit vectors XB, YB and ZB are attached to the body B and they 

can be described in the {A} coordinate system just like the position vector of point P in 

{A} coordinate system. So, XB is nothing but the point p. So, it can be written in terms of 

XA, YA, ZA. So, project this XB vector unit vector along XA, YA, ZA and call the coordinates 

as r11, r21, r31 ok. 

So, what are we doing? So, we take a point one unit away along the XB axis. So, this is the 

vector AXB, we project on XA, we project on YA and we project on ZA and when we project 

the coordinates are r11, r21, r31 ok. So, why is it written in r11, r21, r31? Basically  AXB is a 

column vector ok. So, r11 into (1 0 0), r21 into (0 1 0), r31 into (0 0 1). So, it will form a 

column vector. 

Likewise, I can take a point on the YB axis, one unit away from the origin and again project 

onto XA, YA, ZA axis and let us call the coordinates r12, r22 and r32 and finally, we can also 

take a point on the ZB axis one unit away and project onto XA axis, YA axis ZA axis and the 

coordinates are r13, r23, r33 ok. So, these rij’s are called the direction cosines you must have 

heard of this before, but let us see why are they call direction cosines. 

So, let us compute what is r11. So, how do I compute r11? So, we take this first equation 

and dot product the left and the right-hand side with XA. So, AXB dot XA will be nothing, 

but magnitude of AXB, magnitude of XA and the cosine of the angle between AXB and XA ok. 

 So, since these are unit vectors we are only left with the cosine of the angle between AXB 

and XA and this is r11. So, r11 is nothing but cosine of an angle between two axis in 3D 

space. So, we can define this 3 by 3 matrix containing rij and this is called as a rotation 

matrix ok. So, there are 9 elements r11, r21, r31 first column r12, r22, r33 second column, r13, 

r23, r33 third column and this is again repeated again. 

So, the first column of this rotation matrix is r11, r21, r31 and it is the same as the AXB vector 

ok. So, effectively what is this matrix [𝑅]𝐵
𝐴 ? It is first column is AXB, second column is AYB 

and the third column is AZB ok. So, what does this [𝑅]𝐵
𝐴  means? It is the rotation matrix 

describing the rigid body B with respect to the reference coordinate system A. 

 [𝑅]𝐵
𝐴  completely describes all the three coordinate of axis of B with respect to A.  Because 

if I know this rotation matrix I know AXB, AYB, AZB these are numbers. So, I can draw these 

three unit vectors XB, YB, ZB and hence it gives you the orientation of the rigid body B in 



  

A ok. So, the rotation matrix containing the column vectors AXB, AYB, AZB completely 

describes the orientation of rigid body with respect to the A coordinate system. 
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The vector p if it is fixed in the {B} coordinate system can be described in the {A} 

coordinate system just by this simple pre-multiplication by a rotation matrix. Everybody 

knows this, we have seen this in many places in mechanics.  

So, the rotation matrix one of the property is that it converts a vector in one coordinate 

system into another coordinate system. A vector in the {B} coordinate system Bp can be 

described in the {A} coordinate system by pre-multiplying by the rotation matrix. 

The other important property of this [𝑅]𝐵
𝐴 , this rotation matrix is that it is orthonormal ok. 

So, what is an orthonormal matrix? The column vectors are all unit vectors ok. So, the 

magnitude of the column vectors is 1, and the two column vectors AXB and AYB likewise 

AYB and AZB and likewise AZB and AXB are perpendicular to each other.  

So, we have three constraints here. So, (r11
2 + r21

2 + r31
2 ) which represents the column 

vector AXB is equal to 1, it is a unit vector.  

Likewise, AXB is perpendicular to AYB. So, we have six constraint equations three unit 

vector constraint equations and three perpendicular constraint equations. So, hence out of 

the 9 rij’s only 3 are independent ok. So, this is a very important result that in a rotation 

matrix there are only three independent parameters. 



  

So, remember rotation matrix represents the orientation of a rigid body in the {A} 

coordinate system, a rotation matrix has three independent parameters, hence the 

orientation of a rigid body in 3D space can be represented by three independent parameters. 

So, let us continue - this [𝑅]𝐵
𝐴  is orthonormal. because of this property determinant of [𝑅]𝐵

𝐴  

is always +1 ok. Secondly, we know [𝑅]𝐵
𝐴  inverse  into [𝑅]𝐵

𝐴  will be identity matrix; 

however, if [𝑅]𝐵
𝐴  is orthonormal, the inverse is the same as the transpose ok.  

