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Welcome to this NPTEL lectures on Robotics. In these 3 lectures, we will look at modeling 

and analysis of wheeled mobile robots. In the last lecture, we had looked at wheeled mobile 

robots on flat terrain. And I had shown you that wheel slip is an important component of 

modeling and simulation. And we need to take into account wheel slip in a wheeled mobile 

robot. In this lecture, we will look at wheeled mobile robots on uneven terrain. 
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So, the contents of this lecture are, I will quickly introduce this topic. We look at modeling 

of a torus-shaped wheel and uneven terrain, how do you look at the uneven terrain, how 

do you model the uneven terrain. We will look at single wheel on an uneven terrain. We 

will look at the kinematic and dynamic modeling and simulations. And then we will look 

at the three-wheel wheeled mobile robot which can traverse uneven terrain without slip 

ok. 
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So, most WMRs are used in industrial environments which are flat and structured surfaces. 

However, there is a recent interest in uneven and rough terrains and off road environments. 

So, for example, in planetary exploration, the ground of the terrain cannot be flat like a 

road. A few years back there was also this DARPA grand challenge to develop a fully 

autonomous ground vehicle capable of completing an off road course in limited time ok.  

This was a very very important channel challenge set by DARPA in USA. And then lot of 

technologies were developed, to make sure that a wheeled mobile robot or a car in that in 

this case could traverse this uneven terrain autonomously. Nowadays, uneven terrains are 

also showing up in luxury cars ok. So, there are cars in which when the car is going on a 

bend ok and the road is curved. However, the person sitting on the car will still think that 

it he is on horizontal plane ok. 

So, in these three conditions, we need to look at uneven terrain and how to model and 

simulate motion on uneven terrain. In a flat terrain, the vehicle platform has 3 degrees of 

freedom ok. So, it consists of position 𝑥 and 𝑦 and some orientation of the platform with 

reference to a fixed coordinate axis.  

In an uneven terrain, the vehicle platform can possibly have all three components of 

translation, and all three components of orientation. So, it can move in 𝑥 and 𝑦 and also 𝑧, 

and it can also orient in two other angles. So, we have already one side, but it can also have 

two other angles. So, it can have up to 6 degrees of freedom. 
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Let us continue. If you have two wheels connected by a fixed length axle 𝐴𝐵 ok, and the 

point of contacts are 𝑃 and 𝑄 here ok, this should be 𝑄. So, if the points of contact are on 

an uneven terrain, this length 𝑃𝑄 is variable ok. So, this wheel can be on top of a little bit 

uneven terrain, this 𝑄 will be at some other place. At some other instant, when it is almost 

flat, the 𝑃𝑄 distance will be different. 

More importantly this length 𝑃𝑄 ≠ 𝐴𝐵 ok. If you think of a wheel on flat surface, the two 

points of contacts ok between on the flat surface and the axle length would be more or less 

same ok, and always more or less constant. The variation of this length 𝑃𝑄 requires a 

velocity component along the axle 𝐴𝐵 ok, and along the normal.  

So, this was observed by Waldron – a well-known robotics researcher in 1995. And he 

also showed that no instantaneous center compatible with both wheels will be present ok. 

And hence if you have these two wheels with the fixed length axle going on an uneven 

terrain, wheel slip will occur ok. There is nothing you can do; there is no instantaneous 

center ok. 

Remember in the case of the tricycle or even in the case of a three-wheeled vehicle, I 

showed you there must be an instantaneous center for all the three wheels ok; otherwise, 

there will be wheel slip. So, in this example, Waldron showed that if these two wheels if 

the fixed length axle is moving on uneven terrain, this point of contact is changing ok. This 

length is different from this 𝐴 and 𝐵, and then wheel slip will occur because there is no 

instantaneous center.  

And wheel slip leads to what is called as localization error ok, and it is waste full of fuel. 

So, if you are slipping, then you are wasting fuel at the same place, you are not going 

forward or going anywhere. 
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So, to overcome wheel slip, various people have suggested various techniques. One was 

what is called as a variable length axle ok. So, in this figure, as this point of contact 𝑃 and 

𝑄 are changing, if there is a way to change this length of the axle between 𝐴 and 𝐵, they 

showed that we can overcome slip. We can also add a passive prismatic joint in the axle 

ok.  

To change this length actively is very complicated, but we can have a passive prismatic 

joint. And this prismatic joint changes axle length by required amount to ensure compatible 

instantaneous centre for both wheels.  

At large inclination, gravity causes the prismatic joint to change length on its own ok in 

an undesired way, so which is not a good idea. If you have actuated prismatic joint, then 

it is very very hard to control. Because we need to sense slip, and then we have to make 

sure that the length is changing properly to minimize that slip.  

