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Welcome to this NPTEL lectures on Basics and Advanced Concepts. In this week, we will 

look at Motion Planning and Linear Control of Robotic Manipulators.  
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So, there will be 3 lectures this week, the 1st lecture will be on motion planning, the 2nd 

lecture will be on control of a single link using linear control. The 3rd lecture will be 

control of multi-link serial manipulators again using linear control.  
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So, 1st lecture is on motion planning, let us start. So, what do we mean by motion 

planning? We need to specify the trajectory of a robot manipulator. And what do we mean 

by specify the trajectory of a robot manipulator? Basically, we need to specify the time 

history of position, velocity, and acceleration of actuated joints or the end-effector, ok.  

So, it could be either in terms of the 𝜃 which is the joint variable or it could be in terms of 

the end-effector position and orientation. So, what do we need? We need to develop 

algorithms for planning and generation of this trajectory. The main issues in motion 

planning are there should be ease and flexibility in planning, ok.  

It should also be that the trajectories which are being planned are sufficiently smooth so 

as not to cause vibration or jerky motion, ok. Vibration or jerky motion in a robot 

manipulator will decrease the life of the manipulator. We should also efficiently represent 

the trajectory in a computer and generate this desired trajectory in real time when required, 

ok. So, we will look at what is meant by real time little later, ok. 
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So, there are two main ways a robot trajectory is specified, the first is joint space schemes. 

So, basically it means the time history of a single or multiple joints ok. In Cartesian space 

schemes, the time history of position and orientation of the end-effector is specified. And 

what is typically specified? The initial and final points in joint space or Cartesian space is 

specified. Often the initial and final desired velocity is also specified.  

Additionally, sometimes via or intermediate points are specified. And these come in two 

varieties, sometimes with the desired velocity at the via points or without the desired 

velocity at the via point. Most robots require at least that the second derivative or 

acceleration is continuous between the initial and final points, ok. So, this is known as 𝒞2 

continuity. 

The trajectory update rates are typically between 50 and 200 Hertz, so between 20 and 5 

milliseconds. So, every 20 milliseconds or every 5 milliseconds, we need to generate either 

the position of the joint 𝜃, 𝜃̇, 𝜃̈ or the position or an orientation of the end-effector and its 

derivatives, ok. 

So, this representation and computation of trajectories must be efficiently done. So, it is 

not a very serious issue with modern processors. Modern processors can easily generate 

the desired trajectories in 5 milliseconds or even faster. 
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So, let us continue in joint space schemes, basically they are planned for the trajectory of 

let us say 𝜃1. What is given? 𝜃1 at 𝑡0 and 𝜃1 at 𝑡𝑓 are given, ok. So, where 𝑡0 and 𝑡𝑓 are 

initial and final time. There are infinite number of smooth curves which can connect 𝜃𝑖(𝑡0) 

to 𝜃𝑖(𝑡𝑓). This topic is called interpolation ok, which is nothing but choosing the smooth 

curve between two given points.  

This is very well studied in CAD and geometric modeling. In robotics, we will look at the 

simplest possible polynomials. And what is the simplest possible polynomial? It is a linear 

polynomial between two given points. So, 𝜃1(𝑡) =
𝜃1(𝑡𝑓)−𝜃1(𝑡0)

𝑡𝑓−𝑡0
(𝑡 − 𝑡𝑓) + 𝜃1(𝑡𝑓). So, this 

is this quantity is like the slope of the straight line connecting 𝜃1(𝑡𝑓) and 𝜃1(𝑡0), ok. This 

is not very smooth as we can as we will see in the next slide. 
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So, in this picture we are showing 𝜃1(𝑡) along the y axis and time which is along the x 

axis. So, let us say the joint initially is at 𝜃1(𝑡0), it will go to 𝜃1(𝑡𝑎), then it comes to 

𝜃1(𝑡𝑏), then 𝜃1(𝑡𝑐). So, at 3 time instance 𝑡𝑎, 𝑡𝑏, 𝑡𝑐 these are the intermediate 𝜃 which are 

given, ok. And we end up at the final time. 

