
Robotics: Basics and Selected Advanced Concepts 

Prof. Ashitava Ghosal 

Department of Mechanical Engineering 

Indian Institute of Science, Bengaluru 

 

Lecture - 27 

Introduction, Lagrangian formulation 

 

Welcome to this NPTEL lectures on Robotics. So, in this set of lectures, we will look at 

the Dynamics of Serial and Parallel Robots. 
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So, there will be 4 lectures in this content. So, first we will introduce the problem of 

dynamics of serial and parallel robots then, we will look at the way to derive the equations 

of motion using something called as the Lagrangian formulation. In lecture 2, we will look 

at examples of equation of motion, for a planar 2 degree of freedom 2R robot and also for 

a parallel mechanism, closed loop mechanism. 

Then, on 3rd lecture we look at the inverse dynamics and simulation of equations of motion 

and finally, we will look at recursive formulation of dynamics of serial and parallel 

manipulators, ok. 
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So let us start. So, as an overview in kinematics, we looked at the motion without worrying 

about what is the cause of the motion. So, the cause of motion was not considered. In 

dynamics the motion of links of a robot due to external forces and moments are considered 

ok. So, they are the topic of dynamics. 
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So, main assumption in these lectures will be that all links are rigid. So, basically there is 

no deformation there is no flexibility in any of the links. The motion of the links are 

described by ordinary differential equation, also called equations of motion. If you have 



flexibility if you have deformation then, it is no longer ordinary differential equation ok. 

The equations of motion will contain partial derivatives ok, and then they are PDE’s. 

There are several methods to derive the equations of motion for example, there is 

something called as Newton-Euler, there is something called Lagrangian formulation and 

then there is Kane’s method ok. In the Newton-Euler approach basically, we obtain the 

linear and angular velocities and accelerations of each of the link ok, we use free body 

diagrams we also use Newton’s law which is 𝐹 = 𝑚𝑎 and the Euler equation which relates 

the torque and the moment of inertia of a rigid body.  

So, torque is related to angular acceleration and angular velocity. In the Lagrangian 

formulation we obtain the kinetic and potential energy of each link ok, we obtain 

something called as a Lagrangian which is a scalar quantity and then, we have to take 

certain partial and ordinary derivatives, ok. We have to take ordinary derivatives with 

respect to time and partial derivatives with what are called generalized coordinates, and 

their rates.  

In the Kane’s formulation we choose generalized coordinates and speeds ok, we obtain 

something called as generalized active and inertia forces, and then we equate the active 

and inertia forces ok. Each of these formulations has its own advantage and disadvantages. 
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There are two main problems in robot dynamics, first is this direct problem. The direct 

problem states that we need to obtain the motion of the links given the applied external 

forces and moments ok. The inverse problem we obtain the joint torques and forces 

required for a desired motion of the links of the robot. 

So, the direct problem involves solution of ODE’s this is also sometimes called a 

simulation. The inverse problem is required for sizing of the actuators and other 

components, and for advanced model based control schemes ok. So, once you solve the 

inverse problem we can find the joint torques and forces required to achieve a desired 

motion ok, and hence that helps you in choosing what is the sizes of the actuators. 

This is also very important problem ok, it does not involve solution of ordinary differential 

equations and it is used extensively in model based control schemes. In both of these direct 

and inverse problem the computational efficiency is of interest ok. So, we want to do solve 

this direct and inverse problem in a computationally efficient way. The goal is to develop 

what is called as 𝒪(𝑁) or 𝒪(log 𝑁) algorithms. 

𝒪 here means, that the order of the computational efficiency is linearly related to the 

number of links ok. So, say if the computation time is 𝑁 if I increase or double the number 

of links, the computation time will scale up linearly ok, it will become 2𝑁 or if even better 

if we can get a log 𝑁 computational efficiency ok. 

The reason why this is very important is there are now problems in something called 

protein folding and in computational biology, where the number of links or number of 

protein elements and number of chains is very large, it could be 500 it could be 1000 of 

them ok. And hence, we need to solve this direct and inverse problem in dynamics very 

very efficiently. 

