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Welcome to this NPTEL course on Robotics: Basic and Advanced Concepts. In the last 

lecture we looked at control of constrained and parallel manipulators and also Cartesian 

control of serial manipulators. So, in this lecture we will look at Force Control of 

Manipulators and we will use these ideas of Cartesian control of serial manipulators that 

we developed last lecture. 
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So, let us continue if the manipulator is moving in free space we need to do position 

control, basically we need to track the desired trajectory. If the robot is assembling, 

grinding, and manufacturing ok, so, there is some contact with the environment position 

control is not enough ok. So, we in all these three cases of assembly, grinding, and 

manufacturing we need to apply desired force and or moment on the environment ok.  

So, one possibility is that we apply force and moment with passive stiffness in the end 

effector ok. So, most end effectors or in fact, for that matter most joints will have some 

passive stiffness ok, say it is compliant in some sense it is not completely rigid. 



So, if you have such joints or with some stiffness, we plan a trajectory such that it is just 

inside the contacting surface, so think of it this way we want to grind at surface, we make 

sure that the trajectory is just a little bit inside the contacting surface ok.  

As a result when position control is being tried, it will try to reach to that point just below 

that surface and as a result it will always be in contact with the surface ok. And it will also 

apply some force, if you know how much is the stiffness which is at the end effector. This 

is not so easy to do ok, for the following reason ok. The main problem is there is always 

some error in position control ok, and we cannot be exactly following the trajectory which 

is just inside the surface. 

So, let us say a fraction of a millimeter inside the surface ok. So, due to the error in position 

control, it is possible that the grinding tool is not touching the surface or it is going too 

much inside the surface. So, hence we have excessive interference ok. The other problem 

in this approach of using passive stiffness is that it is not possible to apply desired force to 

the environment ok. 

Most of the time the environment stiffness is very high, there will be very very small strains 

and the displacement due to the passive stiffness for a very you know stiff environment is 

difficult to measure, and it is possible that the stiffness also changes or the environment 

also changes. So, a joint space control similar to constraint motion are what we saw that 

the tip is tracing a curve in the workspace is not suitable as I had mentioned earlier ok,  

We have 6 degree of freedom manipulator it is not so easy to convert that curve into joint 

variables, because inverse kinematics is may not be analytical, there are other reasons also 

which we had discussed. We can however use Cartesian control strategy very easily ok, 

and this can be extended to the control of force which the end effector is applying to the 

environment.  

So, let us start with some very simple basic problem, we have this mass 𝑚, which is in 

contact with this environment, the environmental stiffness is 𝐾𝑒, it is applying some force 

𝑓 to the environment. 
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The displacement of this mass is 𝑥(𝑡) and we also assumed due to uncertainties that there 

is a disturbance force which is acting on this mass ok, and we are looking at only one 

direction, force being applied in one direction and control of that force in only one 

direction ok.  

So, the applied force from an actuator is 𝑓(𝑡) the disturbance force is 𝑓𝑑𝑖𝑠𝑡(𝑡), the 

displacement of the mass is 𝑥(𝑡), the environment stiffness is 𝐾𝑒 as I have mentioned. So, 

hence the force exerted by the environment is 𝑓𝑒(𝑡) = 𝐾𝑒𝑥(𝑡) like spring constant times 

the displacement, and the aim is to control 𝑓𝑒(𝑡) to a desired value 𝑓𝑒𝑑
(𝑡) by applying 𝑓(𝑡) 

this external force from an actuator ok. 
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So, the equation of motion of this system can be very simply written as 𝑓 = 𝑚𝑥̈ + 𝐾𝑒𝑥 +

𝑓𝑑𝑖𝑠𝑡, standard spring mass system with an external force, we know that 𝐾𝑒𝑥 = 𝑓𝑒 ok. So, 

we can rewrite this equation in terms of 𝑓𝑒. So, we can write 𝑓 = 𝑚𝐾𝑒
−1𝑓𝑒̈ + 𝑓𝑒 + 𝑓𝑑𝑖𝑠𝑡. 

So, this is very very similar to a second order ODE which we discussed for a joint rotation 

for a single link robot ok.  

In this case, you have a single mass which is applying a force in that single link 

manipulator we had a torque acting at the joint and the joint was rotating ok. So, we can 

use PD or PID control to make sure that this 𝑓 which you are applying gives the desired 

𝑓𝑒 which we want ok.  

