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Control of a multi-link manipulators 

 

Welcome to this NPTEL lectures on Robotics Basics and Advanced Concepts. In this week 

we will look at Non-Linear Control of Robots ok. 
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It will consist of 4 lectures. First, we will look at control of a multi-link manipulator in the 

second lecture we look at control of constrained and parallel manipulators and also 

Cartesian control of serial manipulators. In the third lecture we will look at force control 

of manipulators and also hybrid position and force control of manipulators. 

And we will end this week with some advanced topics in non-linear control of 

manipulators ok. 
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So, let us continue control of a multi-link manipulator. So, the non-linear control is a very 

vast field, ok we will look at only one particular kind of non-linear controller called the 

computed torque also called as feedback linearizing control scheme ok. 

So, in ideal situations, I will show you that this kind of computed torque or feedback 

linearizing control scheme can give uniform performance everywhere in the workspace; 

recall that a non-linear robot, if it is controlled using a linear controller cannot give same 

performance everywhere in the workspace; however, this computed torque scheme can 

give uniform performance everywhere in the workspace. 

So, this computed torque or feedback linearizing controller uses the dynamic model in the 

control scheme. So, what do we mean by dynamic model? We need to know the equations 

of motion of the robots. So, we need to know the terms in the equation of motion, basically 

mass matrix, Coriolis centripetal term, gravity term and so on. 

And I will show you the better the estimate of the dynamic model better will be the 

performance; there is a large amount of literature on this computed torque control scheme 

it was first results were in 1972, but it was really popularized by Freund in 1982 ok. 
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So, let us start so, as I said in the control law using computed torque scheme, it consists of 

two parts so, that is why it is also sometimes called control law partitioning. And we also 

need the equations of motion of the serial manipulator. So, the equation of motion of a 

serial manipulator can be written as, 𝜏 = [𝑀(𝑞)]𝑞̈ + [𝐶(𝑞, 𝑞̇)]𝑞̇ + 𝐺(𝑞) + 𝐹(𝑞, 𝑞̇) and if 

we know some or if we have some idea of the friction, we can add the friction term also 

ok. 

So, the scheme starts as follows. So, we can write this 𝑛 × 1 vector of joint torques as 

some [𝛼]𝜏′ + 𝛽. So, this is like multiplication by some [𝛼], ok plus some bias terms so, 

scaling and some bias term. If we choose [𝛼] = [𝑀(𝑞)] which is the mass matrix, 𝛽 as the 

Coriolis centripetal term plus the gravity term plus the friction term. 

Then, if we substitute [𝛼] and 𝛽 in this equation, we will get [𝛼]𝜏′ + 𝛽 = [𝑀(𝑞)]𝑞̈ +

[𝐶(𝑞, 𝑞̇)]𝑞̇ + 𝐺(𝑞) + 𝐹(𝑞, 𝑞̇). So, everything will cancel out, this 𝛽, [𝐶(𝑞, 𝑞̇)]𝑞̇ + 𝐺(𝑞) +

𝐹(𝑞, 𝑞̇) will cancel out on this side and then, mass matrix is invertible; so, we can remove 

the mass matrix from both sides and hence we will be left with one equation, which is 𝜏′ =

𝑞̈. 

So, this is the starting point of this computed torque control scheme or using what is called 

as control law partitioning ok. And as you can see, what have we done, we have a non-

linear system of equations for the dynamics of the robot, we have chosen to implement the 



torque, which is going into the robot as some [𝛼]𝜏′ + 𝛽; where [𝛼] is chosen as a mass 

matrix, 𝛽 is Coriolis plus gravity plus friction ok. And we are left with 𝜏′ = 𝑞̈. 
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So, the equation 𝜏′ = 𝑞̈ represents a unit inertia system with input 𝜏′. So, see there is no 

mass matrix Coriolis gravity term. So, it is like as; if 𝜏′ = 𝐼𝛼, 𝛼 is the angular acceleration, 

where 𝐼 is identity ok. And what have we done? We have used the dynamics represented 

by [𝛼] and 𝛽 so, we are chosen [𝛼] as mass matrix, 𝛽 = [𝐶(𝑞, 𝑞̇)] + 𝐺(𝑞) + 𝐹(𝑞, 𝑞̇). 