So, [𝑅]𝑇 [𝑅]𝐵
𝐴

𝐵
𝐴 would be identity matrix or the inverse is the same as the transpose. And 

what is [𝑅]−1
𝐵
𝐴 ? You know conceptually, [𝑅]𝐵

𝐴  was the orientation of {B} with respect to 

{A}; [𝑅]𝐵
𝐴   inverse is nothing, but the orientation of {A} with respect to {B} that is what 

is means by [𝑅]𝐵
𝐴 −1. 
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Let us continue - this [𝑅]𝐵
𝐴   is a 3 by 3 matrix ok. So, if it is a 3 by 3 matrix it must have 

three eigenvalues. You can show that the eigenvalues are plus 1 and e to the power i ϕ 

where i is this imaginary number square root of minus 1. So, what is e to the power i ϕ? 

We can expand it as cos ϕ ± i sin ϕ ok.  

So, this matrix has one real and two imaginary eigenvalues where this ϕ can be obtained 

as cos inverse of (r11 + r22 + r33 – 1) divided by 2. So, this will be a homework problem 

you can derive and show that the three eigenvalues are 1, e to the power ± i ϕ and where ϕ 

is given by this expression. 



  

Now, corresponding to this real eigenvalue 1 we can also find an eigenvector ok. So, the 

eigen vector is given by k which is 1 by 2 sin ϕ into this column vector. So, the first element 

of the column vector is (r32 - r23), the second element is (r13 - r31) and the third element is 

(r21 - r22). 

So, as long as ϕ is not 0 and nπ where n is some natural number, we are not dividing by 0 

and we can determine this k vector ok. If ϕ is 0 or 2nπ  then actually there is no rotation. 

So, there is no notion of a rotation matrix and hence there is no notion of k ok. If ϕ is (2n 

- 1)π then we need to worry about it a little bit; if ϕ is (2n - 1)π, then you can show that 

there are three real eigenvalues. 

The next important property of this axes k is eigenvector k this that this axis k is fixed in 

{A} and {B}. How do we prove this? We have a vector k in the {B} coordinate system if 

we pre multiply by [𝑅]𝐵
𝐴 , we will get the vector in the {A} coordinate system just like any 

other property of a rotation matrix it transforms the Bk into Ak.  

Now, if you look at the right-hand side [𝑅]𝐵
𝐴   into Bk is also equal to 1 into Bk this is the 

eigenvalue problem. So, hence Ak is same as Bk ok. So, this follows from the definition of 

a eigenvector and also for the definition of transformation of vector from B to A ok. So, 

what does this mean? It means that this eigenvector which we have found out k is same 

either in the {A} coordinate system or {B} coordinate system ok.  

So, hence when I orient the object or rotate the objects from {A} to {B} there is a vector 

k which is remaining fixed and that is what was shown in the original figure here that 

whenever you have a {A} coordinate system and a {B} coordinate system, we can have a 

vector k which will take this A coordinate system to the B coordinate system. So, what do 

we have to do? We have to rotate about this k axis by an angle ϕ. So, this axis k is fixed in 

both {A} and the {B} coordinate system. 
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So, we can find k and ϕ given the rotation matrix [𝑅]𝐵
𝐴  ok. So, k is the eigenvector 

corresponding to the real eigenvalue 1 and ϕ is this expression which is cos inverse of (r11 

+ r22 + r33 - 1) divided by 2. 

So, ϕ and k can be obtained from the elements rij of this rotation matrix. Can we do the 

opposite? Yes. So, it turns out that if I give you k and ϕ,  k as a unit vector meaning (kx
2 + 

ky 
2 + kz

2 ) is 1 and an angle ϕ; can I find the elements of the rotation matrix?  

Yes. So, r11 is given as kx
2( 1 – cos ϕ ) + cos ϕ. So, for example, r21 is kx ky (1 - cos ϕ) + kz 

sin ϕ and so on. So, this will also be a homework problem which you can attempt yourself 

and derive this.  

So, what have we done? Given a rotation matrix, I can find k and ϕ, given k and ϕ, I can 

find the elements rotation matrix. 
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There is also a very useful notion of or extension or use of k and ϕ ok. So, this is let us 

consider the rigid body B and the rotation axis k is parallel to the XA axis. So, both XA and 

XB are at the same place. So, that is the fixed axis. 

So, now if I rotate about this XA  or XB axis by ϕ, I can find the rotation matrix by 

substituting in this previous expression kx is 1, ky is 0 and kz is 0, and rotation angle is ϕ.  