However, we are now very familiar with model based control ok ,we see that there are lots 

of advantages of model based control schemes and hence, let us try and see if we can 

develop a model based controller for this task of applying a desired force onto the 

environment. 
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So, just following the control law of partitioning concept, we will say 𝑓 = 𝛼𝑓′ + 𝛽 for the 

moment let us assume 𝛼 = 𝑚𝐾𝑒
−1, 𝛽 = 𝑓𝑒 + 𝑓𝑑𝑖𝑠𝑡 and hence, we will be left with 𝑓′ =

𝑓̈𝑒𝑑 + 𝐾𝑣𝑓
𝑒̇𝑓 + 𝐾𝑝𝑓

𝑒𝑓. So, 𝑒𝑓 is nothing but the error or the difference between the desired 

force and the measured force. 

So, we must have some sensor which will measure the force also. So, if you go back and 

substitute all this and simplify, we will get a second order force error equation ok. This is 

the closed loop force error equation; it is second order linear ok, with constant coefficients. 

So, 𝐾𝑣𝑓
 and 𝐾𝑝𝑓

 are the derivative and proportional gains and we can set them to some 

value for required performance. 
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Now, there are some issues ok, first is we do not have any knowledge of 𝑓𝑑𝑖𝑠𝑡. So, hence, 

we cannot use it in the model based term. So, remember we have said 𝛽 = 𝑓𝑒 + 𝑓𝑑𝑖𝑠𝑡, but 

in principle the whole idea of 𝑓𝑑𝑖𝑠𝑡 is we do not know the disturbing force. So, hence we 

cannot compute 𝛽, because this is 𝑓𝑒 + 𝑓𝑑𝑖𝑠𝑡.  

So, if you set 𝛽 = 𝑓𝑒𝑑
, not 𝑓𝑒 + 𝑓𝑑𝑖𝑠𝑡 we can see that the steady state error will be 𝑒𝑓 =

𝑓𝑑𝑖𝑠𝑡

1+𝑚𝐾𝑒
−1, it is not zero; however, it is small why because 𝐾𝑒 is typically very large ok. So, 

𝐾𝑒 of say a steel will be very very large number and this 𝐾𝑒
−1 will be 𝑚 divided by some 

large number so, it is very small. 

So, the error is of the order of 𝑓𝑑𝑖𝑠𝑡. So, this is the best that we can do. The second issue is 

we can measure 𝑓𝑒𝑑
, but we cannot normally measure the rate of change of the force 

applied to the environment ok. So, there is also no physical sense in the use of derivative 

of a desired force. So, if 𝑓𝑒̇𝑑
 and 𝑓𝑒̈𝑑

 cannot be specified ok then, we might as well drop it.  

Likewise, 𝑓𝑒 is measured, but 𝑓̇𝑒 is very very difficult to measure we can measure that force 

exerted by the environment by strain gauges or some sensor, but the rate of change of the 

force applied by the environment or applied to the environment is impossible, but we can 

estimate 𝑓𝑒̇ by 𝐾𝑒𝑥̇. So, if you can measure how much is the velocity of that mass which 

is 𝑥̇, then knowing or getting an idea of 𝐾𝑒 we can find 𝑓𝑒̇.  



So, hence dropping 𝑓𝑒̇𝑑
, 𝑓𝑒̈𝑑

 and also 𝛽 = 𝑓𝑒𝑑
 and 𝑓̇𝑒 = 𝐾𝑒𝑥̇ if you make all these 

substitutions the control law now, becomes 𝑓 = 𝑚 (𝐾𝑝𝑓
𝐾𝑒

−1𝑒𝑓 − 𝐾𝑣𝑓
𝑥̇) + 𝑓𝑒𝑑

.  

So, you can see, it is proportional to the error ok, it is derivative gain times 𝑥̇. So, there is 

no 𝑓𝑒𝑑
̇  and there is a bias term 𝑓𝑒𝑑

. So, this is the best that we can do, if you are going to 

use a model based scheme to control the force which this mass is applying to the 

environment ok. So, how do we choose 𝐾𝑝𝑓
, 𝐾𝑒 and 𝐾𝑣𝑓

? 
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So, ok before that let us quickly go through the block diagram, we have this spring mass 

single mass connected to a spring applying a force and also experiencing a disturbing force. 

So, the input is 𝑓 we measure 𝑓𝑒 and 𝑥̇ with 𝑥̇𝐾𝑣𝑓
 we subtract ok and then with 𝑓𝑒 and 𝑓𝑒𝑑

, 

we find the error in the force we multiply by 
𝐾𝑝𝑓

𝐾𝑒
, and then we subtract this 𝐾𝑣𝑓

𝑥̇ and that 

multiplied by mass will give the force and then we add this 𝑓𝑒𝑑
 directly to obtain the force 

ok. 

So, this is the block diagram of a force control of a spring mass system ok, and if we have 

set the gains 𝐾𝑝𝑓
 and 𝐾𝑣𝑓

 properly then this 𝑓𝑒𝑑
 will approach the whatever we want ok, 

the measured 𝑓𝑒 which is the force measured by the sensor and 𝑓𝑒𝑑
 will go to zero the 

difference between those two will go to zero. 
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So, as I said it is difficult to estimate 𝐾𝑒 as it can change with time ok, the stiffness you 

know initially you are grinding a steel then you can be grinding something else aluminum. 