So, if you do linear interpolation or if you connect 𝜃1(𝑡0) to 𝜃1(𝑡𝑎) by a straight line and 

likewise from 𝑡𝑎 to 𝑡𝑏 also via a straight line, so each of these are piece wise linear 

segments ok, through these 3 via points, then the derivative of this straight line is a constant 

value. So, 𝜃1̇ between 𝑡0 and 𝑡𝑎 will be some value. 

Now, when the straight line changes direction the velocity will become from positive to 

negative. Likewise, again it changes direction again the velocity will go from negative to 

positive. And if it changes slope again then it will have a different positive value. So, 

basically there are sign changes in 𝜃1̇ between segments, ok. And there are distinct changes 

in the value of 𝜃1̇ even if there is no sign change.  

The plot of 𝜃1̈ is even worse. Why? Because the derivative of this so called step function, 

so when it is constant it is 0. And then when it changes sign there is a change in; so, it is 

like a delta function which is happening at 𝑡𝑎, 𝑡𝑏, and 𝑡𝑐, ok. So, it is not even 𝒞1 

continuity, ok.  



(Refer Slide Time: 07:28) 

 

To obtain a simplest polynomial trajectory with 𝒞2 continuity, we can look at a cubic 

trajectory. So, a cubic trajectory is given by 𝜃1(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3, where 𝑡 lies 

between 𝑡0 and 𝑡𝑓. And this 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are four constant coefficients which needs 

to be determined. 

So, to obtain this four constant coefficients we use the fact that 𝜃1 is given at 𝑡0 and 𝑡𝑓, 

similarly 𝜃1̇ is given at 𝑡0 and 𝑡𝑓. So, 𝜃1(𝑡0) = 𝜃10, 𝜃1(𝑡𝑓) = 𝜃1𝑓, 𝜃1̇(𝑡0) = 𝜃10
̇ , and 

𝜃1̇(𝑡𝑓) = 𝜃1𝑓
̇ . So, if you substitute these 4 given position and velocities at 𝑡0 and 𝑡𝑓 back 

into this cubic equation, we will get four linear equations in four unknowns, ok, 𝑎0, 𝑎1, 

𝑎2, and 𝑎3. 

So, for the sake of simplicity, let us assume that 𝑡0 = 0, so we start at 0 time. Then, if you 

substitute 𝑡 = 0 in this equation we will see that 𝜃10 = 𝑎0. Likewise, 𝑎1 = 𝜃10
̇ , and 𝑎2 

and 𝑎3 will be in terms of 𝑡𝑓, and 𝜃1𝑓, and 𝜃10, and so on, ok. Little complicated 

expressions for 𝑎2 and 𝑎3, but not very complicated, ok.  
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So, as you can see 𝑎2 is divided one term is divided by 𝑡𝑓
2. In 𝑎3, one term is divided by 

𝑡𝑓
3, ok. So, as an example let us consider that 𝜃1(𝑡 = 0) is 30 degrees, 𝜃1(𝑡 = 3) is 60 

degrees, 𝜃1̇(𝑡 = 0) is 10 degrees per second and 𝜃1̇(𝑡 = 3) is −30 degrees per second.  

So, we substitute this 4 given quantities in the cubic equation and we can show or derive 

that 𝑎0 = 30, 𝑎1 = 10, 𝑎2 =  13.34, and 𝑎3 = −4.45. So, the units are dropped. So, the 

expression for 𝜃1(𝑡) = 30 + 10𝑡 + 13.34𝑡2 − 4.45𝑡3, which we can plot. So, this is a 

plot of 𝜃1 as a function of time between 0 and 3, ok. So, this is that cubic curve which we 

have obtained. 