If you substitute kx as 1. So, what is r11? We will get 1 – (1- cos ϕ) + cos ϕ 

What is r23? ky , kz is 0. So, we will be left with sin ϕ, kx is 1,  - sin ϕ. So, we have 1 0 0, 1 

0 0, cos ϕ - sin ϕ sin ϕ cos ϕ. So, this is the rotation matrix obtained when the fixed axis is 

along the X axis. So, we are going to use this symbol rotation about X by an angle ϕ will 

give a rotation matrix [𝑅]𝐵
𝐴  which is 1 0 0, 1 0 0, cos ϕ -sin ϕ, sin ϕ cos ϕ and this is what 

is shown in this figure. 

So, basically, XA and XB  are at the same place - this is the k axis we are rotating by an 

angle ϕ about this axis. So, YA will go to YB, ZA will go to ZB, and angle between YA and YB 

is this angle. 
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The rotation about Y and Z axis can also be similarly obtained. All we need to do in that 

general expressions for rij as a function of kx, ky, kz and ϕ we have to say now that the k 

axis is 0 1 0, for Z the k axis is 0 0 1 and we can obtain cos ϕ 0 sin ϕ 0 1 0 and so, on. 

Similarly, for the Z the last column will be 0 0 1, last row will be 0 0 1 and this is cos ϕ   -

sin ϕ sin ϕ cos ϕ ok. You may have seen this rotation matrices when we rotate about X, Y 

and Z axis. So, these rotation matrices are called simple rotations because they are the 

simplest possible rotations -- we are rotating about the X axis, Y axis and Z axis. 
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Now, let us look at one more important concept which is of two successive rotations. What 

do we mean by 2 successive rotations? So, initially we have a rigid body B which is 

coincident with the {A} coordinate system ok. So, the first rotation is relative to {A} ok. 

So, after the first rotation the coordinate system {A} goes to {B1}. 

The second rotation is relative to {B1}, the new coordinate system {B1} not with respect 

to the original {A} coordinate system. So, after the second rotation {B1} goes to {B}.  As 

its shown here we have XA, YA, ZA the first rotation it goes to XB1, YB1, ZB1 and after the 

second rotation which is with respect to XB1, YB1, ZB1  we get XB, YB, ZB 

So, the question is what is the resultant rotation after these two successive rotations? Ok. 

So, the answer is [𝑅]𝐵
𝐴  is [𝑅]𝐵1

𝐴 [𝑅]𝐵
𝐵1  ok. So, we multiply the rotation matrices in the order 

of the two successive rotations.  That is important and this is true whenever we are rotating 

about axis fixed to the moving rigid body. Here we are rotating about axis which are fixed 

to the moving body -- it is about the moved coordinate system the second rotation ok. 

Generalising we can also show that the resultant of n such successive rotations about axis 

fix to the moving body is product of multiplications of matrices [𝑅] [𝑅]𝐵2
 𝐵1

𝐵1
𝐴 ] all the way 

till [𝑅]𝐵
𝐵(𝑛−1)

 ok. So, again just to stress the matrix multiplication is noncommutative in 

general. So, [𝑅]𝐵
𝐴 = [𝑅]𝐵1

𝐴 [𝑅]𝐵
𝐵1  which is not [𝑅] [𝑅]𝐵1

𝐴
𝐵

𝐵1 .  

So, if you switch the order then you do not get the correct rotation matrix.  And in our 

notation where we have leading superscript A which represents the reference coordinate 

system and B which is the final orientation of the rigid body, the final coordinate system, 

.  

We can see that this B1 and B1 will cancel intermediate coordinate system and we are left 

with [𝑅]𝐵
𝐴 This is just a way to remember what we are doing ok. So, in summary the order 

of the rotation is important. So, we will multiply the rotation matrix in the order of the 

rotations. 
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Now we can have enough material to look at orientation in terms of three angles. We have 

the tools and techniques to describe orientation of a rigid body in terms of three angles. 

So, we know that orientation described by 3 independent parameters remember in rij there 

were nine rij’s, but then there was the 6 constraints. So, there were actually only 3 

independent parameters ok. So, can we obtain the rotation matrix in terms of 3 independent 

parameters?  

Answer is yes we can do three successive rotations about axes fixed to the moving body. 

We can have rotations about X, Y, Z and since the order of multiplication is important we 

could have got another rotation matrix if we did X, Z, Y or Y, Z, X. So, there are six 

different possible combinations of rotations about three distinct axes. 

We can also represent the orientation of a rigid body by rotation about two distinct axes 

we are also 6 combinations. So, we can do first rotation about X, then a rotation about Y 

and then again a rotation about X.  We could have also done Z, Y, Z or Z, X, Z. So, that 

are 12 possible combinations of rotations about three axes -- in one case 3 distinct axes 

and one case 2 distinct axes and we will get three parameters in each one of them. 