So, in this talk, this is the work of one of our student. We introduce a new concept of a 

WMR capable of traversing uneven terrain without slip ok, and this is what I am going to 

show you. 
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So, the main concepts which appeared in papers ok longtime back – 15 years back are the 

following. We will use a torus-shaped wheel ok. So, if you have a torus-shaped wheel, the 

wheel has a single point contact with the uneven terrain ok. And the point of contact can 

go along the lateral direction of the torus.  

When the wheel is rotating rolling forward the point of contact can go along the 

circumference of the big diameter, and it can when the wheel is tilting it can go in the 

smaller circle ok. So, this torus-shaped wheel is connected to the WMR body with passive 

joints. 

So, this passive rotary joints allow lateral tilting, and the wheel ground contact distance 

𝑃𝑄 to change. So, as the wheel tilts the distance between the two contact point is changing, 

the axle length remains the same ok. We are not changing the length of the axle.  

So, we can have three actuated joints for a 3 DOF model in a WMR. The rear wheels are 

driven and can tilt passively not controlled, and the front wheel is steered and can roll 

freely ok. So, this is one big part of the idea. 

So, we have torus-shaped wheels ok. This torus-shaped wheels are connected to the body 

of the platform using passive rotary joints. There are three of these actuated joints. The 

two rear wheels are driven, and can also tilt laterally and the front wheel can roll, but can 



 

 

be steered. So, now we need to worry about how this torus-shaped wheel contacts with the 

uneven terrain ok.  

So, we used set of equations which was developed even older by a researcher called 

Montana in 1988 which models the wheel-ground contact point ok. And we will show you 

that we will model the wheeled mobile robot as a parallel robot at each instant of time ok. 

So, this is the main ideas. 
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So, let us continue. How do we model the surface and uneven terrain? So, a surface in 3d 

space can be represented in parametric form which is (𝑥, 𝑦, 𝑧)𝑇 as a function of 𝑢 and 𝑣 

ok. So, 𝑢 and 𝑣 are the two parameters which determine the surface ok. So, if you give me 

any 𝑢 and 𝑣 on this 𝑢 − 𝑣 plane, it match to a point on the surface which is (𝑥, 𝑦, 𝑧)𝑇 by 

this equation.  

At any point on this surface, we can define a tangent plane. The tangent plane is defined 

by two vectors 𝑓𝑢 and 𝑓𝑣, 𝑓𝑢 =
𝜕𝑓

𝜕𝑢
, and 𝑓𝑣 =

𝜕𝑓

𝜕𝑣
. We can also find the normal to this tangent 

plane which is the cross product of 𝑓𝑢 and 𝑓𝑣. And we can normalize it to get a unit normal.  

So that three vectors, 𝑓𝑢 made into a unit vector, 𝑓𝑣 made into a unit vector, and 𝑛 form a 

right handed coordinate system. It may turn out that this 𝑓𝑢 and 𝑓𝑣 are not orthogonal, 

sometimes the equation of a surface is such ok, then we need to find an orthogonal set in 

which we can also find. 



 

 

So, we pick the unit vector along 𝑓𝑢 as one of them. Then we pick the normal we pick the 

normal vector which is 𝑓𝑢 × 𝑓𝑣, but the 𝑓𝑣 vector we do not use we use 𝑛 × 𝑓𝑢. So, this is 

like 𝑥, this is like 𝑥 cross something which lies in the plane, and the 𝑦 = 𝑧 × 𝑥. So, this 

gives you a right handed coordinate system. But we in some surfaces, we can directly use 

𝑓𝑢 and 𝑓𝑣 unit vectors along the two tangents. 
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So, let us look at a typical example of a torus-shaped wheel ok. The equation of a torus 

can be given in this form. So, 𝑥 = 𝑟1 cos 𝑢𝑤, 𝑦 = cos 𝑣𝑤 (𝑟2 + 𝑟1 sin 𝑢𝑤), and 𝑧 =

sin 𝑣𝑤 (𝑟2 + 𝑟1 sin 𝑢𝑤). So, 𝑢𝑤 and 𝑣𝑤 are the parameters which describe this torus. So, 

𝑢𝑤 is equal to constant – it is a circle which is shown here; 𝑣𝑤 equals constant is this bigger 

circle ok.  

So, a torus can be obtained by taking this small circle and rotating about or moving it along 

this big circle. The 𝑟1 and 𝑟2 are the radius of the small circle and this big circle ok. The 

subscript 𝑤 on the parameters 𝑢 and 𝑣 denote the wheel ok. So, the uneven terrain can also 

be represented as a surface, we can get (𝑥, 𝑦, 𝑧)𝑇 as a function of some 𝑢𝑔 and 𝑣𝑔; 𝑢𝑔 and 

𝑣𝑔 are the two parameters which describe this uneven terrain.  