The derivative of the cubic curve is a quadratic, ok. So, this is the quadratic curve which 

shows 𝜃1̇ as a function of time. And the second derivative of that cubic curve is linear. So, 

that is the acceleration. So, what you can see is 𝜃1(𝑡), 𝜃̇1(𝑡), and 𝜃̈1(𝑡) are all continuous 

between 𝑡 = 0 and 𝑡 = 3 seconds, ok. 
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Let us continue. You can see that this 𝑎2 and 𝑎3 requires division by 𝑡𝑓
2 and 𝑡𝑓

3. So, for 

example, if 𝑡𝑓 is very large let us say it is 5 minutes, and you are going to generate Δ𝑡 at 

let us say 10 milliseconds, or 20 milliseconds. So then this 𝑡𝑓 can become very very large 

and 𝑡𝑓
2 and 𝑡𝑓

3 can also become very large. 

So, we scale 𝑡 as in geometric modeling that is the solution to this problem and this is 

given in some geometric molding book by Mortenson. So, we defined a new variable 𝑢 =

𝑡/𝑡𝑓 and 𝑢 will always lie between 0 and 1, and the derivatives of this cubic is generated 

by  ( ̇ ), but with respect to 𝑢 we denote it by a prime. So, the cubic now becomes 𝜃1(𝑢) =

𝑎0 + 𝑎1𝑢 + 𝑎2𝑢2 + 𝑎3𝑢3. 

If you substitute back, all those given quantities which is a 𝑡0 it is 𝜃10, and derivative at 

(𝑡 = 0) is 𝜃1
′ (0), and so on. We can show that 𝑎0 = 𝜃1(0), 𝑎1 = 𝜃1

′ (0), 𝑎2 = −𝜃1(0) +

3𝜃1(1) − 2𝜃1
′ (0) − 𝜃1

′ (1). So, 1 means at 𝑢 = 1. And likewise you can find 𝑎3, ok. 

So, basically re-substituting back 𝑎0, 𝑎1, 𝑎2, and 𝑎3 in this cubic we can show that 𝜃1(𝑢) =

(2𝑢3 − 3𝑢2 + 1)𝜃1(0) + (−2𝑢3 + 3𝑢2)𝜃1(1) + (𝑢3 − 2𝑢2 + 𝑢)𝜃1
′(0) + (𝑢3 −

𝑢2)𝜃1
′(1).  

So, basically as you can see there is no division by a large number, ok. So, we can obtain 

𝜃1 as a function of 𝑢 which lies between 0 and 1, and 𝑢 = 𝑡/𝑡𝑓, ok. But eventually, we 



need to supply 𝜃1 at every time instant. So, we can convert back 𝜃1(𝑢) back to 𝜃1(𝑡) by 

using 𝑢 = 𝑡/𝑡𝑓, ok. So, we are not dividing by 𝑡𝑓
2 or 𝑡𝑓

3. 
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This cubic which is given here ok, 𝑎0 + 𝑎1𝑢 + 𝑎2𝑢2 + 𝑎3𝑢3, where 𝑎’s are given by these 

expressions, can also be written in nested form which is 𝑎0 + 𝑢(𝑎1 + 𝑢(𝑎2 + 𝑎3𝑢)). So, 

this is the nice compact way. What is the advantage of doing this? You can see that it 

requires only 3 multiplication and 3 additions.  

So, when it was in this cubic form it required 1 multiplication here, 3 multiplications here 

and some 𝑢3 times 𝑎3, so 4 additions and some several multiplications, ok. In this nested 

form we need only 3 multiplications and 3 additions for to obtain 𝜃1(𝑢). We can also find 

𝜃1
′ (𝑢) and 𝜃1

′′(𝑢) by just doing multiplication and 3 additions, ok. 

So, for a 𝑛 jointed robot we generate this 𝜃1, 𝜃2, 𝜃3,.., 𝜃𝑛, separately. So, basically we have 

𝑛 times 3 multiplications and 3 additions to obtain the 𝜃’s of each one of the joints. So, in 

a way this cubic joint space scheme is very efficient, ok. Let us continue. One thing that 

you can see is the cubic can satisfy at most 4 constraints, ok. So, there are 4 parameters 

𝑎0, 𝑎1, 𝑎2, and 𝑎3.  