So, these three rotations completely describe the orientation of the rigid body. We can also 

do rotations about axes fixed in space we are not going to discuss it, but we can see that 



  

there are 12 possible combinations for 3 and 2 distinct axes where we rotate about the 

original fixed axes in space the XA, YA and ZA axis. 

So, as you can see we have exactly three rotations θ1 about X,  θ2 about Y and θ3 about Z 

or some three angles about say let us say two axes X, Y and X and we can describe the 

orientation of the rigid body. So, this is a minimal representation of orientation of a rigid 

body only three parameters three angles and no constraints are used ok. 

So, historically three angles about two distinct axes are called classical Euler angles and 

about three distinct axes are also called Tait-Bryan angles.  In many textbooks all of these 

are called Euler angles ok. So, this minimal representation of orientation using three 

successive rotations are these three Euler angles. 
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So, let us take an example if you have X, Y, Z Euler angles what does it mean? We are 

first going to rotate about X, then we are going to rotate about the moved Y and then third 

we are going to rotate about the moved Z ok. So, the rotation about X is [𝑅]𝐵1
𝐴 , this is 

rotation of X by an angle θ1, we can find this rotation matrix it is a simple rotation about 

by θ1 about the X axis. So, you will get 1 0 0, 1 0 0, cos θ1 -sin θ1, sin θ1 cos θ1. 

So, what is happening? In this figure here. So, we have XA and XB1 aligned YA will go to 

YB1, ZA will go to ZB1 and the rotation is angle θ1. The second rotation is about the moved 



  

Y axis. So, what do we mean by the moved Y axis? About YB1. So, YB1 and YB2 are at the 

same place.  

So, ZB1 will go to ZB2 and XB1 will go to XB2. So, this is the {B2} coordinate system. We 

are discussing orientation and rotations, so, the origins of all the coordinate systems are at 

the same place. So, the second rotation is about Y axis by θ2. So, we can again get this 

rotation matrix which will be cos θ2 0 sin θ2 0 1 0 - sin θ2 0 cos θ2 ok. 

The third rotation is about the moved Z axis that is why it is called X, Y, Z Euler angles. 

So, pictorially what is happening? So, if you can see that the third rotation is ZB2. So, ZB2 

and ZB are at the same place we are rotating by an angle  θ3. So, hence XB2 will go to XB, 

YB2 will go to YB, YB1 and YB2 were at the same place and ZB and ZB2 are at the same place. 

So, the final coordinate system is XB, YB, ZB ok. 
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And the rotation matrix obtained by rotating about the Z axis which will take from B2 to 

B is given by cos θ3 -sin θ3 0, sin θ3 cos θ3 0, 0 0 1. So, what is the resultant rotation from 

A to B which is the product of the three rotation matrices in the order that you did the 

rotation? So, we went from A to B1, B1 to B2, B2 to B. 

So, again in our notation you can see that this B1 and B1 sort of cancels out in your head 

B2 and B2 will cancels out and we have left with A and B. So, if you multiply these three 

rotation matrices, we will get the rotation matrix which contains θ1, θ2 and θ3 ok. So, in 



  

this matrix c2 means cos θ2, c3 means cos θ3, short form. s1 means sin θ1. So, ci and si 

denote cos θi  and sin θi, respectively. 

So, this matrix c2c3 - c2s3  s2,  -s1c2 c1c2 etcetera gives the rotation matrix which describes 

the orientation of B with respect to A obtained after three Euler angle rotations and that to 

about X, Y and Z axis. So, if you were to do X, Y, X or Z, Y, X some other sequence, then 

the rotation matrix will be different -- because why matrix multiplication is not 

commutative. 
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So, I have shown you that if I tell you what is the sequence of rotation about X, Y, Z and 

rotation is θ1, θ2 and θ3  about this X, Y and Z axis, I can find the rotation matrix. Can I do 

the reverse? Yes. So, if I give you a rotation matrix with numbers [𝑅]𝐵
𝐴  following the 

properties of the rotation matrix, meaning unit vectors and orthogonality and so on, can I 

find the X, Y, Z Euler angles? The answer is yes. 

So, how do we do that? We look at this rotation matrix which we have obtained for X, Y, 

Z Euler angles. So, you can see here this term r13 is sin θ2 ok. So, if I give you some 

number, θ2 is sin inverse of that number correct. But instead of doing sin inverse what we 

will do is we will look at both of these r11, r12 and r13. 



  

So, if I take the square  of these two and take the square root we will be left with cos θ2. 