The dynamics of parallel manipulators is complicated by the presence of closed loops ok. 

So, as we have seen till now, in parallel manipulators there are closed loops there are 

constraints which involve the passive joint variables ok. So, these constraints are typically 

directly in terms of the joint variables ok, they are algebraic constraints are constraints 

involving sin and cos of the angles. 



So, these constraints give rise to what are called as differential algebraic equations and 

these are normally much more difficult to solve, than ordinary differential equations -- 

ODE’s. 
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So, the first important thing to understand while deriving the equations of motion of a 

manipulator is this concept of mass and inertia of a link ok. So, if I have a rigid body in a 

coordinate system {0} labeled {0}. So,  𝑋̂0, 𝑌̂0, 𝑍̂0 is the coordinate system attached to the 

reference coordinate system, and we have a point on this rigid body which is at a distance 

𝑃 ok and there is a volume element 𝑑𝑉 so, 𝑑𝑋, 𝑑𝑌, 𝑑𝑍. So, the mass of the rigid body is 

given ∫ 𝜌 𝑑𝑉
𝑉

 where 𝜌 is the density. 

Now, just the mass is not enough we also need something called the inertia of a rigid body. 

So, the inertia of a rigid body is nothing but the distribution of the mass, how is this mass 

distributed. So, we have done in undergraduate. So, you can have a mass which is a plate, 

but we can also have a mass which is like an annular -- with a hole inside the plate ok. So, 

the inertia even though the mass of this plate and with the hole and without the hole is 

same ok, but the inertia will be different. 

So, the inertia of a rigid body is given by this inertia tensor ok, which is with respect to a 

coordinate system in this case 0 denotes that this inertia matrix of this rigid body is with 



respect to the {0} coordinate system, and it consists of 9 elements ok. So,  𝐼𝑥𝑥, 𝐼𝑥𝑦, 𝐼𝑥𝑧, but 

𝐼𝑦𝑥 = 𝐼𝑥𝑦, so it is a symmetric tensor. So, out of these 9 elements only 6 are independent. 
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So, the elements of the inertia tensor can be obtained again by volume integral. So, 𝐼𝑥𝑥 =

∫ (𝑦2 + 𝑧2) 𝜌 𝑑𝑉
𝑉

, 𝐼𝑥𝑦 = − ∫ 𝑥𝑦 𝜌 𝑑𝑉
𝑉

. So, ok we have seen this earlier. So, 𝐼𝑧𝑧 =

∫ (𝑥2 + 𝑦2) 𝜌 𝑑𝑉
𝑉

. So, it tells you how the mass is distributed so, 𝐼𝑥𝑥 will tell you how the 

mass is distributed related to 𝑦 and 𝑧 and so on. 

The inertia tensor is symmetric and positive definite ok, the eigenvalues of this inertia 

tensor are real and positive, this comes from linear algebra. If you have a 3 × 3 matrix 

which is symmetric and positive definite you will have three eigenvalues which are real 

and positive ok. The three eigenvalues are called the principal moments of inertia and the 

associated eigenvectors are called the principal axes, ok. 

So, we have seen inertia in undergraduate. So, there is something called principal moments 

of inertia and principal axes. So, they are determined from the eigenvalues and 

eigenvectors of this inertia matrix. The inertia tensor in another coordinate system {A} 

with 𝑂𝐴 coincident with 𝑂0 can be obtained by rotation matrices ok. So, the point of the 

coordinate system, the origin of the coordinate system 𝑂𝐴 and 𝑂0 must be coincident for 

this formula to hold through. 



So, [𝐼]𝐴 = [𝑅]0
𝐴 [𝐼]0 [𝑅]0

𝐴 𝑇. So, to obtain the inertia for a link 𝑖 in a robot first thing is we 

have to choose a coordinate system, so the typically the coordinate system is labeled {𝐶𝑖} 

it is chosen at the center of mass of the link. The coordinate system {𝐶𝑖} is parallel to the 

𝑖th link. So, remember the coordinate system for the 𝑖th link is on the joint axis 𝑖 ok, the 

origin is at the point of intersection of the common perpendicular with the Z axis and so 

on. 