And effectively what we have done is all non-linearities and coupling are cancelled, and 

the original non-linear equations transformed into 𝑛 decoupled linear equations. So, we 

have 𝑛 decoupled linear equation, 𝜏′ = 𝑞̈. Next we can choose 𝜏′ = 𝑞̈𝑑(𝑡) + [𝐾𝑣]𝑒̇(𝑡) +

[𝐾𝑝]𝑒(𝑡). So, this is nothing but the PD control; with this acceleration feed forward term 

added ok. 

So, if you now, substitute 𝜏′ is this, into this 𝜏′ = 𝑞̈ and then, take 𝑞̈ to the other side, we 

will be left with the error equation, which is 𝑒̈(𝑡) + [𝐾𝑣]𝑒̇(𝑡) + [𝐾𝑝]𝑒(𝑡) = 0. So, how 

many such equations are there? There are 𝑛 such equations ok and 𝑒(𝑡) is nothing but the 

desired joint, as a function of time 𝑞𝑑(𝑡) minus the measured joint motion as a function of 

time. 

And, if we now choose [𝐾𝑝] and [𝐾𝑣], as positive definite diagonal matrices ok. So, then 

all these 𝑒1, 𝑒2, all the way till 𝑒𝑛 they are decoupled ok. And we can choose [𝐾𝑝]  and 



[𝐾𝑣] to get critical damping at every point in the workspace. So, remember, in the case of 

linear control I had shown you for a single link, that 𝐾𝑣 = 2√𝐾𝑝; then, we get critical 

damping. 

So, we can choose critical damping or over damping, whatever we want, to get the desired 

𝑒(𝑡) as a function of time. 
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So, in block diagram, what we have is a robot, the input is torque; we measured 𝑞 and 𝑞̇ 

and we take this 𝑞 and 𝑞̇ and compute 𝐶(𝑞, 𝑞̇)̂ +𝐺(𝑞)̂ + 𝐹(𝑞, 𝑞̇)̂ . So, this ̂  here means; 

that often we do not know exactly, 𝐶(𝑞, 𝑞̇)̂ , 𝐺(𝑞)̂ and 𝐹(𝑞, 𝑞̇)̂ . So, these are estimates of 

the Coriolis term, gravity term and friction term and the estimates of the mass matrix. We 

can also take this 𝑞 and compute [𝑀(𝑞)]̂ ; mass matrix and 𝑞. 

So, what you can see is this dotted line here, ok this portion requires the use of the dynamic 

equations of motion; we need to know what are the model based terms. We can also take 

this 𝑞 and 𝑞̇ so, if you do 𝑞𝑑 − 𝑞 and multiplied by [𝐾𝑝]  ok and then, 𝑞̇𝑑 − 𝑞̇ multiplied 

by [𝐾𝑣] and add to 𝑞̈𝑑; at this place we have 𝜏′. 

So, basically, what we have is 𝜏′[𝛼] + 𝛽 = 𝜏. So, the box which is dotted here is error 

driven, ok it is purely driven by [𝐾𝑝]  and [𝐾𝑣] so, it is similar to the modified PD control 



scheme ok. So, there are two partitions; one is which is PD control and one which is model 

based. 
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So, the ideal performance is not possible simply, because we do not ever know the mass 

matrix, the Coriolis term and the gravity term and friction term; specially, the friction term 

very well ok. There are also one other property, which is little bit more complicated to 

understand; we require some time to compute this [𝛼] and 𝛽. 

So, as you can see this is [𝛼] and this is 𝛽 so, we need to measure 𝑞, 𝑞̇ and then, use it to 

compute this mass matrix and 𝐶(𝑞, 𝑞̇)̂ +𝐺(𝑞)̂ + 𝐹(𝑞, 𝑞̇)̂ , but it takes some time. So, the 

torque which you are getting is based on a previous measurement, maybe little bit defined 

ok. So, hence it will never be exactly cancelling ok. 