So, we will have sin θ2 and cos θ2 and then we can use something like tan inverse ok. So, 

this is what is explained here. So, θ2 is atan2 (r13, ± Ö (r11
2 + r12

2) ) . 

Why do we use atan2? Because this function atan2 (y, x) it takes the y coordinate and the 

x coordinate, it gives you the angle in the correct quadrant ok. So, it is basically doing tan 

inverse y by x; however, it looks at the sign of y and x. So, for example, if this was -1 and 

-1 then we will get in the third quadrant, but tan inverse y by x of both y and x is -1 will 

give you still 45 degrees. So, it will give you the angle in the correct quadrant. 

So, once we know  θ2 let us go back and see. So, now, I know θ2, I can take these two 

terms which is r23 and r33 divide by cos θ2. I can again do atan2 of this term and this term. 

This is a minus sign. So, we will take care of the minus sign ok. 

So, atan2 of r23 and r33 of course, with a minus sign. So, that is what is shown here -- θ1 

is atan2 (- r23/ cos θ2,  r33/ cos θ2) and likewise if θ2 is known we can now find θ3 using 

again atan2 of these two terms r11 and r12 which is what is exactly shown here (- r12/ cos 

θ2 , r11/ cos θ2). 

Now, there is a small problem -- which is that if this r13 is  ±1 Meaning what? θ2 is ±π/2 

ok. So, if θ2 = ±π/2 cos θ2 will be 0 and we cannot divide this term by cos θ2 which is what 

we were doing.  We cannot divide both of these terms by cos θ2. 

So, if r13 is 1 which is θ2 is π/2, then we can just do atan2 (r21, r22) what do we do? We 

look at these two terms this one and this one this one and this one ok. So, if θ2 is π/2, you 

can see that this is sin (θ1 + θ3) and cos (θ1 + θ3)   we will get. So, we assume or make a 

convention that θ3 is 0 and θ1 is atan2 (r21, r22). If r13 were  -1 then we have to suitably 

change. So, θ1 is - atan2 (r21, r22),  θ2 is still – π/2 and θ3  is 0. 

So, what does this algorithm tell you that there are two sets of values of θ1, θ2, t θ3 for a 

given [𝑅]𝐵
𝐴  ok. If θ2 is ± π/2, θ1 and θ3 is not unique we can only find θ1 ± θ3 ok.  

We make the convention that in either case θ3 is assumed to be 0 and we obtain the unique 

θ1. This condition θ2 is ± π /2 are called singularities. So, there always are singularities in 

any Euler angle representation where we cannot find the angles uniquely. 
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Let us look at another Euler angle which is the Z, Y, Z Euler angles. So, in this case what 

is happening? The first rotation is about Z axis. So, ZA and ZB1 are at the same place, XA 

goes to XB1, YA goes to YB1 and the rotation is θ1. The next rotation is about Y axis.  

So, if I rotate about the moved Y axis which is YB1 and YB2 are at the same place the rotation 

is θ2, the Z axis will go to ZB2 and X axis XB1 will go to XB2 . And the last rotation is about 

the Z axis of the moved coordinate system again. So, ZB2 and ZB are at the same place. So, 

this is the rotation by θ3. 

So, now XB2 will go to XB and YB2 will go to YB and ZB remain same. So, after this three 

successive rotations the {A} coordinate system will go to {B} coordinate system which is 

XB, YB, ZB and what is the resultant rotation matrix which is nothing, but multiplication of 

three simple rotations about Z, Y and Z Euler angles ok. So, we will get some terms which 

are c1, c2, c3, -s1, s3 and so, on the r33 term will be c2 ok.  

Why are we looking at Z, Y, Z Euler angles? We will see later that this occurs in many 

manipulators where we have intersecting wrist. The last three joint axes in a robot are 

intersecting that is called as an intersecting wrist and that can be very easily modelled by 

Z, Y, Z Euler angles ok. 



  

So, what have we done we have shown that if you rotate about Z, Y, Z by θ1, θ2, θ3 

respectively I can obtain a rotation matrix of this form. So, r33 again is c2. So, if I give you 

some number here ok, so, what is that θ2 that is cosine inverse of that number ok. 

Likewise, once I know θ2, I can divide these two expressions by sin θ2 and do atan2 and 

find θ1. Likewise, I can divide by here and find atan2 and find θ3. So, that is the basic idea 

- very similar to what we have done before. 

(Refer Slide Time: 40:56) 

 

So, we can find an algorithm that if I give you rij’s what are the Z, Y, Z Euler angles? So, 

if r33 ≠±1. cos θ2 ≠ to 0 or 180, then θ2 is atan2 (Ö(r31
2 + r32

2
 ), r33 ) is that correct?  