So, the stiffness can change with time. So, what is the basic idea, we can choose 𝐾𝑒 large 

as most environments are “stiff”. 

So, what is large we have to choose the large number and then play around with it, we 

have to do some simulations to see what is happening; terms in 𝛽 and the dropped 

derivatives of 𝑓𝑒𝑑
 are not there ok. So, some terms like 𝑓𝑑𝑖𝑠𝑡 was dropped 𝑓𝑒𝑑

̇  and 𝑓𝑒𝑑
̈  also 

were dropped, as a result you can show that the error between the desired force and the 

measured force does not go to zero as in a second order system ok. 

It becomes a small number, it is of the order of the disturbance force, but it is not zero, we 

can extend this idea to 6 degree of freedom manipulator. So, in this case 𝑓 and 𝑥 becomes 

6 × 1 entities remember not vectors so, 𝑓 becomes force and moment which is acting at 

the end effector 𝑚 is the Cartesian mass matrix and 𝐾𝑒 is a 6 × 6 positive definite diagonal 

stiffness matrix ok, 𝑥 contains 𝑥, 𝑦, 𝑧 and the orientation, a representation of orientation 

of the end effector. 

So, this gain matrices 𝐾𝑝𝑓
 and 𝐾𝑣𝑓

 are 6 × 6 positive definite and diagonal matrices ok. 

So, as I said by choosing this 𝐾𝑝𝑓
 and 𝐾𝑣𝑓

 for each one of these axis, we can hope to 

ensure that we can apply the desired force ok. 
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Now, let us continue. So, when we are dealing with forces ok, there is this very important 

notion or principle of duality. So, what it says is we cannot control force and velocity in 

the same direction ok.  

Why is that? because if you say that let us consider a simple mass, we know 𝐹 = 𝑚𝑎. So, 

if you say that the force is specified the acceleration is automatically determined I cannot 

choose arbitrary force and arbitrary acceleration ok. Likewise, I cannot choose arbitrary 

torque and arbitrary rotation of the end effector, they are related and in fact, the force 

torque and the linear and angular velocity are related through power through Newton’s law 

and Euler’s equation. 

So, for example in robotic grinding, force can be controlled normal to the surface being 

ground and the velocity can be controlled tangent to the surface being ground ok, we 

cannot control the force in the tangent to the surface and velocity in the other direction ok. 

Because, it does not make sense ok, or we cannot control both the force and the velocity 

tangent to the surface. 

So, this duality is analogous to partitioning of control torque in planar 2R robot while 

satisfying a constraint. Remember, when we saw that the tip of the 2R robot was tracing a 

curve 𝑓(𝑥, 𝑦) = 0, I showed you there was a 𝜏𝜙 which was tangent the surface and a 𝜏𝑛 

which was normal to the surface. 



So, these two are different ok, we cannot have both velocity in the normal direction and 

force in the normal direction, only force in the normal direction and velocity in the tangent 

direction ok. So, this Cartesian control scheme naturally extends for force control. 
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So, what do we do, in any robotic task we divide into sub tasks first in contact with the 

environment or in free space ok. 

So, if the robot is moving and then goes and touches a surface, till it is moving in free 

space it is moving in free space ok, and when it gets in contact with the environment we 

have to use a different kind of control scheme. So, tasks in contact with the environment 

position controlled and force controlled directions need to be found out ok. 

So, if you are in contact with the environment certain directions you can do position 

control, certain directions you can do force control, ok. How about when it is in free space, 

in all directions or for all components 𝑥, 𝑦, 𝑧 and orientation we do position control, there 

is no force which is acting on the end effector. 

So, to divide the task into position and force control directions, there was this notion of 

natural constraint and artificial constraints which were developed in the late eighties ok, 

you can see this book by Craig for details. So, a natural constraint on position and 

orientation occurs when the manipulator is in contact with the surface, it involves variables 

that cannot be controlled ok. 



A manipulator cannot go through a surface. So, the natural position constraint exists when 

it is in contact with the surface. A manipulator cannot apply arbitrarily force tangent to the 

surface ok, so, there is a natural force constraint in the tangent direction.  

So, whenever it is in contact with the environment, we can find certain variables which are 

natural position constraints position means both 𝑥, 𝑦 and 𝑧 orientation and certain force 

constraint which are 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 and moments 𝑚𝑥, 𝑚𝑦, 𝑚𝑧 which cannot be controlled ok. 