So, remember 𝑢 and 𝑣 maps to the surface. So, this is we are going to distinguish the wheel 

parameters with 𝑢𝑤, 𝑣𝑤, and the ground uneven terrain parameters with 𝑢𝑔 and 𝑣𝑔. So, and 

any point on the wheel or on the surface can be denoted by a vector from a reference 



 

 

coordinate system which is 𝒑0 . So, the point of contact within this torus-shaped wheel 

and this uneven terrain is given by this vector. 
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So, from the parametric equation of the surface which is (𝑥, 𝑦, 𝑧)𝑇 = 𝑓(𝑢, 𝑣), we can 

obtain the second partials of this function ok. So, we can do 𝑓𝑢𝑢, 𝑓𝑢𝑣, and 𝑓𝑣𝑣 which was 

nothing but the second partial derivatives of 𝑓 with respect to 𝑢 and 𝑣. We can also find 

the partial of 𝑛 normal vector with respect to 𝑢 and 𝑣. So, following Montana, he derived 

these equations, and he used this formulation to discuss the point of contact between two 

surfaces.  

We can first define something called as a metric which is [𝑀] = [
|𝑓𝑢| 0

0 |𝑓𝑣|
]. We can also 

obtain a curvature form ok which is [𝐾] = [

𝑓𝑢⋅𝑛𝑢

|𝑓𝑢|2
 

𝑓𝑢⋅𝑛𝑣

|𝑓𝑢||𝑓𝑣|

𝑓𝑣⋅𝑛𝑢

|𝑓𝑢||𝑓𝑣|

𝑓𝑣⋅𝑛𝑣

|𝑓𝑣|2

].  

So, this is very similar to the curvature of a surface ok. We can define the curvature of a 

surface in terms of the derivatives of the normal with respect to 𝑢 and 𝑣 along this 𝑓𝑢 and 

𝑓𝑣 directions. We can also find how the surface is bending out of the plane ok and that is 

typically given by the second derivative of this function ok, [
𝑓𝑣⋅𝑓𝑢𝑢

|𝑓𝑢|2|𝑓𝑣|

𝑓𝑣⋅𝑓𝑢𝑣

|𝑓𝑣|2|𝑓𝑢|
]. So, this 

tells you how the second partial derivatives of 𝑓 changes in some in directions 𝑓𝑣 ok, out 

of the plane.  



 

 

So, metric in a sense defines distance, curvature defines in plane bending, and torsion 

determines out of plane bending of the surface ok. So, those of you who have done any 

geometric modeling course where you have looked at the models of a surface, similar ideas 

are there.  

So, we have the first fundamental form, and then we have the second fundamental form 

where you have the second derivatives. Those of you are interested can go look at some 

modules of how to model surfaces using partial derivatives of the function which describes 

the surface ok. 
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So, in our case, we have this torus-shaped wheel. We can find the metric [𝑀𝑤] =

[
𝑟1 0
0 𝑟2 + 𝑟1 sin 𝑢𝑤

]. We can find the curvature form which is [𝐾𝑤] = [

1

𝑟1
0

0
sin 𝑢𝑤

𝑟2+𝑟1 sin 𝑢𝑤

]. 

And the torsion form, [𝑇𝑤] = [0
cos 𝑢

𝑟2+𝑟1 sin 𝑢𝑤
] because we know the equations of the torus. 

We can easily find this metric curvature form and the torsion form for the wheel. 
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For the uneven terrain we assume that it is smooth and hard. So, basically we are not going 

to consider terrains which are sandy or dirt or with discontinuities ok. Most often explicit 

or parametric form equation of a surface is not available, especially of an uneven terrain. 

We can obtain what is called as a local elevation of a point from measurements ok. So, 

there could be a scanner on this mobile robot which looks forward ok.  

And then it finds what is the height from some reference of each point ok. To obtain a 

function from these measurements, it is ill posed ok there are it is non-unique, but we can 

use what are called as bi-cubic or B-spline surfaces. And obtain the bi-cubic surface patch 

which is 𝑓(𝑢, 𝑣) = ∑ ∑ 𝑎𝑖𝑗𝑢𝑖𝑣𝑗3
𝑗=0

3
𝑖=0 , where (𝑢, 𝑣) ∈ [0,1]. 