Yes because I can take the square of these two and we will be left with sin θ2 , ± because 

square root is there and we will get cos θ2 and hence we can find θ2 . We can then divide 

by sin θ2, these r23 and r13 and find θ1 and then we can divide r32 by sin θ2 and - r31 by sin 

θ2 and find θ3. 

So, given rij, the elements of this rotation matrix, I can find θ2, θ1, θ3, if  r33 ≠±1. Again, if 

r33 is equal to 1 or -1, I cannot divide these quantities. So, sin θ2 will be 0. So, again we 

have a convention which says θ1, θ2 is equal to 0 when r33 is equal to 1 and θ3 is atan2 (- 

r12, r11). If r33 is -1, we have a convention that θ1 is 0, θ2 is π and θ3  is atan2 (r12, - r11) ok. 



  

So, again given a rotation matrix rij, we can get two possible sets of Z-Y-Z Euler angles, 

these two possible sets comes from here ±. If r33 is ±1, we have a singularity, only θ1  ± θ3 

can be found and for unique θ1 and θ3, we choose θ1  to be 0 -- this is by convention. 
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Now, let us look at some other representation of orientation. I have shown you rotation 

matrix with rij, I have shown you k and ϕ and I have shown you Euler angles - three Euler 

angles we can also have something called as a Euler parameter. We can look at these books 

by Kane and McCarthy.  

So, these are four parameters which are derived from k and ϕ they are not exactly equal to 

k and ϕ the three parameters are k into sin ϕ/2 and the fourth parameter is cos ϕ/2 ok. 

We have we still have one constraint ε1
2  + ε2

2 + ε3
2  + ε4

2 = 1. So, ε here is a vector with 

ε1, ε2, ε3. The ε1, ε2 and  ε3 and ε4 are called the Euler parameters.  They are derived from 

k and ϕ, but not exactly same as k and ϕ  and it turns out to have some small advantage 

because it is sin ϕ/2. So, we do not have problems of π basically.  

So, angle ϕ is π, sin ϕ/2 is still well defined it is 1 and we can define and derive and various 

things with ϕ  as π.   

We can also have something called quaternions. You can look at this book by Arfken, this 

is also 4 parameters these are typically labelled as q1, q2, q3 which is a vector and a scalar 

q0. It is in some sense sum of a scalar and a vector. So, it is neither a scalar or a vector, but 



  

it is often written as q0 + q1 i + q2 j + q3 k where i, j and k are the unit vectors along the 

X, Y and Z axis. 

It turns out that if you have two quaternions Q1 and Q2 the product of two quaternions is 

also a quaternion. The inverse of a quaternion also exists and the square of q0, sum of the 

squares of q0, q1, q2, q3. So, q0
2 + q1

2 + q2
2 + q3

2 square is 1 and this is called as a unit 

quaternion and unit quaternion represents the orientation of a rigid body in 3D space ok. 

There are certain advantages in using a quaternion specifically this is extensively used is 

spacecraft dynamics orientation of a spacecraft when it is orbiting the earth or some other 

place. The Euler parameters are also used extensively in motion planning, we will see later 

they have certain advantages of relating Euler parameters and angular velocities. 
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In summary the orientation of a rigid body is specified by 3 independent parameters in 3D 

space. There are various representation of orientation with their own advantages and 

disadvantages. So, the rotation matrix [𝑅]𝐵
𝐴  contains 9 rij ‘s plus 6 constraints. It is not 

really useful to carry along 9 variables and 6 constraints for any computation work, but it 

is ideal for analysis. 

We can also have axis kx, ky, kz components and angle ϕ. This is a 4 parameter 

representation of orientation with one constraint. The kx
2 + ky

2
 + kz

2 is 1, k is a unit vector. 

This is very useful for insight and extension to screws, twists and wrenches. So, as I 



  

showed you can think of rotating a rigid body from {A} coordinate system to a {B} 

coordinate system by rotating about this k axis by an angle ϕ and later on we will see that 

this can be extended to rotation and translation. 

We can also have Euler angles which are 3 parameters and zero constraints. So, this is a 

minimal representation of orientation; however, it suffers from the problem of 

singularities. Any set of three Euler angles we will have this singular configurations 

singularities. More so, we also need to know what is the sequence of rotation. So, you have 

to tell me whether it is X, Y, Z or Z, Y, X or X, Z, Y, because every time we will get 

different rotation matrices. 