So, if you think about it, the natural position constraints are normal to the surface and the 

natural force constraints are tangent to the surface ok. So, depending on what kind of task 

you are doing we can generate the natural position and force constraints for any robotic 

tasks ok, whenever it is in contact with the environment and I will show you some 

examples. 
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On the other hand, there are some constraints which are called artificial constraints and 

these are all position and force variables, position means 𝑥, 𝑦, 𝑧, and orientation, force 

means 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 and moments that can be controlled ok. So, as an example, let us say that 

the manipulator is in contact with the environment, the position variables in the tangent 

direction can be controlled. 

So, I can trace a part in the tangent directions, I can go faster or slower, I can choose a 

desired trajectory in the tangent direction of the position variables. I can also control the 



force in the normal direction ok; I can say apply one Newton force at all times in the normal 

direction. So, this natural and artificial constraints, partitions the position and force 

variables into two complimentary sets ok, and where what do these complimentary sets 

really mean basically, they follow from the principle of duality. 

So, if there is a force constraint in the normal direction ok, there cannot be a position 

constraint in the normal direction. I can control the force in the normal direction, but not 

the position ok, this is again from the principle of duality. So, next we show some 

examples. 
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So, for example, consider this grinding example which we have been talking about all the 

time. 

So, we have this grinding wheel and there is a surface this wheel is grinding a surface. So, 

first thing to do is we need some coordinate system ok, which in that coordinate system 

we will write all these position and force variables and say which ones can be controlled 

and which ones cannot be controlled. So, typically we set a coordinate system 𝑋̂𝑐 , 𝑌̂𝑐 , 

𝑍̂𝑐  with this curly bracket {𝐶}, which is the constraint coordinates.  

So, now let us look at the six position variables meaning, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 and six 

force variables, which is 𝑓𝑥, 𝑓𝑦, 𝑓𝑧, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧; 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 are the moments which are acting 

on this constraint coordinate system. So, as you can see this 𝑉𝑧. So, in this example Z 



direction is normal to the surface this is along the normal and X and Y, X is along the 

grinding wheel in some sense along the axis of the grinding wheel and Y is perpendicular 

to X and Z.  

So, as you can see 𝑉𝑧 is a natural constraint why? because, you cannot go into the surface 

or you cannot leave the surface then it is no longer in contact ok. Likewise, 𝑓𝑥 and 𝑓𝑦 the 

force variable along X and Y direction ok, cannot be controlled ok and likewise 𝑛𝑧 which 

is a rotation above this Z axis these are natural constraints. So, if you can think of some 

friction ok so there is a force, but the normal force and the friction force are related, we 

cannot have arbitrary friction force 𝑓𝑥 and 𝑓𝑦. 

So, variables which are subjected to artificial constraints meaning the variables which can 

be controlled I have this 𝑉𝑥 and 𝑉𝑦. So, they are the variables in the tangent space at that 

contact point ok. So, I can say that I want to go in the X direction with such and such 

velocity and such and such velocity in the Y direction. So, 𝑉𝑥 and 𝑉𝑦 can be controlled. 

Likewise 𝑓𝑧 can be controlled; I can say that we want to apply a certain force along the Z 

direction.  

How about 𝜔𝑥 and 𝜔𝑦? you can see that 𝜔𝑥 cannot be controlled, because if you have 

some 𝜔𝑥, if you rotate about the X axis ok then it will leave contact ok.  

Similarly 𝜔𝑦, if I rotate about the Y axis the grinding wheel will lose contact ok. So, 𝑉𝑥, 

𝑉𝑧, 𝜔𝑥, 𝜔𝑦, 𝑓𝑥 , 𝑓𝑦, 𝑛𝑧 these are the natural constraints and the variables which are artificial 

constraints or variables which can be controlled are 𝑉𝑥, 𝑉𝑦, 𝑓𝑧 and think a little bit about it 

which is also 𝑛𝑥, 𝑛𝑦 and 𝜔𝑧. 

So, as we can see these two are complimentary, if there is a 𝑉𝑧 here there is a 𝑓𝑧 here, 𝑉𝑧 

and 𝑓𝑧 cannot be in the same set, 𝑓𝑥 and 𝑉𝑥 cannot be in the same set, because of the 

principle of duality. Let us take one more example, which is I have a crank I have a wrench 

which is turning a crank ok. So, again we set up a constraint frame which is 𝑍̂𝑐 , which is 

the vertical direction 𝑋̂𝑐  is along the direction of the crank and 𝑌̂𝑐  is the direction in 

which you are rotating ok.  

So, the variables which are artificial constraints meaning which can be controlled are this 

velocity along the Y direction, rotation speed about the Z axis 𝑓𝑥 , 𝑓𝑧 , 𝑛𝑥 and 𝑛𝑦. So, you 



can see that these two are different, here we had 𝑉𝑥, 𝑉𝑦, 𝜔𝑧 here we have 𝑉𝑦, 𝜔𝑧. There is 

no 𝑉𝑥 here likewise, the variables which you cannot control are 𝑉𝑥 you cannot have a 

velocity in this direction then, you know you are sort of bumping against the rest of the 

body of the crank.  