So, if you give me four corner points of this patch, I can estimate or I can find the equation 

of a surface ok. And then you can connect these patches smoothly to make up the whole 

surface ok that is one way of doing it. So, we take measurements of four points find the 

bi-cubic patch, and then find the surface of this surface between these four points smooth 

surface, and then we can connect four in a patches like this to make up the whole surface. 

You can also do higher order continuity ok. And this can be obtained using NURBS. So, 

we are not going to do this. So, what we have done or what the student did was he use 

something called MATLAB Spline Toolbox ok. So, there is a tool box in MATLAB which 

can find surfaces given points and so on. So, and then from this Spline Toolbox, we can 



 

 

find the partial derivatives of the surface to compute metric, curvature and torsion form 

ok. 

So, we assume some points on this surface we fit this surface using bi-cubic patches or 

NURBS, and then we use this Spline Toolbox in MATLAB to find the partial derivatives 

of the surface which were generated. And then from that we find this [𝑀𝑤], [𝐾𝑤] and [𝑇𝑤] 

ok, metric, curvature and torsion form. 
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So, let us look at the few examples. So, this is the surface which is generated using bi-

cubic ok uneven surface. So, some points were chosen, and then you fitted small patches, 

and then you put them together properly such that you get a surface. So, we can generate 

in MATLAB surfaces which look like this ok.  

So, this is 𝑥, 𝑦 and 𝑧. We can also generate slightly smoother or some other way of 

generating surface. So, this is the B-spline uneven surface; this is the bi-cubic uneven 

surface. So, MATLAB allows you to do all this ok. 
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So, now once we know how to generate an uneven surface, now let us look contact between 

two surfaces. So, I have one surface here, and I have another surface here – surface 1, 

surface 2. And they are contacting at a point 𝒑0  from some reference coordinate system 

ok. So, these two surfaces can be described with respect to two reference coordinate 

system.  

So, {𝐶𝑟1
} is for surface 1; {𝐶𝑟2

} is for surface 2. So, basically in these coordinate systems, 

I know the equation of the surface. So, I know all these points ok. I know what is the shape 

of the surface. So, we have parametric equations for these surfaces 𝑓(𝑢1, 𝑣1) for the surface 

1, and 𝑓(𝑢2, 𝑣2) for the surface 2. At the contact point between these two surfaces, we fix 

two other coordinate systems which are {𝐶𝑙1
} and {𝐶𝑙2

}. 

So, {𝐶𝑙1
} has contained some X, Y, and Z-axis; {𝐶𝑙2

} also contained some X, Y and Z-axis 

ok. The angle between the X-axis of {𝐶𝑙1
} and {𝐶𝑙2

} is denoted by 𝜓, we will need this 

variable later on. So, what do we have? We have (𝑢1, 𝑣1) at this point which relates the 

coordinates of this contact point with respect to the surface 1 coordinate system.  

We have (𝑢2, 𝑣2) which obtains the coordinates of these points with respect to the surface 

2 coordinate system. And then we have this angle 𝜓 which denotes the orientation of the 

two X-axis because just the point is not enough I could have rotated these two X-axis and 

still the point could be the same. 



 

 

So, we need 5 degrees of freedom to represent the contact between these two surfaces, so 

basically 𝑢1, 𝑣1, 𝑢2, 𝑣2 and 𝜓. You can see just (𝑢1, 𝑣1), and (𝑢2, 𝑣2) is not enough ok. So, 

we defined a metric [𝑀], a curvature [𝐾], and torsion [𝑇] for the two surfaces at this point 

𝒑0 . 
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So, the contact equations obtained by Montana relates the derivative of 𝑢1̇, 𝑣1̇, 𝑢2̇, 𝑣2̇ and 

𝜓̇ to the linear and angular velocity components 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , 𝜔𝑥, 𝜔𝑦, 𝜔𝑧. So, what are these 

𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 that is the velocity of one of the surfaces with respect to the other 

surface ok.  

And he showed that this (𝑢1̇, 𝑣1̇)𝑇 can be related to the metric, it can be related to the 

curvature form, and it can be related to the relative torsion form ok between these two 

surfaces. And also it contains 𝑣𝑥, 𝑣𝑦, 𝜔𝑥, 𝜔𝑦, and also 𝜔𝑧.  

So, let us not go to the details of this equation, except to argue that there is a relationship 

between 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 – the velocity of surface 1 with respect to surface 2, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 – 

angular velocity of surface 1 with respect to surface 2.  

And the rate of change of these parameters which describe the two surfaces, so 

𝑢1̇, 𝑣1̇, 𝑢2̇, 𝑣2̇ and 𝜓̇. And they contained the metric for surface 1, the metric for surface 2, 

the rotation matrix in terms of 𝜓 which rotates the two X-axis, the curvature form of 



 

 

surface 1, the torsion of surface 1, the torsion of surface 2, and we have this [𝐾∗] which 

relates the two curvature forms ok. So, [𝐾∗] = [𝑅𝜓][𝐾2][𝑅𝜓]
𝑇
. 