So, there is no control over initial and final acceleration, we can only specify initial and 

final position, and initial and final velocities. If you also want to specify initial and final 

positions, we have to use a 5th degree polynomial which is also sometimes called as a 



quintic polynomial. So, it is not very complicated, but we need a little bit more number of 

computations, ok. 

So, why do we need to specify acceleration? Sometimes in control we will need both 

position velocity and acceleration. It helps to specify or find out what is the desired 

velocity and desired acceleration also.  
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Now, let us continue if you want to generate a cubic trajectory with via points, ok. Let us 

say there are 𝑘 via points specified and as I mentioned earlier there are two possible cases, 

one is the velocity at the 𝑘 via points are specified and the other case the velocity at the 𝑘 

via points are not specified. Not specified means we do not care, ok. 

So, in the case of case 1, then the velocities are specified, so basically we have 𝑘 + 1 

segment and we plan 𝑘 + 1 cubic. So, between first initial point and the first via point we 

plan a cubic, between the first via point and the second via point we plan another cubic 

and so on. So, for two points and 𝑘 via points we will have 𝑘 + 1 segments. So, we just 

plan 𝑘 + 1 cubics.  

So, for each one of those we solve for 𝑎0𝑖, 𝑎1𝑖, 𝑎2𝑖 and 𝑎3𝑖 ok, all by using the same cubic 

equation. So, in this case, we will see later that 𝒞1 continuity is ensured, but since we have 

no control over the acceleration it is not 𝒞2 continuity. So, there is a discontinuity in joint 

acceleration across the via point, ok. 
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Example. So, we have 𝜃1(0) given as 30 degrees, 𝜃1(3) given as 60 degrees, 𝜃1̇(0) as 10 

degrees per second and the 𝜃1̇(3) as −30 degrees per second. However, it is also specified 

that at time 𝑡 = 2, so in between 0 and 3 the angle should be 55 degrees and the velocity 

should be−10 degrees per second. So, everything is specified.  

So, there are two segments for segment 1, 𝑎01 = 30, 𝑎11 = 10, 𝑎21 = 13.75 and 𝑎31 =

−6.25. For segment 2, 𝑎02 = 55, 𝑎12 = −10, 𝑎22 = 65 and 𝑎32 = −50, we just solves 

us to cubic’s with these boundary conditions, at 𝑡 = 0 and 𝑡 = 2, and then 𝑡 = 2, and 𝑡 =

3. 

So, the equations of the cubics are 𝜃1(𝑡) = 30 + 10𝑡 + 13.75𝑡2 − 6.25𝑡3, where 𝑡 lies 

between 0 and 2. And likewise, for the 2nd segment 𝜃1(𝑡) = 55 − 10𝑡 + 65𝑡2 − 50𝑡3, 

where 𝑡 lies between 2 and 3. So, we can plot this and we can see that 𝜃1 as a function of 

time consist of one cubic up to 2 and another cubic from 2 to 3. 

The velocity when you take the derivatives we will have one quadratic here and another 

quadratic here. So, you can see that there is a kink sort of thing which is happening. And 

if you take the second derivative you will have a linear acceleration from 0 to 2, and a 

different linear acceleration from 2 to 3. So, there is a jump. So, the acceleration is 

discontinuous. 
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In case 2, if the 𝑘 via points are specified, but the velocities of the 𝑘 via points are not 

specified. Then we are free to choose to match velocities and accelerations at the via points, 

ok. So, let us start. So, we have two cubics from 0 to 𝑡𝑓𝑖
, 𝑖 = 1,2. So, 𝜃1(𝑡) = 𝑎0𝑖 + 𝑎1𝑖𝑡 +

𝑎2𝑖𝑡
2 + 𝑎3𝑖𝑡3, 𝑖 = 1,2.  