So, as I said only the estimates of mass matrix, Coriolis centripetal term, gravity and 

friction term are available; that is why, we have used this ̂  ok and in the figure the box 

with the crosses, what is shown as ̂  ok. So, the estimates, because of the estimates the 

error equations are no longer linear and decoupled, ok that we can show. 

So, for example, if the [𝛼] = [𝑀(𝑞)]̂  and 𝛽 = 𝐶(𝑞, 𝑞̇)̂ +𝐺(𝑞)̂ + 𝐹(𝑞, 𝑞̇)̂  then, you can 

work out the error equation, which is 𝑒̈ + [𝐾𝑣]𝑒̇ + [𝐾𝑝]𝑒,  will be now, there will be a right 

hand side; say it will be [𝑀]̂ −1[([𝑀] − [𝑀]̂ )𝑞̈ + (𝐶 − 𝐶̂) + (𝐺 − 𝐺̂) + (𝐹 − 𝐹̂)]. 



So, [𝑀], 𝐶, 𝐺 and 𝐹 are the actual dynamics ok whereas, [𝑀]̂ , 𝐶̂, 𝐺̂ and 𝐹̂ are the estimated 

dynamics, that is what you think ok and it is entirely possible; you think the mass is let us 

say 5 kg, but then somebody has did it a hole, somewhere and the mass has decreased.. 

So, the estimated mass matrix will be different than the real mass matrix. And as you can 

see, if ([𝑀] − [𝑀]̂ ), (𝐶 − 𝐶̂), (𝐺 − 𝐺̂), (𝐹 − 𝐹̂) all these things are exact 0 which means 

what, I know exactly, what is the mass Coriolis gravity and friction terms ok. Then we 

have again exact cancellation, and we are left with a second order linear ODE in the 𝑒(𝑡). 

So, what else can we say? If my estimates are good ok; meaning what, this ([𝑀] − [𝑀]̂ ), 

(𝐶 − 𝐶̂) and so on, are small then what we have is the linear second order ODE subject to 

a forcing term on the right hand side. So, if the forcing term is small then, the eventual 

performance of the system; eventual performance of 𝑒(𝑡) will be also small ok. So, 𝑒(𝑡) 

will be small, if the estimates are good. 
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So, there are some special cases, in control law partitioning; one is if [𝛼] = [𝑈] or [𝛼] is 

the identity matrix. So, we are not going to assume any mass matrix, we think that it is 

identity matrix. And 𝛽 = 𝐺(𝑞). So, this is called gravity compensation ok. So, if [𝛼] =

[𝑈] and 𝛽 = 0 then, we can get to PD control scheme. So, 𝛽 = 𝐺(𝑞) means; remember 

the right hand side, there is a 𝐺(𝑞) and then, you have [𝛼]𝜏′ + 𝛽 if 𝛽 = 𝐺(𝑞), the gravity 

terms cancel out from both sides and the system will behave as if there is no gravity. 



Likewise, if [𝛼] = [𝑈] and 𝛽 = 0 you can show that, you will get back the PD control 

scheme very straightforward. There is also a very well known control scheme, which is 

based on the following observation. That we can compute [𝛼] = [𝑀(𝑞𝑑)]̂ , where 𝑞𝑑 is the 

desired trajectory ok. So, 𝛽 = 𝐶(𝑞𝑑 , 𝑞𝑑̇)̂ +𝐺(𝑞𝑑)̂ +𝐹(𝑞𝑑, 𝑞̇𝑑)̂ . So, the model terms, [𝛼] 

and 𝛽 are computed according to a desired trajectory and they are not in the feedback loop 

ok. 

So, if you know the desired trajectory, we can compute or precompute this mass matrix 

Coriolis term, gravity term and friction term ok. And hence, there is no issue of 

computation time ok, it will be just reading from a file ok or reading from a lookup table.  

However, there is no exact cancellation in any of these special cases ok, but what is the 

hope? That 𝑞𝑑 and 𝑞 will be very close to each other; hence the estimates will be very 

good ok. So, ([𝑀] − [𝑀]̂ ) will be very small, (𝐶 − 𝐶̂) will be very small ok. 