So, and the rotation matrix corresponding to [𝑅𝜓] = (
cos 𝜓 − sin 𝜓

− sin 𝜓 − cos 𝜓
). So, these 

equations were derived by Montana longtime back. And as I said it relates the rate of 

change of the parameters, and 𝜓 as a function of the relative translation and angular 

velocity of one surface with respect to another surface. So, these equations are called 

kinematics of contact equations. 
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We can also invert the equation. So, if I give you 𝑢1̇, 𝑣1̇, 𝑢2̇, 𝑣2̇ and 𝜓̇, can we find out 

𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , 𝜔𝑥, 𝜔𝑦, 𝜔𝑧? Yes. And as you see it sort of makes sense in the contact equation, 

the Z component should be 0 because otherwise the two objective will not be in contact 

ok. So, 𝑣𝑧 = 0 is a holonomic constraint to ensure that the surface is stay in contact ok.  

So, these five equations need to be numerically integrated with initial conditions to solve 

these contact equations ok. 
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So, the contact equations are similar to constraint equation for joints. Remember for a 

rotary joint I showed you that there are five constraint equations; in this case two surfaces 

in contact generate five contact equations. The main differences these equations contains 

derivatives with respect to time.  

In the case of a rotary joint, if you go back and remember I said that the position vector 

from both sides are same, and the orientation is related by the rotation matrix of one link, 

and the second link, and there is this rotation at the joint ok. 

However, here there are derivatives of 𝑢 and 𝑣 and 𝜓. There are two main types of contacts 

which are possible. One is pure rolling which means that 𝑣𝑥 = 𝑣𝑦 = 0. So, the two surfaces 

there is no 𝑣𝑥 and 𝑣𝑦, relative 𝑣𝑥 and 𝑣𝑦. We can also have pure sliding which is 𝜔𝑥 =

𝜔𝑦 = 0; 𝑣𝑧 is already 0. So, in pure rolling, there is no linear velocity at the point of contact 

between the two surfaces. 

So, if you have pure rolling, we have 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0. So, there are three degrees of 

freedom in velocities. Very much unlike a three degree of freedom spherical joints ok, in 

a spherical joint, we had 𝑥 = 𝑦 = 𝑧 also from both sides of the both links.  

However, they were holonomic constraints ok. Pure rolling, however, is non-holonomic 

ok, because we have 𝑣𝑥 = 𝑣𝑦 = 0, and the 𝑥, 𝑦 and 𝑧 coordinates of the contact point can 

change as the rolling proceeds ok. 



 

 

In a spherical joint, the 𝑥, 𝑦, 𝑧 coordinates from the two parts or two sides are same. It does 

not change. Here, however, if you think of the one surface rolling purely with respect on 

another surface, then the point of contact will change – the 𝑥, 𝑦, 𝑧 point will change. 

However, the velocities are 0 the relative velocity between the two contact points are 0 ok 

that is again a feature of non-holonomic constraint. It restricts the space of velocities, but 

it does not restrict the space of the generalized coordinates ok. 
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With all this math and you know machinery that we have developed, how to represent the 

surface, how to represent the kinematics of contact, we can now see model the single wheel 

on an uneven terrain. So, we have {𝐶𝑟2
} which was the second reference coordinate system 

of one of the surface.  

This could be the same as the fixed reference coordinate system. {𝐶𝑟1
} which was the first 

surface ok that is fixed at the wheel center ok 𝐶, and that is also labeled as the coordinate 

system {𝑤}. 

The {𝐶𝑙1
} and {𝐶𝐿2

} which are the point of contact are labeled as 2 and 1 in this example. 

And 3 and 4 are as shown in the figure ok. So, 3 is at the center of this small circle or along 

the center line of this torus, and 4 is at the center of this wheel ok. So, how many coordinate 

systems we have?  



 

 

We have a {0} coordinate system, we have a first coordinate system, we have a second 

coordinate system first and second are at the point of contact, 3 is at the center of this 

wheel, and 4 is at the center, 𝐶 at this place ok. And then we have this 𝑋̂𝑤, 𝑌̂𝑤, 𝑍̂𝑤. 
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So, once we have all these coordinate systems we can find the homogeneous 

transformation matrices between 0 and 1, 1 and 2, 2 and 3, 3 and 4, and 4 and 𝑤 ok, very 

similar ideas to what we have discussed earlier. So, the homogeneous transformation 

matrix between the fixed and 1 which is the uneven terrain are given by some rotation 

matrix. And this rotation matrix contains 𝑙1, 𝑙2, 𝑙3, 𝑚1, 𝑚2, 𝑚3, 𝑛1, 𝑛2, 𝑛3.  