So, from initial final via point and initial final velocity, so there are 5 of these, ok. We can 

substitute and we can show that 𝜃1(0) = 𝑎01, 𝜃1̇(0) = 𝑎11, 𝜃1(𝑣) also we can get, but for 

the second segment 𝜃1(𝑣) = 𝑎02, ok. So, at the via point the 𝜃1 at the end of the first 

segment must be equal to 𝜃1 at the beginning of the next segment. So, we have actually 

now 6 constraints. So, we substitute this 6 constraints in these expressions and we can 

solve, we can get 6 equations. 

Now, what we can do is we can match the velocities and acceleration at the via point, ok. 

So, the velocity is the first derivative of this at 𝑡 = 𝑡𝑓𝑖
 will be equal to the start of the next 

segment. So, we will get one equation which is 𝑎12 = 𝑎11 + 2𝑎21𝑡𝑓1
+ 3𝑎31𝑡𝑓1

2. 

Likewise, we take the second derivative which is 2𝑎22 = 2𝑎21 + 6𝑎31𝑡𝑓1
. So, acceleration 

in the end of the first segment should be equal to the acceleration with the beginning of 

the second segment. So, now, you can see that there are 8 equation in 8 unknowns which 

we can solve and obtain all the 8 coefficients of the two parts of the cubic.  
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So, if you plot this for the same data, so you can see that for the first segment 𝑎01 = 30, 

𝑎11 = 10, 𝑎21 = −1.04, 𝑎31 = 1.15. Likewise, for segment 2, 𝑎02 = 55, 𝑎12 = 19.58, 

𝑎22 = 5.83 and 𝑎32 = −20.42. So, this is one cubic till 2, this is another cubic from 2 to 

3. 

If you take the derivative this is the quadratic up to here and another quadratic up to here. 

However, there is no kink. Why? Because we have matched the velocities at the via point 

𝑡 = 2. Likewise, since there is no kink there is no jump in slope. So, we have acceleration 

which is continuous which is a straight line from 0 to 2 and another straight line between 

2 1 3, but there is no discontinuity at 𝑡 = 2, ok. 

So, clearly as expected 𝜃1̇ and 𝜃1̈ are continuous, ok. So, for 𝑘 via points we can get 4 +

4𝑘 equations. And it turns out this is the sparse matrix and we can easily solve for all the 

coefficients if you have 𝑘 via points, but at the via points we match velocity and 

accelerations, ok. 
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So, the joint space schemes is useful if a joint or a group of joints are to be moved. 

Typically, we are looking at the motion of the end-effector, ok. So, if you want to do 

motion planning in terms of position and orientation of the end-effector, then we need to 

use what are called Cartesian space schemes for motion planning, ok. 

So, this is more natural for the robot operator to specify. A robot operator can see the end-

effector is moving along the straight line or it is moving along a curve in 3D space ok, 

which is easier to see and visualize and check for obstacles also. Say, if I say that I want 

to go from one point in the Cartesian space to another point in the Cartesian space, and if 

I generate the straight line we can see if this in this straight line it is hitting any object or 

not, ok. 

It is difficult little bit to plan orientation due to the representations of orientation, ok. 

Remember orientation can be represented using rotation matrices, angle axis ok, Euler 

angles and so on. So, in all cases there are some small problems. Rotation matrix lots of 

constraints, Euler angles there are singular configurations. So, traditionally two important 

Cartesian space parts are used for position planning, ok. 

So, one is called linear interpolation which is basically nothing, but straight line path 

between two given positions. The second thing is called circular interpolation which is we 

go on a circular path between three given positions, ok. And as in any motion planning 

scheme all parts must be 𝒞2 continuous in time 𝑡.  
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So, straight line motion. How do we plan a straight line motion for the end-effector? So, 

what are we given? We are given (𝑥0, 𝑦0, 𝑧0)𝑇 at 𝑡 = 0 initial point initial velocity 

(𝑥̇0, 𝑦̇0, 𝑧̇0)𝑇; final point (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓)
𝑇
 and final velocity (𝑥̇𝑓 , 𝑦̇𝑓 , 𝑧̇𝑓)

𝑇
. So, the equation of a 

straight line in 3D space can be represented by two equations.  