So, we take that coordinate system which is 𝑋𝑖, 𝑌𝑖 , 𝑍𝑖 and 𝑂𝑖 and shift it to the center of 

mass keeping the orientation same ok. So, {𝐶𝑖} is parallel to 𝑖, we can also sub-divide a 

complex link into simple shapes and use parallel axis theorem ok. So, if you have a very 

strange looking link ok, with maybe holes and maybe some portions which are bent and 

so on.  

We can divide it into simple shapes ok, and then use parallel axis theorem. So, there is 

something called as a parallel axis theorem which again I am assuming you know, ok. So, 

with these concepts of inertia we can now get into the Lagrangian formulation to derive 

the equations of motion. 
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So, the Lagrangian formulation ok is based on kinetic energy and potential energy it is a 

energy based formulation ok. So, first we will look at the kinetic energy. So, the kinetic 



energy of a link 𝑖 with mass 𝑚𝑖 and inertia [𝐼]𝑂
𝑖 is given by (

1

2
𝑚𝑉2 +

1

2
𝐼𝜔2), this I am 

sure you have seen it earlier. 

In this case, we are writing it more formally as so, 
1

2
𝑚𝑉2 is nothing but 

1

2
𝑚𝑖 𝑽0

𝐶𝑖
⋅ 𝑽0

𝐶𝑖
so 

it is the velocity of the center of mass of the 𝑖th link square of that and, this is the angular 

velocity of the 𝑖th link in the 0th coordinate system, which we need to use in the 
1

2
𝐼𝜔2. So, 

the first and second terms from the linear velocity of the link center of mass and the angular 

velocity of the link. 

𝑽0
𝐶𝑖

 and 𝜔0
𝑖 at the linear and angular velocity of the center of mass and link 𝑖, 

respectively ok. If you know the linear velocity in its own coordinate system we can 

convert it back to the 0th coordinate system in using this rotation matrix ok. So, sometimes 

during the propagation formulas we obtain the linear and angular velocity described in its 

own coordinate system. 

So, that can also be used. So, since kinetic energy is a scalar you can show that 

(
1

2
𝑚𝑖 𝑽𝑖

𝐶𝑖
⋅ 𝑽𝑖

𝐶𝑖
+

1

2
𝜔𝑖

𝑖 ⋅ [𝐼]𝐶𝑖
𝑖 𝜔𝑖

𝑖) will also give the kinetic energy of the link, it is a 

scalar. So, it does not really matter from where you are starting, if you are careful. 
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So, we will use this velocity propagation formulas for serial manipulators basically 𝜔𝑖
𝑖 is 

𝜔𝑖−1
𝑖−1 pre multiplied by a rotation matrix added to 𝜃̇ along the z axis. So, this is if the 



joint is rotary. If the joint is prismatic then 𝜔𝑖
𝑖 is same as 𝜔𝑖−1

𝑖−1 pre multiplied by a 

rotation matrix.  

And the velocity of the center of mass is nothing but the velocity of the origin of the 

coordinate system into some 𝜔 × 𝑟, so location of the center of mass with respect to the 

origin. So, we do this for 𝑖 : 0 to n to obtain the kinetic energy of all links, ok. So, 𝑖 = 1 

is, so we find 𝜔1
1, 𝑽1

𝐶1
 and so on for all the links.  

In case of parallel manipulators, there are loops, there are no propagation formulas ok, 

which is not very obvious what are the propagation formulas because, we do not know 

what is the link or what is the joint and after that link after that joint we can go in two 

different ways to the same link, but more than two different ways to the same link. In that 

case, it is easier to compute the angular velocity from [𝑅̇]𝑖
0 [𝑅]𝑖

0 𝑇. 

So, for the chosen end-effector or chosen link we can find [𝑅̇]𝑖
0 [𝑅]𝑖

0 𝑇, and then from that 

we can this is a skew symmetric matrix and we can extract the space fixed angular velocity 

vector from that ok. Likewise, from the position vector of this center of mass of the 𝑖th link 

we can take the derivative with respect to time and find the linear velocity of the center of 

mass of the 𝑖th link ok. 
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So, 𝒑0
𝐶𝑖

 is the position vector of the center of mass of link 𝑖. So, the Lagrangian 

formulation also requires you to compute the potential energy and in this case we will 



assume that the potential energy is due to gravity alone ok. So, if you have springs or some 

other energy storage devices, we need to make appropriate modification to the expression 

of potential energy for a link. 