This is the direction cosines of a coordinate system on the uneven terrain with respect to 

the fixed coordinate system. And then you have a point of contact which is described by 

𝑢𝑔, 𝑣𝑔 and z which is function of 𝑢𝑔, 𝑣𝑔. Between 1 and 2, we have a rotation of the X-

axis. Remember the angle 𝜓 showed the or denoted the rotation of the X-axis ok, so that 

transformation matrix will contain only 𝜓. 

Between 2 and 3, now, we have this location of the wheel ok. So, we have sin 𝑢𝑤, cos 𝑢𝑤 

and so on. So, this is let us go back and see what is 2 and 3. So, between 2 and 3, only 𝑢𝑤 

will show up ok. Between 3 and 4, 𝑣𝑤 will show up ok; 𝑢𝑤 and 𝑣𝑤 are the parameters 

which describe the wheeled surface ok. 



 

 

And then we have one 𝑟1 which is this, this radius of the small direction; and 𝑟2 which is 

this radius. And they will show up in between 2 and 3, you will have a −𝑟1; and between 

3 and 4, we have a −𝑟2. So, if you think about it, this is correct. Between 2 and 3, it is like 

a rotation about Y-axis. So, we have rotation metrics here, and the translation along the Z-

direction. Between 3 and 4, it is a rotation about an X-axis and then there is a translation 

of −𝑟2 along Z-direction. 

And between 4 and 𝑤, it is very similar to an identity matrix except that the directions are 

slightly different. So, the X-axis is opposite direction in the fourth and {𝑤} coordinate 

system. The Y-axis is at the same place, the Z-axis is again in the opposite direction. This 

is basically due to the choice of the coordinate system.  

So, we can find basically from 0th coordinate system which is the fixed coordinate system 

to all the way to the wheeled coordinate system. All this five 4 × 4 homogeneous 

transformation matrices ok. Remember we had used homogeneous transformation 

matrices for serial robots, for parallel robots, we can also use it for mobile robots. 
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So, the transformation matrix between {𝑤} and {0} can be written as product of these five 

matrices. And then we can also find the contact equations for the single wheel rolling 

without slip. So, what is rolling without slip 𝑣𝑥 = 𝑣𝑦 = 0. So, we are left with 𝜔𝑥 and 𝜔𝑦, 

and then we have these 6 equations ok. So, 𝑤 denotes the wheel, 𝑔 denotes the ground.  



 

 

So, we have a metric for the wheel, metric for the ground, a curvature for the ground, 

curvature form for the wheel and so on, a torsion for the wheel and torsion for the ground. 

These are the equations derived by Montana we are just going to use them. And assume 

that it is rolling without slipping. 

So, hence 𝑣𝑥 = 𝑣𝑦 = 0. So, what are the three inputs in this equation? Which is 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 

ok. So, the wheel can rotate about the X-axis, Y-axis and Z-axis. So, we can integrate these 

equations to obtain 𝑢𝑤, 𝑣𝑤, 𝑢𝑔, 𝑣𝑔, and 𝜓. So, these are equations input is given, the right 

hand side is given, we can integrate numerically and find out 𝑢𝑤 , 𝑣𝑤, 𝑢𝑔, 𝑣𝑔 and 𝜓. 

And once we find 𝑢𝑤, 𝑣𝑤 , 𝑢𝑔, 𝑣𝑔 and 𝜓, we can find the point of contact ok because the 

equations of the uneven surface and equation of the wheel are in terms of 𝑢𝑤 , 𝑣𝑤, 𝑢𝑔 and 

𝑣𝑔. And 𝜓 denotes the orientation of the X-axis of the two coordinate systems at the point 

of contact. 
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So, let us see some numerical results. So, we have generated the bi-cubic patch earlier 

which were shown ok. Let us assume 𝑟1 = 0.05 m, 𝑟2 = 0.25 m; 𝑟1 is small, 𝑟2 is big. And 

the wheel tilts as it rolls ok. So, you can plot integrate this equation you can see 𝑢 as a 

function of time, 𝑣 and 𝜓 also as a function of time. So, 𝑢 changes like this, 𝑣 changes like 

this, and 𝜓 changes like this ok. So, these are some numerical simulation results. 
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We can also see what is happening to the wheel as it is moving. So, we can find what is 

the contact point which is the dark solid line, it starts from somewhere here (0,0) and 

comes and ends up here in this dark solid line. The wheel center location is also known, 

because we know all these 4 × 4 homogeneous transformation matrices ok. So, using that, 

we can find out the wheel center with respect to the {0} coordinate system. And we can 

plot the wheel center. 