So, it is like 𝑦 = 𝑚𝑥 + 𝑐 and 𝑧 = 𝑚2𝑥 + 𝑐2, ok. In general, we can write as 𝑦 is some 

slope times (𝑥(𝑡) − 𝑥𝑓) plus 𝑦𝑓; and 𝑧(𝑡), 𝑧 as a function of time is some slope times 

(𝑥(𝑡) − 𝑥𝑓) plus 𝑧𝑓. So, we plan a smooth cubic trajectory for 𝑥(𝑡) as 𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 +

𝑎2𝑡2 + 𝑎3𝑡3. Compute the coefficients from the given initial and final conditions, 𝑎0 =

𝑥0, 𝑎1 = 𝑥̇0 and so on. 

So, once we have 𝑥(𝑡) at the smooth trajectory we can compute 𝑦(𝑡) and 𝑧(𝑡) from this 

equation, ok. So, which will ensure that all the generated 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) are all 𝒞2 

continuous, right, 𝑥(𝑡) is 𝒞2 continuous, so both 𝑧(𝑡) and 𝑦(𝑡) should be 𝒞2 continuous 

and more importantly all the 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) are exactly lying on a straight line in 3D 

space, ok. 
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Sometimes for smoothness, we specify circular arcs as opposed to piece-wise straight lines 

between 3 points. So, if you are given 3 points, I can do two straight lines or I can pass a 

circular arc. So, circular arc is little preferred, better preferred because it is more smoother, 

in terms of 3D space, in time we will always be smooth. So, how do we obtain the 

trajectory?  

When 3 given points let us say 𝒑0
1, 𝒑0

2, 𝒑0
3, all in some fixed coordinate system are 

given and the velocities at these points are also given. So, first thing is, we need to define 

an algorithm for circular interpolation. Meaning what? We find out the equation of the 

circle, all these 3 points will line in a plane. So, we need to find the equation of the circular 

arc in this plane.  

So, what are the steps? First thing is we compute the normal to this plane. So, there is a 

vector from 𝒑0
1 to 𝒑0

2. Another vector from 𝒑0
1 to 𝒑0

3, the normal to this plane is the 

cross product of these two vectors. We also need to make sure that they are unit vectors. 

Then, we compute the location of the axis in this plane let us call them 𝑿̂0  , 𝒀̂0  and 𝒁̂0 .  

So, the 𝒁̂0  axis is along the normal, the 𝑿̂0  axis is between 𝒑0
1 and 𝒑0

2, again made 

into a unit vector and 𝒀̂0  axis is 𝒏0 × 𝑿̂0 . So, right handed coordinate system again. So, 

these 𝑿̂0 , 𝒁̂0  and 𝒁̂0  axis will define the coordinate system {CIRC} for denoting circular, 

ok. So, what is the rotation matrix of this coordinate system {CIRC} with respect to {0}?  



The first column is the 𝑿̂0  axis which is this, second column is the 𝒀̂0  axis which is this, 

and third column is the 𝒁̂0  axis which is the normal to the plane. 
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So, now we transform this 𝒑0
1, 𝒑0

2, 𝒑0
3 to this coordinate system {CIRC} using a 

rotation matrix [𝑅]0
𝐶𝐼𝑅𝐶 . So, you can see [𝑅]0

𝐶𝐼𝑅𝐶 𝒑0
1 will give me this point 𝑝1 in the 

{CIRC} coordinate frame, ok. So, in this {CIRC} coordinate frame the points will be 

(𝑥𝑖, 𝑦𝑖 , 𝑐𝑖). So, the z coordinates will not change ok, because all 3 are in a plane.  