So, for example, if there is a spring torsional spring which is driving a joint ok, then we 

have to add 
1

2
𝑘𝑖𝜃𝑖

2 where 𝑘 is the spring constant, but most of the time we will be dealing 

only with gravity.  

So, the general expression for potential energy due to gravity is this dot product of the 

gravity vector which is most of the time pointing downwards is opposite to the Z-axis most 

of the time into the position of the CG dot product with vector locating the CG with respect 

to the 0th coordinate system ok, and there is a minus sign ok. 

So, the gravity vector has a magnitude of 9.81 meters per second square this is the standard 

assumption, 𝒈0  is normally along the vertical direction along the Z axis, but pointed in 

the opposite direction. And the position of the center of mass is the location of the center 

of mass so 𝒑0
𝐶𝑖

 locates the center of mass of link 𝑖 from the zero or reference potential 

energy ok. 

So, it is is not very important to know what is the reference potential energy or the zero 

potential energy because, we will take derivatives. So, if you have a constant value of the 

reference potential energy which you need to add or subtract that does not matter because 

finally, we will be taking derivatives of the kinetic and potential energy. 
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So, from the kinetic and potential energy, we define a scalar Lagrangian which is kinetic 

energy of link 𝑖 minus potential energy of link 𝑖 and then we sum over all the links 𝑖 = 1 

to 𝑁. So, this is a function of 𝒒 and 𝒒̇. So, 𝒒 means joint variables and 𝒒̇ means the rate of 

change of the joint variables. So, kinetic energy contains 𝒒̇ and 𝒒 and potential energy 

contains 𝒒 ok.  

In a serial robot with R and P joints the dimension of 𝒒 is 𝑛, which is the number of degrees 

of freedom and that should be equal to the number of links ok, we have seen this earlier. 

So, once we have this Lagrangian the equations of motion are obtained by following this 

recipe. So, what do we do?  

We take the partial derivative of the Lagrangian with respect to 𝑞𝑖, we take the partial 

derivative of the Lagrangian with respect to 𝑞̇𝑖 and then the time derivative of del 

Lagrangian with del 𝑞̇𝑖 and then, we equate it to 𝑄𝑖 and this is for each one of this 𝑖 so, 𝑖 

equals 1 through 𝑛. 

The right hand side capital 𝑄𝑖 are externally applied generalized forces ok. So, if there are 

forces and moments which are acting on this manipulator they will be accommodated in 

this 𝑄𝑖. If there are only joint torques which are acting so, then 𝑄𝑖 is nothing but 𝜏𝑖, which 

is the joint torques or forces which are acting at the joints. 
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So, after performing all these derivatives, the equation of motion of a serial manipulator 

takes the form [𝑴(𝒒)]𝒒̈ + [𝑪(𝒒, 𝒒̇)]𝒒̇ + 𝑮(𝒒) = 𝝉. So, in this equation here all serial 

manipulators can be written in this form; this [𝑴(𝒒)] is called the mass matrix it is an 

𝑛 × 𝑛 mass matrix, this matrix [𝑪(𝒒, 𝒒̇)] this is also an 𝑛 × 𝑛 matrix and this [𝑪(𝒒, 𝒒̇)]𝒒̇ 

is a 𝑛 × 1 vector of centripetal and Coriolis terms ok.  

So, it contains terms which are quadratic terms of the form 𝑞̇𝑖𝑞̇𝑗. The term 𝑮(𝒒) is called 

the gravity terms, and it is a 𝑛 × 1 vector and 𝝉 right hand side is a vector of joint torques 

or forces again this is 𝑛 × 1.  

So, it turns out that all serial manipulator equations of motion can be written in the above 

form, this is a very strong statement that there is something which is multiplying 𝒒̈, there 

is something which is centripetal and Coriolis term, there is something which is gravity 

term which is only a function of 𝒒, and on the right hand side we have the external torques 

which are acting at the joints. 