So, what you can see is that the wheel center and the contact point do not trace the same 

path ok. If you had a flat disk which was rolling on the surface, it was rolling straight 

addressing a curve. The wheel center and the contact point will be same ok, because it is 

always vertical. In this case, because it is uneven terrain it is different. 
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We can also perform a dynamic analysis of a single wheel. So, we can derive the equations 

of motion of a torus-shaped wheel moving on uneven terrain using the Lagrangian 

formulation ok. We find the kinetic energy, we find the potential energy, and then we take 

those derivatives in the Lagrangian formulation, and we derive the equations of motion. 

Additionally, we have these non-holonomic constraints which are that (𝑣𝑥, 𝑣𝑦)
𝑇

=

−[𝑀𝑤](𝑢𝑤̇, 𝑣𝑤̇)𝑇 + [𝑅𝜓][𝑀𝑔](𝑢𝑔̇, 𝑣𝑔̇)
𝑇

= (0,0)𝑇. We can derive 𝑣𝑥 and 𝑣𝑦, because 

remember the contact equations can go from both sides. And we are saying it is not slipping 

hence 𝑣𝑥 = 𝑣𝑦 = 0. So, we have these two non-holonomic constraint equations.  

And this can be reorganized similar to what we had done in the dynamics lectures as 

[Ψ(𝑞)]𝑞̇ = 0. So, we have kinetic energy, we have potential energy of the wheel, and we 

have this constraint ok. We can find the kinetic energy of the wheel by finding the 

[𝑅̇]
𝑤

0
[𝑅]𝑤

0 𝑇, there is no propagation formula as such.  

The linear velocity of the wheel is derivative of the position vector of the center of the 

wheel. Do we know this? Yes, because we know the 4 × 4 homogeneous transformation 

matrices. So, the kinetic energy is 𝐾𝐸 =
1

2
ΩT[𝐼]Ω +

1

2
𝑚𝑤 𝑉0

𝑤
2. So, the center or this CG 

of the wheel is where the {𝑤} coordinate system is. 



 

 

Potential energy is the height of the CG from the ground and it is given by 𝑃𝐸 = 𝑚𝑤𝑔𝑧𝑤𝑐. 

And the equations of motion will look like [𝑀(𝑞)]𝑞̈ + [𝐶(𝑞, 𝑞̇)]𝑞̇ + 𝐺(𝑞) = 𝜏 +

[Ψ(𝑞)]𝑇𝜆, exactly the same form as what we had when we looked at the dynamic equations 

for four bar mechanism and constraint equations ok. 
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So, we can also simulate these equations. We have to assume some numbers. So, we 

assume the same 𝑟1 and 𝑟2 as for the single wheel. So, we have 0.05 meters, and 0.25 

meters, but now we need some mass of the wheel which is 1 kg and we also need some 

movement of inertia of the torus-shaped wheel. So, we are going to assume that these are 

the principal movements of inertia which is some 
1

4
𝑚𝑤(3𝑟1

2 + 4𝑟2
2), 

1

8
𝑚𝑤(5𝑟1

2 + 4𝑟2
2), 

1

8
𝑚𝑤(5𝑟1

2 + 4𝑟2
2). 

So, these are taken from some textbook ok what are the moments of inertia 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 for 

a torus. The initial conditions for simulation must satisfy the non-holonomic constraints. 

And we will simulate when there are no external forces. So, basically the torus-shaped 

wheel rolls down under gravity on the surface as shown next ok. 
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So, we have this B-spline surface which was created earlier ok or we can create again. We 

will put the wheel at some place and see how it rolls down ok. So, there is no wheel torque, 

but we are going to solve the equations of motion for this surface. And then we can plot 

various things.  

So, the first plot is the contact point how it is changing as it is moving on this surface, and 

also the wheel center. So, as you can see they are not exactly same. So, the wheel is tilting 

and moving little bit while it is rolling down. 
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We can also see what is 𝑢, 𝑣 and 𝑤 for the wheel we can plot the 𝑢 which looks like this, 

𝑣 which looks like this, and 𝜓 which looks like this ok. We can plot the parameters 𝑢𝑤 , 𝑣𝑤 

and 𝜓 as a function of time. We can also see whether the slip velocities which is 𝑣𝑥 and 

𝑣𝑦 are indeed 0. So, we can plot 𝑣𝑥 and 𝑣𝑦 because we have the expressions for 𝑣𝑥 and 𝑣𝑦.  