So, now, from these points (𝑥𝑖, 𝑦𝑖 , 𝑐𝑖) we can compute (𝑎, 𝑏), which is the centre of the 

circular arc and 𝑟 which is the radius of the circular arc, ok. How can we do that? There 

are many ways. So, one is you connect (𝑥𝑖 , 𝑦𝑖): (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), you draw the 

straight lines find the perpendicular bisector of these two segments wherever they meet, 

that is the centre of the circular arc. And then radius is from the centre to any one of the 

points. 

We can also compute the angle made by the line from the centre to the 3 points with the 

𝑿̂0  axis in CIRC. So, let us denote them by 𝜙1, 𝜙2, and 𝜙3, ok. So, I have found the centre, 

I found an 𝑿̂0  axis, and then from 1, 2 and 3 I can find the angle, ok. We can plan as 𝒞2, 

cubic trajectory for 𝜙(𝑡) such that 𝜙1, 𝜙2, 𝜙3 are reached in the specified order and in 

specified time 𝑡, ok.  



So, maybe at 𝑡 = 0, then 𝑡 = 𝑡𝑓1
, and then some 𝑡 = 𝑡𝑓2

, ok. So, once we find this circular 

arc the equation of a points on the circular arc will be given by 𝑥(𝑡) = 𝑎 + 𝑟 cos(𝜙(𝑡)) 

and 𝑦(𝑡) = 𝑏 + 𝑟 sin(𝜙(𝑡)) and 𝑧(𝑡) will be constant, ok. So, since 𝜙(𝑡) is 𝒞2 continuous 

which is done using a cubic trajectory 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are also 𝒞2.  

And then finally, to obtain the end-effector path in the 0th coordinate system, the fixed 

reference coordinate system we pre multiply 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) by the [𝑅]0
𝐶𝐼𝑅𝐶 , ok. So, what 

have we done? Basically, we have taken these 3 points, find the equation of the centre of 

the circular arc in some plane, then planed the trajectory in that plane, and then converted 

it back to the 0th coordinate system. 

The alternate would be to use inverse kinematics and plan the trajectory in joint space. So, 

if I give you 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), we can do inverse kinematics find the joint angles plan, the 

trajectory in joint space and then convert it back to the 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡). However, this will 

only give you approximate straight line ok or circular trajectory in Cartesian space. 

Because only at the points where you do the inverse kinematics it will be exact, in between 

it will not be exact.  
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Trajectory planning for orientation. So, as I said there are various representation of 

orientation, all with their own advantages and disadvantages, ok. When you want to do 



trajectory planning for orientation it turns out that this representation using Euler 

parameters is more suitable. 

So, Euler parameters are nothing, but 4 parameters plus 1 constraint. So, we have some  

𝜀1, 𝜀2, 𝜀3 in the 0th coordinate system and a scalar 𝜀4. So, what are we given? We are given 

this vector at 𝑡 = 0, 𝜀4 also at 𝑡 = 0 and it is likewise this vector at 𝑡𝑓 and 𝜀4 at 𝑡𝑓. So, we 

have to ensure that the 𝜀1
2 + 𝜀2

2 + 𝜀3
2 + 𝜀4

2 = 1. 

And this interpolation must satisfy this constraint at all time 𝑡. So, what do we do? What 

is given? We are given some initial and final Euler parameters. We are also given initial 

and final angular velocity of the end-effector, ok. Remember in position we are given 

initial and final position, but also the initial and final velocity. In the case of rotation or 

orientation, we can only specify angular velocity, ok.  