But, theoretically there is no exact cancellation in any of these special cases, there is no 

decoupling and there is no linearity ok, but as I said, if the estimates are good then, the 

right hand side is small and what you can see is; that performance will always be better if 

you do not use any model.  

So, if you do not use any model, which means a PD control scheme then, [𝛼] = [𝑈] and 

𝛽 = 0. Then, if you use some model; you have ([𝑀] − [𝑀]̂ ) so, you have some smaller 

number ok. 

So, performance is always better with some model than with no model, and no model is 

PD control scheme. So, this can be seen to be borne out by simulation and experiments, 

which we will show. 
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So, let us start with some simulation results. So, we have a planar 2R robot, shown in these 

two configurations. So, initially it is like this, at some (𝑥𝑖, 𝑦𝑖) and it goes to (𝑥𝑓 , 𝑦𝑓). 

Again just like in the previous week, we have this 2R with link parameters; 𝑚1, 𝑙1, 𝑟1 and 

𝐼1 and 𝑚2, 𝑙2, 𝑟2 and 𝐼2 there is the torque acting in first joint, there is a torque acting at 

the second joint so, we go from (𝑥𝑖, 𝑦𝑖) to (𝑥𝑓 , 𝑦𝑓) in some time and come back, exactly 

the same numerical experiments, that we did in the previous week. And we are going to 

use the same parameter values, for the link 1 parameters and link 2 parameters, and again 

there is a pay load of 2.5 kg at the end ok. 

So, this link length is 1 meter, the C G is located at 0.773, the mass is 12.456 kg and the 

𝐼𝑧𝑧 inertia of this link 1 is 1.042 and so on ok. 
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So, as I said, the tip moves from 0.55 meters on the Y axis to 1.45 meters on the Y axis 

and back to 0.55 meters. So, it is going exactly, against gravity and it is coming down with 

gravity ok. 

So, as we had discussed earlier, there are two cases; one is fast motion, which is total time 

is 2 seconds, another one is slow, which is total time is 2 minutes. So, the basic idea is, we 

will use the same results, which we saw for linear control using PD controllers and then 

we will see what happens, when we use a non-linear control law ok, based on computed 

torque ok 

So, the same set of parameters, same trajectory everything is same. So, we have a smooth 

Cartesian cubic trajectory so, basically the desired is 𝑥 should be always 0, 𝑦 should go 

from 0.55 to 1.45 and back these are 2 cubic curves, which are patched together; from 

inverse kinematics, we can find out 𝜃1 desired and 𝜃2 desired ok. These also will be smooth 

curves ok 𝒞2 continuity; 𝒞2 continuous curves. 
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So, as I said, the 𝜃1𝑑 and its derivatives are obtained using inverse kinematics and inverse 

Jacobian. And we will now, present simulation results for a PD control scheme, which is 

basically a linear control scheme, applied to this robot then, a feed forward controller with 

exact knowledge of the model parameters. So, although we have [𝑀]̂ , 𝐶̂, 𝐺̂; the ̂  is 

because, we are not using the measured 𝑞 and 𝑞̇ and so on, we are using the pre computed 

desired trajectory. 

I will also show you, some results from model based controller with 10 percent error in 

mass and 5 percent error in location of the CG ok. So, we do not know the masses of the 

lengths and inertias exactly, let us assume there is a 10 percent error and a 5 percent error 

in the location of the CG. 

Notice that, we are not assuming any error in the link lengths ok. If there is error in the 

link lengths, then we can never trace the desired trajectory ok. And last, we will look at 

Cartesian control scheme which is discussed later ok.  