So, for R joints, the elements of [𝑴(𝒒)] have units kg meter square so, this is like inertia 

ok 𝐼. For P joints, the elements of [𝑴(𝒒)] have units of mass because; for P joints the right 

hand side will be force and not a moment. 
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So, the mass matrix [𝑴(𝒒)] is always positive definite and symmetric ok. How do we 

know it is positive definite? Because, you can show that the kinetic energy of the system 

is nothing but 
1

2
𝒒̇𝑇[𝑴(𝒒)]𝒒̇. The kinetic energy is always greater than or equal to 0 for 𝒒̇ 

not equal to 0.  

And zero only when 𝒒̇ is equal to 0 so this implies that [𝑴(𝒒)] is positive definite ok. 

Another way of looking at it is, since this is the inertia matrix, inertia cannot be imaginary 

along any component of 𝒒̈. So, hence the eigenvalues of [𝑴(𝒒)] must be real and 

[𝑴(𝒒)]must be symmetric, ok. 

The centripetal and Coriolis term matrix [𝑪(𝒒, 𝒒̇)] the elements being 𝐶𝑖𝑗 can be derived 

from the mass matrix by taking this following partial derivative. So, 𝐶𝑖𝑗 =

1

2
∑ (

𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝑀𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝑀𝑘𝑗

𝜕𝑞𝑖
) 𝑞̇𝑘

𝑛
𝑘=1 , this can be proved ok. The gravity term final gravity term 

𝐺𝑖 it is a vector 𝑛 × 1 vector, each element is nothing but the potential energy of the 

manipulator partial derivative with respect to 𝑞𝑖. 
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If you have 𝑚 loop closure equations ok, and we still want to find the apply the Lagrangian 

formulation to parallel manipulators. So, we have 𝜂𝑖(𝒒) = 0, 𝑖 =1 through 𝑚. So, now 

this 𝒒 ∈ ℜ𝑛+𝑚, ok. So, there are 𝑛 actuated joint variables 𝜃 and 𝑚 passive joint variables 

𝜙. So, to obtain the equation of motion for a system with constraints, loop closure 

constraints we use Lagrange multipliers.  

So, you can look at this book by Goldstein and Haug. So, the Lagrangian is now written 

as ℒ̅(𝒒, 𝒒̇) = ℒ(𝒒, 𝒒̇) − ∑ 𝜆𝑗𝜂𝑗(𝒒)𝑚
𝑗=1  where 𝑗 equals 1 through 𝑚. So, this 𝜆𝑗’s are the 𝑚 

Lagrange multipliers which have been introduced. So, we need to find them out somehow. 
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So, if the 𝑚 constraints 𝜂𝑗(𝒒) = 0 are holonomic they are only functions of 𝒒. So, for 

holonomic constraints the equations of motion can be again derived. So, it is given by 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑞̇𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝜏𝑖 + ∑

𝜕𝜂𝑗(𝒒)

𝜕𝑞𝑖

𝑚
𝑗=1  , we have an additional term ∑

𝜕𝜂𝑗(𝒒)

𝜕𝑞𝑖

𝑚
𝑗=1 . So, this is a 

matrix times 𝜆𝑗. 

So, in matrix form, this will look like mass matrix times 𝒒̈, Coriolis term, gravity term 

equals torque plus some [Ψ(𝒒)]𝑇𝝀, where lambdas are the Lagrange multipliers, 𝑚 of 

them. This matrix [Ψ(𝒒)] is obtained from the partial derivatives of the 𝑚 constraint 

equation with respect to 𝑞𝑖 ok. So, we have 𝑚 constraint equation we take partial 

derivatives with respect to 𝑞’s meaning partial derivatives with respect to actuated 𝜃 and 

passive 𝜙. 

And then, we basically remember in parallel robots we found something called [𝐾] matrix 

and [𝐾∗] matrix. So, [Ψ(𝒒)] is nothing but a concatenation of [𝐾] and [𝐾∗]. So, remember 

[𝐾∗] was a square matrix so, partial derivative of constraint equation with passive joint 

variables and [𝐾] contains partial derivative of the constraint equation with the actuated 

joint variables. 
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So, to determine 𝜆 we twice differentiate the m constraint equation with respect to time. 