And if you go back and remember the angular velocity is not directly related to the rotation 

matrix, ok. It is simply related to the rotation matrix. It was some [𝑅̇][𝑅]𝑇 and so on. So, 

we need to find the relationship between angular velocity and Euler parameters, this is not 

as simple as 𝑥(𝑡) and 𝑥̇(𝑡). 
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But it turns out that there is a relationship which is why Euler parameters are used. So, it 

turns out that the angular velocity of the tool coordinate system can be written in terms of 



rate of change of the Euler parameters 𝜀̇0
𝑇𝑜𝑜𝑙 and 𝜀4̇ pre-multiply by a matrix 2[𝐸(𝑡)], ok. 

[𝐸(𝑡)] is given here below. 

The inverse is always also possible. So, if I gave you the angular velocity of the tool, I can 

pre multiply 
1

2
[𝐸(𝑡)]𝑇. And get the rate of change of 𝜀1̇, 𝜀2̇, 𝜀3̇ and 𝜀4̇. And [𝐸(𝑡)] is a non-

square matrix. So, this is the interesting part.  

So, I am going from 𝜔 to 𝜀 or from 𝜀̇ to 𝜔 both directions, but I am not inverting any 

matrices, ok. So, it turns out that this is the real nice feature of Euler parameter. So, for a 

given 𝐸(𝑡) which is specified by (

−𝜀1 𝜀4 −𝜀3 𝜀2

−𝜀2 𝜀3 𝜀4 −𝜀1

−𝜀3 −𝜀2 𝜀1 𝜀4

). This in one case we use 

2[𝐸(𝑡)] and one case we use 
1

2
[𝐸(𝑡)]𝑇. 

So, what can we do to plan trajectory for orientation? Ok. We plan 𝒞2 continuous 

trajectories for given Euler parameter at 𝑡 = 0, 𝑡𝑓 and rate of change of Euler parameters 

at 𝑡 = 0, 𝑡𝑓. We compute the trajectory for 𝜀4. So, 𝜀4 is not generated, 𝜀4(𝑡) =

±√1 − 𝜀̇0
𝑇𝑜𝑜𝑙 ⋅ 𝜀̇0

𝑇𝑜𝑜𝑙. So, this ensures that the constraint is always satisfied at all 𝑡, ok.  

So, from 𝜀0
𝑇𝑜𝑜𝑙(𝑡) and 𝜀4(𝑡) obtain any required representation of the orientation of the 

end-effector at each instant of time. So, if I want to show you what are the Euler angles, I 

can obtain from 𝜀1, 𝜀2, 𝜀3 and 𝜀4 what are the Euler angles. I can also obtain the rotation 

matrix or even the axis and angle. 
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So, in summary, the joint space schemes can be applied for all actuated joints in a robot 

independently, ok. So, when I am planning the trajectories for 𝜃1, I do not need to worry 

about what is happening to 𝜃2. In parallel manipulators with passive joints, interpolated 

actuated joint values must satisfy the constraint equation containing passive and actuated 

joints, ok. This is important to see or to check, ok. 

Straight line or circular trajectories may pass through singularities or points not in the 

workspace, ok. So, I have tried to move from one place to another place in between there 

is a hole in the workspace. So, even though the initial and final points are in the workspace 

or far away from singularity, in between points can be outside the work space or close to 

a singularity. So, these needs to be checked also, ok. 

Straight line and circular trajectories must be checked for singularities, weather it lies 

always in the work space and also for joint limits. This is important, ok. So, not all joints 

in a robot can rotate fully. Till now we are assuming there are no constraints on the joint 

limits. But if there are joint limits we need to check for that. 

Finally, all these end-effector trajectories or even the joint space trajectories that we have 

generated, do not take into account the dynamics and torque limits of the joint, ok. So, we 

can peacefully go and plan a trajectory. However, it turns out that in someplace the desired 

acceleration is very high, and it cannot be supplied by the motor which is there in the robot.  



So, if you want to plan trajectories taking into account the dynamics of the torque limits 

then we need to do more advanced joint motion planning, ok. This was done in a paper by 

Bobrow in 1983, longtime back. So, it is not a very new thing. 

So, with this we come to end of this lecture on Motion Planning. In the next lecture, we 

will look at control of a single link. 