And it turns out that these are indeed very close to 0 it is like 10−8. So, the slip components 

are very small 10−8 meters per second. And we also check that there is a conservation of 

energy ok. So, when it is rolling down the surface, there should be a conservation of energy 

potential plus kinetic energy should be constant. So, it was checked. 
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Next that we have now verified that we can simulate the motion of a single wheel on an 

uneven terrain, we will try to see and model a three wheeled mobile robot for traversing 

uneven terrain ok. So, what do we have? We have three torus-shaped wheels connected to 

a rigid platform with rotary joints ok. So, there are two possible configuration a platform 

with 3 degrees of freedom.  

In the 3 degree of freedom model, each wheel attached to the platform with two rotary 

joints ok. For rear wheel, one rotary joint is actuated by a motor making the wheel roll. 

For the front wheel, one rotary joint represents steering. For the rear wheel, one rotary 

joint is passive allowing lateral tilting about its axis perpendicular to the wheel axis. 

Remember it is a torus-shaped wheel.  



 

 

So, it can tilt laterally it with a passive degree of freedom. And for front wheel, one rotary 

joint represents free rolling of the wheel. So, the front wheel can be steered and it can roll 

freely. The lateral wheels can be driven, but tilt passively. If you have a 6 degree of 

freedom model, each wheel attached to a platform by 3 rotary joints 2 R joints in rear and 

front wheel as above.  

Additional R joint in the rear wheel allows for steering ok. So, in the 6 degree of freedom 

model all the wheels can be steered. An additional R joint in the front view allows lateral 

tilt. So, all the 3 wheels can be steered and also tilt allowed. 
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So, 3 degree of freedom model, there is a top platform, there is no bottom platform, but 

there are these three ground contact points 𝐺1, 𝐺2, 𝐺3 we will call this as a ground platform. 

So, except that the constraint between the ground and the wheel is non-holonomic. So, we 

are going to call it as non-holonomic joint ok. It is not a spherical joint.  

So, between the platform, there are two rotary joints; one in the rear wheels one of them is 

for driving and one of them represents lateral tilting. In the front wheel, one of them is 

rolling freely and steering ok. So, the wheel ground contact point has 3 degrees of freedom 

instantaneously right, 𝑣𝑥 = 0, 𝑣𝑦 = 0 because of no slip, and 𝑣𝑧 = 0. So, only the 

velocities are restricted.  



 

 

So, this is the non-holonomic joint. So, if you apply Grubler’s criteria to this mechanism 

to this parallel mechanism which is 6(𝑁 − 𝐽 − 1) plus the summation of degrees of 

freedom. You can see that this model of a mobile robot with wheel ground contact ok with 

no slip has 3 degrees of freedom instantaneously. 
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If you have three rotary joints at each leg or each wheel here, then you can see that the top 

platform has 6 degrees of freedom. Again the wheel ground contact points are 3 degrees 

of freedom. So, they are not really joints, but we are going to call them as non-holonomic 

joints. They restrict the velocities at the wheel ground contact point. So, we are going to 

study kinematics and dynamics of a 3 degree of freedom configuration. 



 

 

(Refer Slide Time: 46:23) 

 

So, in summary, a WMR with fixed length axle moving on uneven terrain will slip ok, 

because there is no instantaneous center. We can avoid the slip using variable length axles 

ok, and by allowing the wheel to tilt passively.  

We have used a torus-shaped wheel moving on an uneven terrain which we can model the 

torus-shaped wheel using simple kinematic equations for this torus, or the 𝑥, 𝑦, 𝑧 as a 

function of 𝑢𝑤 and 𝑣𝑤. And similarly we can model the uneven terrain in terms of 

parameters 𝑢𝑔 and 𝑣𝑔. 

Then I showed you how we can use the contact equation which represents the 5 degree of 

freedom between two surfaces in a single point contact ok. So, I showed you how the rate 

of change of 𝑢, 𝑣, 𝜓, so (𝑢, 𝑣) of the wheel, (𝑢, 𝑣) of the ground, and 𝜓 can be related to 

𝑣𝑥, 𝑣𝑦, 𝑣𝑧 and 𝜔𝑥, 𝜔𝑦, 𝜔𝑧. Then I showed you how we can derive the kinematics and 

dynamics of a single wheel on uneven terrain. I showed you some simulation results. 

And then I showed you how we can model a three-wheeled robot which can traverse 

uneven terrain ok. So, it has a wheel ground contact point which is represented using non-

holonomic constraints, and then we have rotary joints which represents passive tilting or 

which allows steering and also rolling of the wheels. 

In the next lecture, we will look at kinematic, dynamic and stability analysis of a three-

wheeled robot. 