Likewise, we cannot go up because then you will lose contact ok and 𝑓𝑦 and 𝑛𝑧. 𝜔𝑥, 𝜔𝑦, 

𝑓𝑦 and 𝑛𝑧 are natural constraints. So, for every robotic task such as grinding or turning a 

crank and we will see later for an assembly operation, we can divide the six position 

variables and the six force variables into variables which can be controlled and which 

cannot be controlled ok. 

So, this is the hard part, this the programmer needs to think about it and partition these 

variables, but he has some tools to do it basically, we have to use this principle of duality 

and also what exactly is the task doing ok. We know in the normal direction forces can be 

controlled in the tangential direction positions can be controlled and so on. 

So, some ideas are there, we use those ideas to partition this twelve variables, six position 

and six force variables ok. 
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So, whatever I said is summarized here. So, the manipulator is holding a grinding wheel 

on a surface we define a constraint frame {𝐶}, 𝑍̂𝑐  is along the normal 𝑋̂𝑐  and 𝑌̂𝑐  



determine the tangent plane at the point of contact, for grinding at desired force along the 

normal and a desired trajectory on the surface is required ok. 

So, all constraints described in {𝐶} using linear velocity components 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, angular 

velocity components 𝜔𝑥, 𝜔𝑦, 𝜔𝑧, force components 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 ,and 𝑛𝑥, 𝑛𝑦, 𝑛𝑧, ok. 
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So, we cannot lose contact ok or interfere so, hence 𝑉𝑧 = 0. Grinding wheel has area 

contact so 𝜔𝑥 = 𝜔𝑦 = 0, just a little bit more detail. 

So, as not to lose contact, 𝑓𝑥 , 𝑓𝑦, 𝑛𝑧 determined by friction and are not arbitrary ok, we 

cannot set whatever we want. 𝑉𝑥 and 𝑉𝑦 determine the desired trajectory how we are 

moving this grinding wheel on the surface. So, hence they are artificial constraint, we also 

need a desired force along the Z direction hence this is an artificial constraint and likewise 

𝜔𝑧, 𝑛𝑥 and 𝑛𝑦 from the principle of duality are artificial constraints ok. 

So, we can partition all these 6 + 6 variables, force and position variables, into something 

which are cannot be controlled and something which can be controlled. 
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In the robot turning a crank again {𝐶} is as shown in the figure, X axis is along the direction 

of the crank Y is the direction, where you are rotating, and Z is the vertical direction ok. 

So, again 𝑉𝑥 = 𝑉𝑧 = 0. So, no motion possible along X and Z ok because, otherwise it will 

interfere or lose contact, 𝜔𝑥 = 𝜔𝑦 = 0, so no rotation possible along 𝑋̂𝑐  and 𝑌̂𝑐  axis, we 

cannot apply any force along the Y axis or apply a moment about the Z axis. So, the 

artificial constraints are 𝑉𝑦 and 𝜔𝑧, artificial force constraints are 𝑓𝑥, 𝑓𝑧, 𝑛𝑥, and 𝑛𝑦 ok. So, 

you can think about it and see that what is mentioned here looks sensible and looks correct. 
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Let us look at one more task, this is a very important robotic task which is basically 

assembly of two components and here we are going to look at a very simplistic case of 

assembling a peg in a hole ok. So, this is the peg, this is the hole on the surface and we 

want to assemble this peg into this hole ok, moreover first as far as simplification is 

concerned we will assume it is a 3D task ok. So, it is in the X-Z plane the Y is in the normal 

to this plane of this hole.  

So, first case here (a) is showing when the robot is moving this peg in space ok. So, it is 

not in contact with the environment. So, the constraint frame is X is along this direction Z 

is along the vertical direction. After a while this peg comes in contact with the surface ok, 

this is the second kind of sub task which this peg in hole requires that you come and touch 

the surface.  

Then, you move along the surface such that the peg comes directly on top of the hole, you 

may not come directly on top of the hole at the first instance. So, you have to move a little 

bit here and there, then once it is directly on the top of the hole you push it down. So, the 

full peg in hole assembly is divided into moving in free space, touching the surface and 

moving on the surface, then finding the hole and moving into the hole and then at the end 

of the motion nothing is moving ok, it is all assembled ok. 
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So, this is the classic problem in robotic assembly of a peg in hole. So, as I said the 

assumption is 2D motion of the peg, no friction between peg and hole surface, and sensor 



is available to find the hole ok, as I said you move along till you find the hole there must 

be a sensor to find the hole. So, as I said it is divided into 4 stages.1st is motion in free 

space ,which is figure (a), motion while touching the surface which is figure (b), stage 3 is 

insertion of the peg in the hole, figure (c) and stage 4 completion of the assembly ok. 