We will see what is the equation of motion, when we derived the equations of motion using 

the Cartesian or end effector coordinates, position and orientation. In all of them, all these 

above simulation we will choose 𝐾𝑝𝑖 and 𝐾𝑣𝑖 as corresponding to 𝜔1 = 85, 𝜔2 = 75 and 

the damping is 2.0. So, basically we have an over damped system, with some chosen 

natural frequency, we can choose other natural frequencies and damping’s also, but let us 

see what happens when we choose these values ok. 
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So, as I had shown you, the error for the fast motion is 𝜃1, 𝜃2 error. So, it goes like almost 

0.03 radians ok. And on the negative side, again 0.025 radians. In 𝑥 and 𝑦 also recall that, 

desired 𝑥 should be 0; I should just go along the Y axis, the desired trajectory, but we do 

indeed move along the X axis by some amount and it is of the order of more than 0.02 

meters so, like almost 2 centimeters between 2 and 2 and a half centimeters ok. 

The 𝑦 trajectory is also not exactly, following the desired trajectory ok. So, the 𝑥 is of the 

order of 0.15 ok so, 1.5 centimeters and in the 𝑦 direction the maximum error is more; 

which is of the order of between 2 and 2.5 centimeters. The torque profile looks like this. 

So, we start from 0, and it goes to some 225 Newton meter for 𝜏1 and it is lesser for 𝜏2, it 

is of the order of little more than minus 150 Newton meters ok. 

So, as you can see, important thing to notice here is there is some kind of a peak here and 

then, it is comes back and then again raises ok. 
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If you do PD control with slow motion, which was 2 minutes and as I had shown you, the 

error in 𝜃1 and 𝜃2 are much smoother, they are also less ok; the error in 𝑥 and 𝑦 are also 

much smoother and less, and the more importantly the torque at the two joints are smaller 

ok and they are smoother so, this we had shown earlier.  

And the reason was, that if you move slowly, the non-linear terms are smaller; hence their 

effect is smaller and hence the robot can track better ok, the desired trajectory; the tip of 

the robot can track the desired trajectory better. 
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So, summary the maximum error in the joint variable, in case of fast motion which is what 

we will look at from now on, is 0.03 radians versus 0.02 in slow motion ok. And 0.023 

meters in fast, versus 0.016 meter in slow motion ok. So, as I said, in the fast motion the 

non-linear inertia, centripetal Coriolis terms are larger ok. Linear PD control is less 

effective as expected; the maximum torque is also larger, approximately 200 and 25 

Newton meter versus 145 Newton meter. 

The torque is larger in fast motion again due to the non-linear terms in the equation of 

motion ok. The curves are much smoother in slow motion and next we will present the 

non-linear control simulation results. As I said, there are three of them; one is exact 

cancellation, but feed forward, then there is one with 10 percent error in mass and 5 percent 

error in location of CG and one is Cartesian control; using Cartesian equations of motion 

ok. 
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So, here are plots. So, let us just go over it. So, and we will look at the fast motion, because 

in the fast motion for PD control, the errors were larger. So, let us see, what happens when 

you use non-linear controllers for the fast motion.  

So, the error in 𝑥 and 𝑦 as you can see is really really small, it is like of the order of 10−10 

meters. So, in feed forward controller these are the two plots, which show that the error in 

𝑥 and 𝑦 is very small ok; there is some peak here and it is changing direction, but 

nevertheless even then it is like 10−10 meters. The torque is also much much smoother 



and very similar to the slow motion torque ok, it is very smooth it comes down and then 

again increases ok. 

So, as you are going up the torque required is less, because it has acquired speed and then 

while it is coming down, you have to change the direction of the torque again ok. When 

you have estimates error of 10 percent and 5 percent, as you can see that the error is much 

larger than the feed forward with exact cancellation; with exact parameters, nevertheless 

it is still smaller, which is of the order of 10−4 meters in 𝑥 and 𝑦 ok. 

So, what is 10−4 meters? It is like in point something millimeters. The torque is also very 

very nice and smooth, it is very similar to the torque obtained or the feed forward controller 

ok and also it is very similar to the slow motion torque, there are no peaks and sharp 

changes in the torque profile. In the Cartesian controller also it is very small ok, no changes 

in the torque profile also; and the numbers are very similar for error in 𝑥 and 𝑦. 

So, what is the moral of the story? Even with 10 percent error in masses, and 5 percent 

error in location of CG, the error comes down from something like 2 or 2 and half 

centimeters to less than a millimeter ok.  