Finally, we had Euler parameters and quaternions these are also 4 parameters plus 1 

constraint they are similar, but not exactly same as k and ϕ.  There are no singularities and 

its often used in motion planning. Finally, we can convert one representation of orientation 

to any other representation of orientation for regular cases. So, if there are no problems 

like singularities and so, on. 
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Once you have a representation of orientation of a rigid body now let us look at combined 

translation and orientation of a rigid body. So, what do we have? We have this rigid body 

B with a coordinate system XB, YB, ZB and an origin OB we have a reference coordinate 

system XA, YA, ZA with a origin OA and labelled {A} and this is labelled {B}.  



  

So, the origins of {A} and {B}, OA and OB are not coincident anymore because we are also 

looking at translation. When we were looking at orientation OA and OB were at the same 

place. So, what is given? The orientation of {B} with respect to {A} this rotation matrix 

is known or can be obtained. If you take a look at a point on this rigid body given by Bp, 

we can describe this point in the {A} coordinate system by this simple vector addition.  

So, Ap which is this vector is nothing but AOP the vector from origin OA to OB plus this 

vector, but pre multiply by rotation matrix because this vector is described in the {B} 

coordinate system we cannot add two vectors in two different coordinate system, but 

fortunately we can just pre multiply by a rotation matrix and get this vector in the {A} 

coordinate system and then we can add ok.  

As meant as mentioned AOB locates the origin OB with respect to OA. So, this is the general 

transformation which consists of a rotation [𝑅]𝐵
𝐴  and a translation AOB ok. So, from this, 

we can look at this very important concept called homogeneous transformation. 
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So, we have combined translation and orientation – it is a vector equation, but let us see 

which we can write it in a more compact form and what do we do? We define a new vector 

AP which is Ap and we concatenate it with 1. So, Ap  was a 3 by 1 column vector we add 

one more row of 1.  



  

So, it becomes a 4 by 1 column vector. Likewise B capital P is Bp, small p, and we have 

another row which is 1. This AP and BP are called 4 by 1 homogeneous coordinates ok. 

Strictly speaking in this instead of 1 if it was some other variable called w. So, we have X, 

Y, Z for the top 3 and w then it is homogeneous, but w could be equal to 1 which is what 

we do in robotics.  

So, we can rewrite this vector equation Ap is equal to AOB + A
B[R] Bp,  adding one more 

equation which is obviously true, which is 1 equals 1. And then we have AP is some matrix 

into BP and what is this matrix? The top 3 by 3 is the rotation matrix, the last column is 

AOB and the last row is 0 0 0 1.  

So, if you expand this, you can show that this equation and this equation are exactly the 

same. So, this 4 by 4 matrix is labelled as [T] and this is called as the 4 by 4 homogeneous 

transformation matrix. This is a very important matrix in robotics, it is also a very 

important matrix in many other fields. 

So, for example, in computer graphics and computer vision the last row is not 0 0 0 1. If 

you put some numbers here, the last row can be used to show perspective and if you do 

not use 1, but you use some numbers along the diagonal and this point and this 4,4 element 

also we can represent scaling ok.  

So, what is perspective? Everybody knows. So, when you look at 2 parallel lines it looks 

like as if it is meeting at infinity that is the perspective effect and you can show perspective 

or you can implement perspective and scaling by changing the last row. So, in robotics, 

the top 3 x 3 [𝑅]𝐵
𝐴  is the rotation matrix AOB is the translation. If the top 3 by 3 matrix sub-

matrix is identity then we have pure translation ok. 

If AOB  is 0 and we have something here then it is pure rotation ok. So, this transformation 

matrix contains pure translation, pure rotation and by suitable modification of the last row 

can be also shown to contain the effect of perspective and scaling. 
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Let us look at some of the properties of this 4 by 4 homogeneous transformation matrix. 

So, first thing is the inverse of [𝑇]𝐵
𝐴  which is denoted by [𝑇]𝐵

𝐴 −1can be obtained in closed 

form. I do not need to use brute force elimination for this 4 by 4 transformation matrix.  

The top rotation matrix in this [𝑇]𝐵
𝐴 −1 inverse is the transpose of the rotation matrix and 

the last column is - [𝑅]𝐵
𝐴 𝑇 AOB. So, this will be a homework problem you can show that 

the inverse of the 4 by 4 homogeneous matrix can be easily obtained. 
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You can have two successive transformations we can go from A to B1, B1 to B. So, in this 

case what is the transformations? It is both translation and rotation. So, then the resultant 

transformation [𝑇]𝐵
𝐴  is nothing but the product of these two homogeneous transformation 

matrices. So, [𝑇] [𝑇]𝐵
𝐵1

𝐵1
𝐴 .  