So, if you differentiate 𝜼(𝒒) = 0 with respect to time ok. So, you will get [Ψ(𝒒)]𝒒̈ +

[Ψ̇(𝒒)]𝒒̇ = 𝟎. First derivative of 𝜼(𝒒) will give you [Ψ(𝒒)]𝒒̇ = 𝟎. Then second time 

when you again take the derivative you will get [Ψ(𝒒)]𝒒̈ + [Ψ̇(𝒒)]𝒒̇ = 𝟎. 

And what is [Ψ̇]? [Ψ̇] is a 𝑚 × (𝑛 + 𝑚) matrix containing the time derivatives of each of 

the elements of [Ψ]. So, since mass matrix is always invertible I can always write 𝒒̈ =

[𝑴]−1(𝜏 − [𝑪]𝒒̇ − 𝑮) + [𝑴]−1[Ψ]𝑇𝜆. So, the equation of motion contains [Ψ]𝑇𝜆 on the 

right hand side. 

So, we can find 𝒒̈. So, why is the mass matrix always invertible? Because, it is symmetric 

and positive definite ok. It is positive definite that is enough to make it invertible. We can 

now substitute 𝒒̈ which is obtained from this expression back into this expression which 

we obtained when we differentiated twice the constraint equations ok. So, then you will 

have [Ψ] times this whole quantity here plus [Ψ̇]𝒒̇ equal to 0, ok. 

So, what do we have as the unknown in this expression? 𝜆 ok, and hence we can find out 

𝜆 = −([Ψ][𝑴]−1[Ψ]𝑇)−1{[Ψ̇]𝒒̇ + [Ψ][𝑴]−1(𝜏 − [𝑪]𝒒̇ − 𝑮)}, little bit of algebra will 

show you that this is indeed correct. And then, we can substitute 𝜆 back into this equation 

ok and we get the equation of motion which is [𝑴]𝒒̈ = 𝒇 −

[Ψ]𝑇([Ψ][𝑴]−1[Ψ]𝑇)−1{[Ψ(𝒒)][𝑴]−1𝒇 + [Ψ̇]𝒒̇}. 



Where 𝒇 = 𝝉 − [𝑪]𝒒̇ − 𝑮, so what have we done? Lot of math’s, but the basic idea is that 

we have some constraint equations which are 𝑚 of them which we obtain after twice 

differentiating the 𝑚 constraint equation we get this matrix equation. We also have the 

matrix equation corresponding to the equations of motion. So, what are the unknown’s? 𝜆 

is an unknown ok. And we solve for this 𝜆 from the second equation substitute back into 

this equation and then we can derive the. 

So, basically we have eliminated 𝜆. So, now let us take a little bit look at this equation. If 

it was a serial robot ok then, we had just [𝑴(𝒒)]𝒒̈ = 𝝉 − [𝑪(𝒒, 𝒒̇)]𝒒̇ − 𝑮(𝒒). Now, due to 

all this constraint equation we have these additional complicated terms. 
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So, the mass matrix [𝑴(𝒒)] is now (𝑛 + 𝑚) × (𝑛 + 𝑚), it is a positive definite symmetric 

matrix. The centripetal and Coriolis terms are also (𝑛 + 𝑚) × 1 vectors ok. [Ψ(𝒒)]𝑇𝜆 has 

the units of torque or force ok, so that we can see here. So, [Ψ(𝒒)]𝑇𝜆 is added to right hand 

side with torque. So, it will have units of the joint torque or the joint force, which is being 

applied externally.  

You can show that the work done by constraint forces ok, which is ([Ψ(𝒒)]𝑇𝜆)𝑇𝒒̇ or 

basically this constraint forces dot 𝒒̇ will be this ok, and [Ψ(𝒒)]𝒒̇ = 0. So, [Ψ(𝒒)]𝒒̇ = 0 

So, hence the work done by these constraint forces is 0 ok. So, there is a set of forces or 

torques which are occurring due to the constraint equations and the work done by those is 

0.  