And this is shown both in computed torque controller and also in Cartesian controller. And 

moreover, in computed torque controller with uncertainties. If you know the parameters 

exactly, then it is much much smaller ok, several orders of magnitude smaller than, when 

you have an estimates of the mass and location of CG ok. 
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So, in summary, the feed forward controller without model uncertainty is very accurate. 

The computed torque with 10 percent uncertainty is not that accurate; however, it is more 

accurate than PD ok, remember in PD it is of the order of 1 to 2 centimeters. The torque 

profiles are smoother, it is similar to PD control for slow motion and why? Because the 

effect of non-linearity is reduced in this computed torque schemes ok. We are somehow 

cancelling out the non-linear terms in the equations of motion. 

So, the 2R robot behaves more like a linear system ok, with computed torque schemes. 

And it is very similar to the slow motion, because in the PD with slow motion, it was 

moving slowly the non-linear terms were not so large and hence, the errors were smaller 

ok. Even one thing to note that, even with PD with slow motion, the errors are larger than 

the one with computed torque schemes ok. 
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So, summary of simulation results; the PD or PID control scheme is not suitable for high 

speed applications and the errors can be large ok. To reduce errors, we need to perform 

trial and error. We can change the controller gains ok. So, I have chosen 𝜔1 was 85, 𝜔2 

was 75, 𝜉 was 2.0 and then, obtain 𝐾𝑝𝑖 and 𝐾𝑣𝑖; we could play around with that, we can do 

trial and error to reduce the errors ok. 

The performance for slow speed motion is better and one can get is smooth torque profiles. 

Model based schemes show improved performance in simulation. The torques are lower 

and the profile of torque is also smoother. The lack of knowledge of parameters degrades 

the performance to some extent, but not a lot; it is still better than PD without any model.  

The computation times for model based controllers are larger, I haven’t shown you here, 

but as you can see we need to compute some 6 × 6 mass matrix and Coriolis term and 

centripetal term, but with modern newer processes, which is not very serious issue ok 

originally, maybe 30 years back, when the processors were not so efficient ok this could 

have this was an issue. 
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Now, let us look at non-linear control for an actual robot. So, I am going to present to you, 

some experimental results on non-linear control ok. So, this was a robot on which, my two 

students worked on it on long time back.  

So, the robot is a five axis servo manipulator. So, where are the five axis? There is 1 joint, 

1 motor which is in the vertical direction then, there are two motors which are located in 

the same plane here, one is for elbow and one is for shoulder rotation. So, this is called 

elbow extension and this is shoulder swivel. 

Now, if you have both these motors here, in order to rotate this link we need a mechanism 

ok. So, basically there is a 4 bar mechanism connecting one of the motors to this linkage. 

So, one of them rotates this link and one of them rotates the other link and then, this arm 

will also go up and down ok. 

The reason why these two motors are kept on this plane is to minimize the inertia seen by 

the second motor; first motor sees both these motors inertia, but they are located exactly 

equal distance from the axis so, that is the nice design. 

And then the second motor does not see the third motor inertia. So, in a typical serial robot, 

the second motor will see the inertia of the third link also in this case not; not so much. 

But there is a problem or there is a complication, in the sense the drive is not exactly like 

a serial robots, it is a mixture of serial and parallel robot ok. 



The original robot, had motors with large gear reduction, and due to this large gear 

reduction there were significant back lash and friction in the gears ok. The motors also had 

encoders and tachometers, tacho generators to measure joint rotation and velocity ok. So, 

in feedback control we need to measure the 𝜃: 𝑞 and 𝑞̇ these were measured using these 

optical encoders and tacho generators. 
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The existing control scheme for this robot, was that the voltage applied at the 𝑖th joint is 

proportional to the error, 𝜃𝑖𝑑 − 𝜃 multiplied by a proportional gain minus 𝐾𝑣𝑖𝜃̇𝑖. So, there 

is a small difference between what we have seen till now and this, which is that 𝜃̇𝑖𝑑 is not 

being used ok. So, it is 𝐾𝑣𝑖𝑒̇; 𝑒̇ = 𝜃̇𝑖𝑑 − 𝜃̇ now, 𝜃̇𝑖𝑑 is 0. So, hence we have a −𝐾𝑣𝑖𝜃̇𝑖𝑑. 