Moreover, we can have closed form expressions for this resultant successive 

transformations. The rotation matrix on the top is nothing but the product of the two 

successive rotation matrices and the translation is again basically summation of two 

vectors in proper coordinate system. So, B1OB + AOB1, but B1O B cannot be directly added 

to AOB1, we pre multiply by [𝑅]𝐵
𝐴 and then we can add. 

So, likewise if you have n successive transformations A to B1, B1 to B2 finally, Bn-1 to B, 

the resultant transformation is nothing but the product of the 4 by 4 homogeneous 

transformation matrices in the order of the transformations - in order of the translation and 

orientations that you have done. 
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Let us continue the transformation matrix is a 4 by 4 transformation matrix it is of 

dimension 4 by 4. So, clearly there must be 4 eigenvalues. So, it turns out that the 

eigenvalues are +1, +1 repeated eigenvalues and e to the power ± i ϕ. So, e to the power ± 

i ϕ is cos ϕ ± i sin ϕ and what is ϕ? It is the same as what we obtained for the rotation 

matrix.  



  

So, it is some cos-1 of the trace of matrix and so on minus 1 divided by 2. The eigenvectors 

corresponding to +1 and + 1 is only one -- this is very interesting property. So, we have 

two repeated eigenvalues, but there is only one k - one axis of rotation there is no other 

eigen vector ok.  

[𝑇]𝐵
𝐴  this homogeneous transformation matrix represents the general motion of a rigid 

body in 3D space. Why? Because it contains both the translation remember AOB and the 

rotation. So, it contains all the 6 parameters which are 6 degrees of freedom of the rigid 

body in 3D space.  

So, we should be able to figure out what are the 6 parameters in this [𝑇]𝐵
𝐴 transformation 

matrix and the answer is reasonably interesting. That we can show that the general motion 

of a rigid body can be represent as a twist what is a twist? It is a rotation about a line and 

translation along the line. 

So, the direction of the line is this kx, ky, kz, the axis, the location of the line in 3D space 

can be shown to be derived from k and some Y x k vector ok. So, where Y is obtained from 

the identity matrix, transpose of the rotation matrix the translation and 2 into (1 -cos ϕ) 

division. So, there are four independent parameters in k and Y x k why? There are 2 in this 

k see unit vector and Y x k is perpendicular to k ok. So, k dot Y x k is equal to 0 ok. 

There are four independent parameters in the location of a line, the line in 3D space is 

located by four independent parameters if you think about it. So, we can have y = m1 x+ 

b1 and z = m2 x + b2. So, m1, m2, b1, b2 four independent parameters describe a line in 3D 

space and a nice way is to show in terms of k and Y x k ok. 

The last two independent parameters are rotation of the angle ϕ  which is also an 

independent parameters and the translation along the line which is AOB dot k. So, there are 

6 independent parameters here 4 in the line, 1 rotation and 1 translation. So, you can look 

at more details about twists eigenvalues and eigenvectors in several papers, we can look 

at a paper which we published in 2006. 
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So, in summary, we first need to define a right-handed coordinate system X, Y and Z which 

is the reference coordinate system to represent a rigid body in 3D space. Coordinate system 

means X, Y, Z and origin OA we are going to label all these coordinate systems with {A}, 

{B}, {C} etcetera because there will be many such coordinate systems. 

Rigid body in 3D space has 6 degrees of freedom with respect to another rigid body {A}. 

So, 3 for position and 3 for orientation. So, the rigid body B is basically conceptually 

identical to a coordinate system {B}. We are not really interested in the shape and size and 

weight and other properties of the rigid body at this stage. 

The position of a rigid body is nothing but the position of a point of interest on the rigid 

body with respect to the coordinate system {A}. So, these are most of the time represented 

by three Cartesian coordinates px, py, pz which are nothing but the projections of this vector 

Ap from the origin of the reference coordinate system to the point and projecting this vector 

along X, Y and Z axis. 

Orientation of a rigid body can be described in many ways, first a 3 by 3 rotation matrix, 

second angle ϕ and k or the angle axis form. We can also describe using 3 Euler parameters 

and finally, using sorry 3 Euler angles and we can finally, describe using Euler parameters 

and quaternions. There are algorithms available to convert one representation to another. 



  

If you combined both the translation and orientation or position and orientation of a rigid 

body, they can be combined in this 4 by 4 homogeneous transformation matrix which 

represents the position and orientation in a compact manner and as shown last slide that 

the properties of [𝑇]𝐵
𝐴  can be related to a screw. Basically a line about which this rigid 

body rotates and about which it translates.  

So, with this we will come to an end of this first lecture, in the next lecture we will look at 

how to represents the elements of a robot basically the joints and links which make up the 

robot. 