So, let us go back and see these pictures. So, this is stage 1 in free space, stage 2 moving 

on the surface, stage 3 insertion into the hole, and stage 4 and everything is done, it is 

completed ok. 
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So, let us try and find the natural and artificial constraints for each one of these stages. So, 

the 1st stage is very simple ok, what is the natural constraint and what is the artificial 

constraint. 

The artificial constraints are the position 𝑥, 𝑦, 𝑧 and the orientation are completely 

controlled ok. So, we have 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧. So, 𝑉𝑥 and these are 0 and we want to 

approach the plate along the Z direction. So, this is some desired Z velocity we also do not 

want to rotate this peg. So, all the desired angular velocities or angular orientations are 

zero. 

So, corresponding to this 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 , 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 these are natural constraints ok. The variables 

which cannot be controlled when it is moving in free space are nothing but the forces 

which are acting on the end effector, there are no forces which are acting on the end 



effector ok. So, in stage 1 the manipulator is under pure position control, in stage 2 once 

the peg touches the surface, no motion along the Z axis or rotation about the X or Y axis 

is possible ok.  

So, you cannot penetrate the surface or you cannot rotate at one place ok. So, we also 

cannot apply force along the direction of sliding, we can control the position along the 

direction of sliding, but we cannot control the force ok. So, 𝑉𝑧 = 0, 𝜔𝑥 = 0, 𝜔𝑦 = 0, 𝑓𝑥 =

0, 𝑓𝑦 = 0 and 𝑛𝑧 = 0, these are the natural constraints ok. If you think about it, I cannot 

penetrate the solid which is 𝑉𝑧 and so on and 𝑓𝑥 = 𝑓𝑦 = 0. 
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So, what are the artificial constraints? we would like to apply a small force along the Z 

axis to ensure that it is always in contact, we control the velocity along the plane along the 

X and Y axis. So, 𝑉𝑥 we have 𝑉𝑥 = 𝑉𝑠 is some 𝑉 sliding velocity 𝑉𝑦 = 0 and 𝑓𝑧 = 𝑓𝑐 and 

this 𝑛𝑥 = 𝑛𝑦 = 𝜔𝑧 = 0, this follows from the principle of duality. So, we would like to 

control the sliding velocity and the force along the Z direction.  

In stage 3 the peg is going into the hole ok. So, what are the natural constraints think about 

it we see that 𝑉𝑥, 𝑉𝑦 , 𝜔𝑥, 𝜔𝑦, 𝑓𝑧 and 𝑛𝑧 are 0. Why is 𝑓𝑧 = 0? 𝑓𝑧 = 0 because it is not in 

contact.  

We assume that this peg is sort of smoothly going into the hole ok. What are the artificial 

constraints, what are the variables you would like to control, we would like to control the 



Z motion we want to go slowly ok so, 𝑉𝑧 = 𝑣𝑖. We also want to control that there is no 

force coming from the sides you do not want to touch the sides let us say. 

So, 𝑓𝑥 = 𝑓𝑦 = 𝑛𝑥 = 𝑛𝑦 = 𝜔𝑧 = 0. So, at every stage we can find out what are the variables 

which you want to control and which we cannot control ok. 
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In the last stage, when it is completely inside then what are the natural constraints? I cannot 

move. So, all the 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧, they are all cannot be controlled, they are basically 

zero ok it is completely inside and it is assembled ok. 

So, no motion after full insertion so, what are the variables that we control when it is under 

full insertion, we need to make sure that it is you are not applying too much force ok. So, 

there is some desired force along the 𝑥, 𝑦 and 𝑧 and the desired moment along the 𝑥, 𝑦 and 

𝑧 so, most of the time it will be 0 or some small number, which is ok. 

So, I am assuming that there has to be no force applied after the assembling is over ok. So, 

we have four stages and we know the natural and artificial constraint in all the four stages, 

the interesting thing is that we can find out how to switch from one stage to another stage 

just by monitoring the natural constraints ok. 

So, there is a use for the artificial constraints those are the variables which we can control, 

we can design a controller which will control those variables, but how do we switch from 



stage 1 to stage 2? we monitor the natural constraints. So for example, we in stage 1 to 

stage 2 you monitor the force along the Z direction. 

So, when it is moving in free space 𝑓𝑧 cannot be controlled, 𝑓𝑧 = 0. As soon as it touches, 

if you are monitoring the force along the Z direction you will see some number the sensor 

will see some force in the Z direction. So, as soon as its sees some force in the Z direction 

we should switch from stage one to stage two ok. 