So, this is the voltage, which was applied at motor 𝑖 ok. The subset of PD control law is 

being used. So, basically we are not using 𝜃̇𝑖𝑑 and 𝜃̈𝑖𝑑. So, first thing that we did was, we 

modified the existing joint rotation, which is 𝜃𝑖𝑑 to include the effect of 𝜃̈𝑖𝑑 and 𝜃̇𝑖𝑑.  

So, it is a clever way of doing it that, instead of 𝜃𝑖𝑑; we say, if we supply 𝜃𝑖𝑑
∗  where 𝜃𝑖𝑑

∗ =

𝜃𝑖𝑑 +
1

𝐾𝑝𝑖
𝜃̈𝑖𝑑 +

𝐾𝑣𝑖

𝐾𝑝𝑖
𝜃̇𝑖𝑑. 

So, if you substitute back, this 𝜃𝑖𝑑
∗  in this equation instead of 𝜃𝑖, what you will get is, 𝜃̈𝑖𝑑 +

𝐾𝑝𝑖𝑒 + 𝐾𝑣𝑖𝑒̇. So, what have we done? We have modified the desired input, somewhat to 

obtain the standard PD control of which we are familiar with ok. 
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So, we can also modify the existing controller to a model based control scheme, not exactly 

a computed torque model based control scheme, which cancels the non-linearities, we 

modify 𝜃𝑖𝑑 with some voltage due to a model divided by 𝐾𝑝𝑖 plus the original 𝜃𝑖𝑑 plus this 

𝜃̈𝑖𝑑 divided by 𝐾𝑝𝑖 and 
𝐾𝑣𝑖

𝐾𝑝𝑖
𝜃̇𝑖𝑑, for each one of the 5 joints ok. 

And this voltage due to the model is based on the equations of motion. So, we know what 

is the desired trajectory, we know 𝜃̈𝑑, we know Coriolis term, we know gravity term, we 

compute the torque which is required to obtain this 𝜃̈𝑑 and 𝜃̇𝑑 and 𝜃𝑑, that is called 𝜏𝑚𝑑𝑙. 

And this voltage due to the model is corresponding to this 𝜏𝑚𝑑𝑙 ok and this is obtained 

with available motor characteristic charts. 

So, the above control scheme, once you substitute 𝜃𝑖𝑑
∗  and 𝜏𝑚𝑑𝑙 and 𝑉𝑖𝑚𝑑𝑙

 , it will look like 

𝜏 = 𝜏𝑚𝑑𝑙, the input to the motor torque is equal to the torque due the dynamics, which is 

the model part and the PD part ok. So, as you can see it is not [𝛼]𝜏′ + 𝛽, it is some biased 

term ok, which is 𝛽 plus some PD term ok. 

So, the model parameters required for 𝜃𝑖𝑑
∗  ok like [𝑀], 𝐶, link lengths all these things were 

obtained from the CAD model of the robot. So, this robot was designed in this place. So, 

which had the CAD model and we could obtain this. So, finally, what happens is, we are 

going to use 𝜃𝑖𝑑
∗  instead of 𝜃𝑖𝑑. So, the resistance input is changed ok. 



And what is the advantage of doing this? We do not have to touch the electronics of the 

hardware. All we say is that the desired trajectory is changed and the desired trajectory 

now, somehow takes into account the 𝜃̇𝑖𝑑, 𝜃̈𝑖𝑑 and the model to some extent. 
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So, what was the desired trajectory? The traverse from (0°, 0°, −90°, 180°, 0°) to 

(30°, 40°, −60°, 180°, 0°) and back ok. So, we start from some initial joint angles to some 

final joint angles and come back. And we assume that, the total time was 2 seconds going 

from this point to this point and another 2 seconds to come back. So, it turns out that the 

initial 2 seconds is against gravity and the final 2 seconds is aided by gravity for this robot. 