It is often useful to obtain the constraint forces and torques for mechanical design of the 

joints ok. So, although the forces are not doing any work constraint forces, but they have 

to be resisted. So, if you have a bearing ok which is at one of the joints I need to know the 

radial forces and other forces which are not contributing to the energy, but I still need to 

design the bearing.  

So, I need to know what are the forces. So, the [Ψ(𝒒)]𝑇𝜆 are the constraint forces ok, and 

we can evaluate them to go design later on. Most multi-body dynamics software packages 

for example, ADAMS will compute and provide the constraint forces and torques ok. 

Something similar is done in this package called ADAMS. So, not only it will give you 

the equations of motion ok, it will involve the torques and forces which are causing motion, 

but it will also tell you what are the constraint forces. 
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In mobile robots and and few other mechanical systems, the constraints are non-

holonomic. So, what is meant by non-holonomic? The constraints are functions of both 𝒒 

and 𝒒̇ ok, more importantly these functions are non-integrable so, you cannot get rid of the 

𝒒̇. So, once you have a function of 𝒒 and 𝒒̇ equal to 0 ok not 𝜂(𝒒) = 0 that is holonomic 

constraint.  

This is a non-holonomic constraint when you have both 𝒒 and 𝒒̇ occurring and non-

integrable. So, what it means is they restrict the space of 𝒒̇, but not the space of 𝒒 so; 



certain 𝒒̇ are no longer independent ok. So, now the constraint forces can also be explicit 

functions of time ok. 

The Lagrangian formulation for such systems ok with general constraints in the so-called 

Pfaffian form 𝜙(𝑡) + [Ψ(𝒒)]𝒒̇ = 𝟎 can also be obtained. So, what do we do? We 

differentiate once this equation so, you get [Ψ]𝒒̈ + [Ψ̇]𝒒̇ + 𝜙̇(𝑡) = 0. So, remember this 

term is only a function of time this term is a function of 𝒒’s -- joint variables. 

So, now the equations of motion can be derived basically you again find [𝑴(𝒒)]𝒒̈ we 

substitute 𝒒̈ here and obtain the Lagrange multipliers, and then resubstitute back the 

Lagrange multiplier into the equations of motion. And you will get [𝑴]𝒒̈ is equal to 𝒇 −

[Ψ]𝑇([Ψ][𝑴]−1[Ψ]𝑇)−1 plus this term the only difference is now we have some 𝜙̇(𝑡), 

which is coming from this derivative here. 

And 𝜆 = −([Ψ][𝑴]−1[Ψ]𝑇)−1{𝜙̇(𝑡) + [Ψ̇]𝒒̇ + [Ψ][𝑴]−1(𝝉 − [𝑪]𝒒̇ − 𝑮)}. So, this is the 

expression for 𝜆. So, once you solve the equations of motion, once you find 𝒒 as a function 

of time and 𝒒̇ as a function of time, and if you are given this 𝜙 as a function of time ok. 

Then you can substitute back in this expression and find 𝜆. 
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So, in summary the equations of motion for the serial or a parallel manipulator and any 

multi-body system even with non-holonomic constraints can be obtained using the 

Lagrangian formulation ok. So, we can compute the kinetic energy, we can always 



compute the kinetic energy of each moving link, sum it over and get the total kinetic energy 

we find the potential energy of each link and then sum it over and get the potential energy 

of the system and then KE – PE is the Lagrangian for the system ok. 

The equation of motion obtained using Lagrangian formulation does not contain friction 

or any other dissipative term ok, remember we do not have anything any formulation for 

friction and that is because, the Lagrangian formulation originally is only for conservative 

systems ok. But, we must have or we must need to accommodate friction somehow. So, in 

the Lagrangian formulation we just add friction in an ad-hoc manner in the right hand side 

ok. 