So, this force should cross from some 0 to a chosen threshold value. Likewise, from stage 

2 to stage 3 what is stage 2? Stage 2 is moving on the surface while in contact, but at stage 

3 is when is just on top of the hole and supposed to go in. So, again we should monitor the 

𝑍̂𝑐 . So, you monitor the motion along the Z axis. So, in stage two there cannot be any 

motion along the Z axis ok.  

But as soon as it is in top of the hole it will start to go down so, there will be some Z 

motion. So, this should also cross from 0 to some chosen threshold value and finally, from 

stage three to stage four you monitor the force along the Z direction again. So, at the end 

of the assembly while assembling we are assuming it is smoothly going into the hole the 

peg, at the end when the assembly is over the peg goes and touches the bottom of the hole. 

So, again you will see some force in the Z direction.  

So, as soon as you see some change in the value of 𝑓𝑧 ok along 𝑍̂𝑐 , you switch from stage 

3 to stage 4. So, it is a very nice way of looking at this assembly that we can monitor the 

natural constraints to check when we should switch from one stage to another stage, and 

in each stage, we control the artificial constraints ok. 
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Now, let us look at this very important controller which is the hybrid position and force 

control of robot manipulators. 
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So, till now we have seen that we need to control position along certain directions and 

force along some other directions ok. So, can we have a controller which can control the 

desired force in the desired direction, achieve the desired force in the desired direction and 

achieve the desired motion in the motion directions, which can be controlled ok that is 

called as hybrid position force control of robots ok. 



So, a little bit of introduction, many robotic tasks require position and force control at the 

same time. So, as in the case of grinding or assembly I showed you certain components of 

force need to be controlled and certain components of position or velocity needs to be 

controlled. And these position and forces cannot be in the same direction ok, because of 

principle of duality. 

The joint space schemes shown much earlier where we had a planar 2R with constraint is 

not feasible for spatial and multi degree of freedom motion simply because, we cannot do 

the inverse kinematics analytically, we have very complicated way of looking at the force 

in the normal direction and position control in the tangent direction, in terms of the joint 

variables. 

The Cartesian position and force control algorithm can be very easily combined I will 

show you. So, I showed you that you have the single mass applying a force to the 

environment so, that is the force control part you copy that six times and get it for the end 

effector and likewise I showed you how to obtain the Cartesian position control using 

𝐹𝒳(𝑞, 𝑞̇), [𝑀𝒳(𝑞)], 𝐶𝒳(𝑞, 𝑞̇) and so on ok. 

We write the equations of motion in terms of Cartesian end effector coordinates ok. We 

can choose the position and force control variable using a tasks planner ok, as shown in 

the example. So, using this idea of which variables can be controlled in force domain and 

which variables can be controlled in the position or velocity domain we can decide ok. 

So, that is called as a task for planning and then, basically what we will do is we will have 

a selector switch ok, which selects the appropriate position and force variables for control 

ok. So, we have six components of position 𝑥, 𝑦, 𝑧 and orientation and six components of 

force and moment 𝑓𝑥, 𝑓𝑦, 𝑓𝑧, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. We have a switch, which will send let us say X 

from the position part, but not 𝑓𝑥 from the force part ok similar. 

So, it will be one from the position control part and zero from the force control part, so it, 

does not violate the principle of duality ok. 
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So, that is exactly what is shown in this figure. So, we have a robot the input to build to 

the robot is always the torque ok and we measure 𝑞 and 𝑞̇ now, using 𝑞, we can find the 

Jacobean matrix and we can find 𝒳 and 𝒳̇. 

So, we can do direct kinematics and find 𝒳 and we can do Jacobean and find 𝒳̇. In this 

Cartesian position controller we have 𝒳𝑑 , 𝒳̇𝑑 , 𝒳̈𝑑. So, what is this 𝒳? this is 𝑥, 𝑦, 𝑧 and the 

orientation. So, it is a six dimensional quantity and what is the output of the Cartesian 

controller? it has 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 , 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. 

We had discussed this by using the equations of motion in the Cartesian coordinates ok. 

Using position and orientation of the end effector we can derive the equation of motion in 

terms of the Cartesian coordinates. Likewise, let us look at the bottom part we are going 

to measure the force coming from the environment, we also measure the velocity of the 

end effector ok this 𝒳̇ and this 𝒳̇ is more or less same ok. 

So, you go to Jacobean and you find 𝒳̇ and the input to this force controller is the desired 

force which this end effector must apply to the environment ok. So, ℱ𝑒𝑑
 and this is 𝒳̇ and 

ℱ𝑒 so, remember for one axis I had shown you that it will be some 𝑚 (𝐾𝑝𝑓
𝐾𝑒

−1𝑒𝑓 −

𝐾𝑣𝑓
𝑥̇) + 𝑓𝑒𝑑

. 