We generated smooth trajectories with zero initial and final velocity, the sampling time is 

5 milliseconds or a set point is generated at the frequency of 200 Hertz ok. So, this 

trajectory is typically faster than the usage of that robot, which was designed for the robot 

was not designed to show this much distance in 2 seconds. 
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Ok now, let us look at some of the experimental results that we have obtained. So, in this 

plot here, the solid line is the desired 𝜃1 ok. So, it is a nice smooth cubic profile up to some 

place and cubic profile from 2 to 4 seconds. So, it goes against gravity and comes back. 

So, the first dashed line ok is the trajectory or 𝜃1 due to the model, when the model based 

terms were included. The second small dotted line is what happens, when we do a PD 

control, basically we modified 𝜃𝑖𝑑
∗  to include the 𝜃̇𝑖𝑑 and 𝜃̈𝑖𝑑. And this one is the includes 

the model. So, what you can see is, the difference between the desired and model based is 

smaller ok. 

The difference between the desired and the PD is larger than the difference between the 

desired and the model based. And that is specially so, when it is coming down with gravity. 

The plot on the right hand side shows the difference between 𝑞1𝑑 and 𝑞1 obtained for 

model based and 𝑞1 obtained for PD. 

So, as you can see, for model based the error is like; maximum error is between 1 and 2 

degrees; whereas, for PD it is between on the other side, it is like 4 and half degrees, but 

while going up it is like 2 degrees ok. 
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For joint 2 also, we can compare the errors and I am not showing you the trajectory there 

are also the desired is smooth and record what the joint 2 is doing from the encoder and 

plot the 𝜃2 as a function of time, for PD control and 𝜃2 as a function of time for model 

based control and then, we subtract 𝜃2 from the 𝜃2𝑑 in both cases. 

So, this shows the error between 𝜃2 in PD control and 𝜃2 in model based control with 

respect to the 𝜃2𝑑. And as you can see again, that the model based is smaller ok. So, here 

it is like 2 and half degrees, this is the maximum is like 1 and a half degrees. Likewise for 

joint 3, we can plot the error, when we execute PD control and when we execute model 

based control with respect to the desired trajectory. 

So, here you can see that, the difference is not that much ok. So, it is like in one case, it is 

like 1.25 and this is like 0.75. On the other side it is more or less same. And one of the 

interesting thing that you can see is at some place there is some resonance ok, there is some 

oscillations which are happening, although we had chosen the gains such that it is 

overdamped nevertheless you can see some oscillations ok. 

So, the maximum 𝜃1 error reduces from 5 to 2 degrees, 𝜃2 error reduces for model based 

not much difference in 𝜃3 and in joint 4 and 5, which I am not showing there is almost no 

difference between PD and model based ok. And there is a reason, the joint 4 and 5 are the 

last two joints, they do not see too much inertial Coriolis and other effects ok. 
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It is moving a very small mass, the last two joints. Whereas the first joint is moving all the 

links after the first joint so, it sees a lot of inertia, a Coriolis and other effects. So, in 

summary the multi link serial manipulators are non-linear systems, we know that from the 

equations of motion. The linear PID control law not expected to give uniform performance 

at every point in the workspace, as and that you can see. 

The non-linear control scheme using control law partitioning ok, which is error driven plus 

model based portion, performs better. The ideal computed torques method leads to 

decoupled, linear, double integrators with uniform performance everywhere in the 

workspace, remember it was 𝜏′ = 𝑞̈. 

If we do not know the model parameters well; that means, [𝑀(𝑞)] is some [𝑀(𝑞)]̂ , 𝐶(𝑞, 𝑞̇) 

is some 𝐶(𝑞, 𝑞̇)̂  and so on. Then we do not get decoupled or linear set of equations ok, 

nevertheless the performance is expected to be superior to PD or PID controller as I have 

shown. And, basically the model based controllers are superior ok and I have shown you, 

3 experiments of 𝜃1, 𝜃2 and 𝜃3 experimental data. And similarly, I have shown you for 

simulation also ok. So, with this we come to an end of this lecture. In the next lecture, we 

will look at control of constrained and parallel manipulators. 