So, we had 𝜏 = [𝑴(𝒒)]𝒒̈ + [𝑪(𝒒, 𝒒̇)]𝒒̇ + 𝑮(𝒒) we add a friction term, which could be a 

function of both 𝒒 and 𝒒̇. So, this friction term looks you know concept you know 

symbolically similar, but they have completely different meaning ok. So, this friction term 

is a dissipative term ok whereas, this Coriolis term is not a dissipative term. Typically this 

friction term will be a constant, which is the Coulombs friction and maybe a term 

proportional to 𝒒̇ this is called viscous damping ok. 

So, we just add it to the right hand side. So, for each equation of motion we have for each 

joint we add a Coulomb term and a viscous damping term. Equations of motion also do 

not contain any effect of flexibility backlash or other unmodeled dynamics ok. Remember, 

in a robot we can have flexible links we can have backlash at the joints because, there is a 

gearbox and it can bend and it can have some other unmodeled dynamics ok, those are not 

part of the equations of motion derived using the Lagrangian formulation. 
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Let us continue, we can also derive the equation of motion in Cartesian space ok. Meaning 

the currently whatever I have shown you are the equations of motion in joint space are 

functions of 𝒒 and 𝒒̇. The equations of motion in terms of position and orientation of the 

end-effector which is the Cartesian coordinates are sometimes needed ok. So, it is useful 

for Cartesian space motion and force control ok. 

So, we need to derive the equations of motion in terms of the end-effector position and 

orientation and this was done by Khatib in 1987. Equations of motion are given by some 

mass matrix times 𝒳̈ plus Coriolis term 𝒒, 𝒒̇ and a gravity term. So, what I am trying to 

show here is the left hand side is a 6 × 1 entity of forces and moments acting on the end-

effector ok, it is not a vector it is not the torque vector joint you know joint torques. 

It is an external forces and moments which are acting on the end-effector. And this 𝒳 is a 

6 × 1 entity representing the position and orientation of the end-effector. So, it could be 

𝑥, 𝑦, 𝑧 and three Euler angles or some other representation ok. There is 𝒒 and 𝒒̇ here also 

conceptually we could have removed 𝒒 and written in terms of 𝒳 by inverse kinematics 

or 𝒒̇ we could have removed and written in terms of inverse Jacobian, but that is not really 

required. 

Later on, when we do force control or Cartesian space motion control, that is why it is left 

in this form, but conceptually I can write everything in terms of Cartesian position and 

orientation of the end-effector ok. 
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So, this [𝑴𝓧(𝒒)] and [𝑪𝓧(𝒒, 𝒒̇)] and 𝑮𝓧(𝒒) is analogous to the mass matrix, coordinate 

centripetal and gravity term, respectively. We can also derive the relationship between the 

Cartesian and joint space terms please think of it as a homework problem. So, we have 

already derived that the torque is nothing but [𝐽(𝒒)]𝑇ℱ, this was done in statics and the 

same relationship holds here also.  

The Cartesian mass matrix which is on the left hand side is related to the joint space mass 

matrix by [𝐽(𝒒)]−𝑇 and [𝐽(𝒒)]−1, the Coriolis term also now will include [𝐽(𝒒)]−𝑇, and 

[𝐽(𝒒)]−1. And the gravity term is again nothing but [𝐽(𝒒)]−𝑇 into the gravity term obtained 

in joint space. 

So, [𝐽(𝒒)]−𝑇 denotes the inverse of [𝐽(𝒒)]𝑇. Why do we get [𝐽(𝒒)]𝑇? Basically, again 

remember in the torque and joint torques and joint forces are related by [𝐽(𝒒)]𝑇, and that 

is sort of we carry through when we derive the mass matrix Coriolis term the gravity term 

in the Cartesian space.  

The 𝒒, 𝒒̇ as I mentioned can be replaced with Cartesian variables at least conceptually so, 

we could we could have set inverse kinematics of 𝒒 is giving 𝒳 inverse Jacobian is giving 

𝒒̇, which is difficult but it is not really required also ok. So, this replacement is not required 

for Cartesian space motion and force control and hence we will leave it in this form.  



So, with this we finish the Lagrangian formulation, and how to use the Lagrangian 

formulation to derive the equations of motion. In the next lecture, we look at Examples of 

Equations of Motion. 

Thank you. 