So, I have derived this force control law for one direction for a single mass spring which 

is applying a force on the environment. So, the output of the force controller is also a force 

Cartesian force means 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 and moments 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧. So, now we send it to these two 

selector switches 𝑆 and 𝑆′, 𝑆′ means it is compliment of 𝑆. 

So as I said, if I want to control let us say the X coordinate ok, 𝑉𝑥 then I cannot take 𝑓𝑥 

from this part also. So, if it is 𝑉𝑥 here which is 1 in the selector switch, 𝑓𝑥 will be zero. So, 

likewise we have some ones and zeros in the diagonal and the complimentary ones so, 

where wherever there is a one in the 𝑆 there will be a zero in the 𝑆′. 

So, effectively what happens, we will get some forces coming from the position controller 

and some forces coming from the force controller and they are consistent with the principle 

of duality and you sum them over and you get the net force and then, if we post multiplied 

by [𝐽(𝑞)]𝑇 and we will get the torque.  

So, if this torque equal’s [𝐽(𝑞)]𝑇ℱ is coming from statics, this is the very basic 

fundamental equation and why do we need to do this because, the robot itself can only 

apply joint torques it cannot apply external forces and moments in the end effector ok. So, 

let us go over this once more. So, I have one part which is the Cartesian position controller, 

which gives you the desired position orientation and its derivatives ok as input. 

It also finds a measured position and velocity ok; from direct kinematics and Jacobian and 

then we run this through this controller and we get the Cartesian forces. Likewise, we 

measure the external force which the environment is applying and we measure what is the 

motion of the end effector, we also have an input what is the desired force which the robot 

should apply and send it through this force controller six component of the single axis 

force controller that we had discussed.  

And we get the six components of the force vector 𝑓𝑥, 𝑓𝑦, 𝑓𝑧, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. And then we send 

it through these two switches, which selects the correct ones depending on the task ok and 

then we pre multiply by [𝐽(𝑞)]𝑇 and we get the torque ok. 
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So, as an example, so as I said the top half implements Cartesian position control bottom 

half implements force control ok. 

So, the output of both controllers are Cartesian forces and moments and hence, they can 

be combined. The matrix 𝑆 and 𝑆′ is our selector switches is to select the position and force 

variables, according to the principle of duality. So for example, in the stage 2 peg-in-hole 

assembly, what was stage two? The manipulator is now touching the peg on the surface 

and it is moving on the surface ok, till it goes into the hole. 

So, while it is moving on the surface we would like to control 𝑉𝑥 and 𝑉𝑦. So, 𝑆 this is 𝑉𝑥, 

𝑉𝑦, 𝑉𝑧, then 𝜔𝑥, 𝜔𝑦, 𝜔𝑧. So, these are the force components coming from 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜔𝑥, 

𝜔𝑦, 𝜔𝑧. So, we would like to control 𝑉𝑥 and 𝑉𝑦 and also 𝜔𝑧. The 𝑆 part we are trying to 

make sure that the force in the Z direction is controlled. 

So, this is 𝑓𝑥, 𝑓𝑦, 𝑓𝑧, and this is 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. So, we make sure that you are applying a contact 

force and likewise 𝑛𝑥 and 𝑛𝑦 are controlled ok. So, the controller sends through the force 

coming from 𝑉𝑥 and 𝑉𝑦 and 𝜔𝑧 and the force through 𝑓𝑧 and 𝑛𝑥 and 𝑛𝑦. So, together these 

two selector switches will now give all the six components of force and velocity ok, so six 

components of force which can be controlled. 

And these six components come from suitable 𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 and the force along 

X, Y, Z directions and moment along X, Y, Z directions ok. 
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So, in summary I showed you how we can control the force exerted by mass in one 

direction ok. So, if you have a desired force which this mass needs to exert on the 

environment, we can design the control scheme which will do that ok. We extend to model 

based force control of manipulator in task space ok. 

So, we used 𝑓𝑥, 𝑓𝑦 that curly ℱ and so on, we can partition a task into artificial and natural 

constraints, so, the variables in the artificial constraints are controlled and by principle of 

duality between force moment and position orientation variables, we cannot control both 

‘force’ and ‘position’ in the same direction ok. So, quote unquote force means it could be 

𝑓𝑥, 𝑓𝑦, 𝑓𝑧 and 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 moments likewise, position could be position and or orientation. 

And I gave you several examples of partitioning of tasks, grinding, turning a crank, and 

also peg in hole assembly and finally, I showed you how we can control position and force 

together ok, what is called as hybrid position force control scheme ok. So, this uses the 

Cartesian control of forces ok. 
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So, with this we come to an end to this lecture, in the next lecture we will look at some of 

the advanced topics in non-linear control of manipulators ok. 


